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Abstract. The purpose of this paper is to introduce an iterative algorithm for finding a

common element of the set of solutions of mixed equilibrium problems, the set of common

fixed point for strictly pseudo-contractive mappings and the set of common fixed points for

nonexpansive semi-groups in Hilbert space. Under suitable conditions, we prove some strong

convergence theorems. Our results improve and extend the corresponding results announced

by many others.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ ·‖. Let C
be a nonempty closed convex subset of H. We denote the sets of nonnegative
integers and real numbers by N and R respectively.

A mapping T : C → C is called nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖,
∀x, y ∈ C. Denote by F (T ) the set of fixed points of T , that is F (T ) = {x ∈
C : Tx = x}.
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Let S={S(s) : 0 ≤ s ≤ ∞} be a nonexpansive semigroup on C, if it satisfies
the following conditions:

(i) S(0)x = x for all x ∈ C;
(ii) S(s+ t) = S(s)S(t) for all s, t ≥ 0;

(iii) ‖S(s)x− S(s)y‖ ≤ ‖x− y‖ for all x, y ∈ C and s ≥ 0;
(iv) for all x ∈ C, s 7→ S(s)x is continuous.

We denote by F (S) the set of common fixed points of S = {S(s) : s ≥ 0}, i.e.,

F (S) =
⋂
s≥0

F (S(s)).

Let ϕ : C → R be a real-valued function and Θ : C ×C → R be an equilib-
rium bifunction. We consider the mixed equilibrium problem (MEP)which is
to find x∗ ∈ C such that

Θ(x∗, y) + ϕ(y)− ϕ(x∗) ≥ 0, ∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by Ω.
In particular, if ϕ = 0, this problem reduces to the equilibrium prob-

lem(EP), which is to find x∗ ∈ C such that

Θ(x∗, y) ≥ 0, ∀y ∈ C. (1.2)

It is well-known that the MEP includes fixed point problem, variational
inequality problems, Nash equilibrium problems and the equililbrium problems
as special cases.

On the other hand, the following optimization problem has been studied
extensively by many authors:

min
x∈C

µ

2
〈Ax, x〉+

1

2
‖x− u‖2 − h(x) (1.3)

where C =
⋂∞
n=1Cn, C1, C2, · · · are infinitely many closed subsets of H such

that
⋂∞
n=1Cn 6= ∅, u ∈ H,µ ≥ 0 is a real number, A is a strongly positive linear

bounded operator on H and h is a potential function for γf (i.e.,h′(x) = γf(x)
for all x ∈ H).

In 2009, Wangkeeree [1] studied the strong convergence of the sequence {xn}
defined by x1 ∈ C,

xn+1 = αnγf(xn) + βnxn + ((1− βn)I − αnA)
1

sn

∫ sn

0
T (s)xnds.

They prove that under certain appropriate conditions imposed on {αn}, {βn},
{xn} converges strongly to a point z ∈ F (S) which is the unique solution of
the variational inequality

〈(A− γf)z, x− z〉 ≥ 0, x ∈ F (S).
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Recently, Yao [2] introduced the following iterative scheme as below for
finding a common of the solutions of mixed equilibrium problems and a set of
fixed points of an infinite family of nonexpansive mappings in a Hilbert space.

Defined sequence {xn} by Θ(yn, x) + ϕ(x)− ϕ(yn) + 1
r 〈K

′(yn)−K ′(xn), x− yn〉
xn+1 = αn(u+ γf(xn)) + (1− βn)xn

+((1− βn)I − αn(I + µA))Wnyn, ∀n ≥ 1.

They prove that under certain appropriate conditions the sequence {xn}
converges strongly to a point x∗ ∈ Ω ∩ F (Wn), which is the solution of the
following optimization problem:

min
x∈Ω∩F (Wn)

µ

2
〈Ax, x〉+

1

2
‖x− u‖2 − h(x).

Motivated and inspired by Wangkeeree [1] and Yao [2], the purpose of this
paper is to introduce an iterative algorithm for finding a common element of
the set of solutions for mixed equilibrium problems and the set of common
fixed points for an infinite family of strictly pseudo-contractive mappings and
the set of common fixed points for nonexpansive semi-groups in a Hilbert
space.

2. Preliminaries

Throughout this paper, we denote by ” → ” and ” ⇀ ” the strong conver-
gence and weak convergence, respectively.

Let H be a real Hilbert space and let C be a closed convex subset of H,
there exists a unique nearest point u ∈ C such that

‖x− u‖ ≤ ‖x− y‖, ∀y ∈ C.
The mapping PC : x → u is called the metric projection of H onto C. It is
well known that PC is nonexpansive, furthermore, for x ∈ H and u ∈ C,

u = PC(x)⇔ 〈x− u, u− y〉 ≥ 0, ∀y ∈ C.

Banach space E is said to satisfy the Opial condition, if for any sequence
{xn} in E with xn ⇀ x ∈ E, then for any y ∈ E with y 6= x, we have

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖.

Recall that a mapping f : H → H is said to be contractive, if there exists
a constant ξ ∈ (0, 1) such that

‖f(x)− f(y)‖ ≤ ξ‖x− y‖, ∀x, y ∈ H.
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A mapping V : C → H is said to be k-strictly pseudo-contractive, if there
exists a constant k ∈ [0, 1) such that

‖V (x)− V (y)‖2 ≤ ‖x− y‖2 + k‖(I − V )x− (I − V )y‖2, ∀x, y ∈ C.

A family of mappings {Vi : C → C}∞i=1 is callled a family of uniformly k-
strictly pseudo-contractive, if there exists a constant k ∈ [0, 1) such that

‖Vix− Viy‖2 ≤ ‖x− y‖2 + k‖(I − Vi)x− (I − Vi)y‖2, ∀x, y ∈ C, ∀i ≥ 1.

Lemma 2.1. ([3]) Let V : C → H be a k-strictly pseudo-contractive. Then

(1) the fixed point set F (V ) of V is closed convex so that the projection
PF (V ) is well defined;

(2) define a mapping T : C → H by Tx = γx + (1 − γ)V x, x ∈ C. If
γ ∈ [k, 1), then T is a nonexpansive mapping such that F (V ) = F (T ).

Definition 2.1. Let {Vi : C → C} be a countable family of uniformly k-
strictly pseudo-contractive. Let {Ti : C → C}∞i=1 be the sequence of nonex-
pansive mappings defined by

Tix = γx+ (1− γ)Vix, γ ∈ [k, 1). (2.1)

Let {µi} be a nonnegative real sequence with 0 ≤ µi < 1, ∀i ≥ 1. For any
n ≥ 1 define a mapping Wn : C → C as follows



Un,n+1 = I,
Un,n = µnTnUn,n+1 + (1− µn)I,
Un,n−1 = µn−1Tn−1Un,n + (1− µn−1)I,
...
Un,k = µkTkUn,k+1 + (1− µk)I,
Un,k−1 = µk−1Tk−1Un,k + (1− µk−1)I,
...
Un,2 = µ2T2Un,3 + (1− µ2)I,
Wn = Un,1 = µ1T1Un,2 + (1− µ1)I.

(2.2)

Such a mapping Wn is nonexpansive from C to C called the W−mapping
generated by Tn, Tn−1, · · · , T1 and µn, µn−1, · · · , µ1. We have the following
Lemmas concerning Wn.
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Lemma 2.2. ([4]) Let C be a nonempty closed convex subset of a Hilbert space
H, {Ti : C → C}∞i=1 be an infinite family of nonexpansive mappings with

∞⋂
i=1

F (Ti) 6= ∅,

{µi} be a real sequence such that 0 < µi ≤ b < 1, ∀i ≥ 1. Then

(1) Wn is nonexpansive and F (Wn) =
⋂∞
i=1 F (Ti) for each n ≥ 1;

(2) for each x ∈ C and for each positive integer k, the limit lim
n→∞

Un,kx

exists;
(3) the mapping W : C → C defined by Wx := lim

n→∞
Wnx = lim

n→∞
Un,1x,

x ∈ C, is a nonexpansive mapping satisfying F (W ) =
⋂∞
i=1 F (Ti).

Lemma 2.3. ([5]) Let C be a nonempty closed convex subset of a Hilbert space
H, {Ti : C → C} be a countable family of nonexpansive mappings with

∞⋂
i=1

F (Ti) 6= ∅,

{µi} be a real sequence such that 0 < µi ≤ b < 1, ∀i ≥ 1. If D is any bounded
subset of C, then

lim
n→∞

sup
x∈D
‖Wx−Wnx‖ = 0.

Lemma 2.4. Let H be a real Hilbert space. Then we have the following
inequality:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉,∀x, y ∈ H.

Lemma 2.5. ([6]) Let {xn} and {yn} be bounded sequences in a Banach space
E and {βn} be a sequence in [0, 1] with 0 < lim inf

n→∞
βn ≤ lim sup

n→∞
βn < 1.

Suppose that
xn+1 = (1− βn)yn + βnxn

for all integer n ≥ 1 and

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then lim
n→∞

‖yn − xn‖ = 0.

Lemma 2.6. ([7]) Let {an} be a sequence of nonnegative real numbers such
that

an+1 ≤ (1− γn)an + δn,
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where {γn} is a sequence in (0, 1) and {δn} is a sequence such that

(i) Σ∞n=1γn =∞;

(ii) lim sup
n→∞

δn
γn
≤ 0 or Σ∞n=1|δn| =∞.

Then lim
n→∞

an = 0.

For nonexpansive semi-group S={S(s) : 0 ≤ s <∞}, we need the following
lemmas to prove our main result:

Lemma 2.7. ([8]) Let C be a bounded closed convex subset of H and S={S(s) :
0 ≤ s <∞} be a nonexpansive semi-group on C. Then for any h > 0,

lim
s→∞

sup
x∈C

∥∥∥∥1

t

∫ t

0
S(s)xds− S(h)

(
1

t

∫ t

0
S(s)xds

)∥∥∥∥ = 0.

Lemma 2.8. ([9]) Let C be a nonempty bounded closed convex subset of H,
{xn} be a sequence in C and S={S(s) : 0 ≤ s < ∞} be a nonexpansive
semi-group on C. If the following conditions are satisfied:

(i) xn ⇀ z;
(ii) lim sup

s→∞
lim sup
n→∞

‖S(s)xn − xn‖ = 0.

Then z ∈ F (S).

For solving the mixed equilibrium problem (1.1), let us assume that the
function Θ : C × C → R satisfied the following conditions:

(H1) Θ is monotone, that is, Θ(x, y) + Θ(y, x) ≤ 0 for all x, y ∈ C;
(H2) for each fixed y ∈ C, x 7→ Θ(x, y) is concave and upper semicontinuous;
(H3) for each x ∈ C, y 7→ Θ(x, y) is convex.

Let F : C → C and η : C × C → C be two mappings. F is said to be:

(i) β−Lipschitz continuous, if there exists a constant β > 0 such that

‖F (x)− F (y)‖ ≤ β‖x− y‖, ∀x, y ∈ C;

(ii) η−monotone, if

〈F (x)− F (y), η(x, y)〉 ≥ 0, ∀x, y ∈ C;

(iii) η−strong monotone, if there exists a constant α > 0, such that

〈F (x)− F (y), η(x, y)〉 ≥ α‖x− y‖2, ∀x, y ∈ C.

A differentiable function K : C → R is said to be:



An iterative method for mixed equilibrium problems 313

(i) η convex, if

K(y)−K(x) ≥ 〈K ′(x), η(y, x)〉;
where K ′(x) is the Fréchet derivative of K at x.

(ii) η−strong convex, if there exists a constant µ > 0, such that

K(y)−K(x)− 〈K ′(x), η(y, x)〉 ≥ (µ/2)‖x− y‖2, ∀x, y ∈ C.
Let C be a nonempty closed convex subset of H, ϕ : C → R be a real-valued

function and Θ : C ×C → R be an equilibrium bifunction. Let r be any given
positive number. For a given point x ∈ H, consider the following auxiliary
problem for MEP to find y ∈ C such that

Θ(y, z) + ϕ(z)− ϕ(y) +
1

r
〈K ′(y)−K ′(x), η(z, y)〉 ≥ 0, ∀z ∈ C,

where η : H × H → H and K ′(x) is the Fréchet derivative of a functional
K : H → R at x. Let Sr : H → C be the mapping such that for each
x ∈ H,Sr(x) is the solution set of MEP, i.e.,

Sr(x)

=

{
y ∈ C : Θ(y, z) + ϕ(z)− ϕ(y) +

1

r
〈K ′(y)−K ′(x), η(z, y)〉 ≥ 0,∀z ∈ C

}
,

for all x ∈ H.

Lemma 2.9. ([10]) Let C be a nonempty closed convex subset of H and ϕ :
C → R be a lower semicontinuous and convex function. Let Θ : C × C → R
be an equilibrium bifunction satisfying the conditions (H1)-(H3). Assume that

(i) η : C × C → H is λ− Lipschitz continuous such that
(a) η(x, y) + η(y, x) = 0, ∀x, y ∈ H;
(b) η(·, ·) is affine in the first variable;
(c) for each fixed x ∈ H, the mapping y 7→ η(x, y) is sequentially

continuous from the weak topology to the weak topology;
(ii) K : H → R is η-strongly convex with constant µ > 0, and its deriva-

tive K ′ is sequentially continuous from the weak topology to the strong
topology;

(iii) for each x ∈ C, there exists a bounded subset Dx ⊂ C and a point
zx ∈ C such that for any y ∈ C\Dx,

Θ(y, zx) + ϕ(zx)− ϕ(y) +
1

r
〈K ′(y)−K ′(x), η(zx, y)〉 < 0.

Then the following hold:

(i) Sr is single-valued;
(ii) (a) 〈K ′(x1)−K ′(x2), η(u1, u2)〉 ≥ 〈K ′(u1)−K ′(u2), η(u1, u2)〉,∀(x1, x2) ∈

H ×H, where ui = Sr(xi), i = 1, 2;
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(b) Sr is nonexpansive if K ′ is Lipschitz continuous with constant
ν > 0 such that µ ≥ λν;

(iii) F (Sr) = Ω;
(iv) Ω is closed and convex.

Definition 2.2. Let A : H → H be a bounded self-adjoint linear operator, A
is said to be a strongly positive operator if there exist a constant γ > 0 such
that

〈Ax, x〉 ≥ γ‖x‖2, ∀x ∈ H.

Lemma 2.10. ([11]) Assume that A is a strongly positive bounded linear oper-
ator on H with coefficient γ > 0 and 0 < ρ ≤ ‖A‖−1. Then ‖I−ρA‖ ≤ 1−ργ.

Lemma 2.11. ([12]) Let C be an nonempty closed and convex subset of a real
Hilbert space H and g : C → R

⋃
{+∞} be a proper lower semicontinuous

differential convex function. If x∗ is a solution to the minimization problem

g(x∗) = inf
x∈C

g(x)

then

〈g′(x), x− x∗〉 ≥ 0, x ∈ C.
In particular, if x∗ solves the optimization problem (1.3), then

〈u+ (γf − (I + µA))x∗, x− x∗〉 ≤ 0, x ∈ C,

where h is a potential function for γf.

3. Main Results

Theorem 3.1. Let C1, C2 be two nonempty closed convex subsets of a real
Hilbert space H, f : H → H be a contractive mapping with a contractive
constant ξ ∈ (0, 1). Let ϕ : C1 → R be a lower semicontinous and convex
function, and let Θ : C1 × C1 → R be an equilibrium bifunction satisfying
conditions (H1)-(H3) with C replaced by C1. Let {Vi : C1 → C1}∞i=1 be a
countable family of uniformly k−strict pseudo-contractions and {Ti : C1 →
C1}∞i=1 be the countable family of nonexpansive mappings defined by (2.1) with
C replaced by C1. For each n ≥ 1, let Wn : C1 → C1 be the W−mapping define
by (2.2) with C replaced by C1. Let S={S(s) : 0 ≤ s <∞} be a nonexpansive
semi-group on C2. Let µ > 0, γ > 0, r > 0 be three constants and let A be a
strongly positive bounded linear operator on H with coefficient γ > 0 such that
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0 < γ < (1 + µγ)/ξ. For given x0 ∈ H arbitrarily and fixed u ∈ H, {xn}, {yn}
are the sequences generated by

yn ∈ C1 : Θ(yn, x) + ϕ(x)− ϕ(yn)
+1
r 〈K

′(yn)−K ′(xn), η(x, yn)〉 ≥ 0, ∀x ∈ C1,
xn+1 = αn(u+ γf(yn)) + βnxn

+((1− βn)I − αn(I + µA)) 1
tn

∫ tn
0 S(s)PC2Wnynds, ∀n ≥ 1,

(3.1)

where {αn}, {βn} are two sequences in (0, 1) and {tn} is a sequence in (0,∞).
If the following conditions are satisfied:

(i) η : C1 × C1 → H is λ−Lipschitz continuous such that
(a) η(x, y) + η(y, x) = 0, ∀x, y ∈ C1;
(b) η(·, ·) is affine in the first variable;
(c) for each fixed x ∈ C1, the mapping y 7→ η(x, y) is sequentially

continuous from the weak topology to the weak topology;
(ii) K : H → R is η-strongly convex with constant µ > 0, and its derivative

K ′ is not only sequentially continuous from the weak topology to the
strong topology but also Lipschitz continuous with a Lipschitz constant
ν > 0 and µ ≥ λν;

(iii) for each x ∈ C1, there exists a bounded subset Dx ⊂ C1 and a point
zx ∈ C1 such that for any y ∈ C1 \Dx,

Θ(y, zx) + ϕ(zx)− ϕ(y) +
1

r
〈K ′(y)−K ′(x), η(zx, y)〉 < 0;

(iv) lim
n→∞

αn = 0,
∑∞

n=0 αn =∞;

(v) 0 < lim inf
n→∞

β ≤ lim sup
n→∞

βn < 1;

(vi) lim
n→∞

tn =∞ with bounded supn≥1 |tn − tn+1|;
(vii) Γ := F (W )

⋂
Ω
⋂
F (S) 6= ∅, F (W ) =

⋂∞
i=1 F (Ti).

Then the sequences {xn} and {yn} defined by (3.1) converge strongly to x∗ ∈ Γ
which solves the following optimization problem (OP).

min
x∈Γ

µ

2
〈Ax, x〉+

1

2
‖x− u‖2 − h(x)

provided Sr is firmly nonexpansive, i.e.,

‖Srx− Sry‖2 ≤ 〈Srx− Sry, x− y〉, ∀x, y ∈ H.

Proof. We split the proof into five steps.
Step1. We show that {xn} is bounded.
By the conditions (iv) and (v), we may assume, without loss of generality,
that αn ≤ (1 − βn)(1 + µ‖A‖)−1 for all n ≥ 1. Since A is a strongly positive
bounded self-adjoint linear operator on H and Lemma 2.10, we have

‖A‖ = sup{|〈Au, u〉| : u ∈ H, ‖u‖ = 1}.
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Obeserve that

〈((1− βn)I − αn(1 + µA))u, u〉 = 1− βn − αn − αnµ〈Au, u〉
≥ 1− βn − αn − αnµ‖A‖
≥ 0.

This shows that (1− βn)I − αn(1 + µA) is positive. It follows that

‖(1− βn)I − αn(1 + µA)‖
= sup{〈((1− βn)I − αn(1 + µA))u, u〉| : u ∈ H, ‖u‖ = 1}
= sup{1− βn − αn − αnµ〈Au, u〉 : u ∈ H, ‖u‖ = 1}
≤ 1− βn − αn − αnµγ.

(3.2)

Taking p ∈ Γ, we have

‖yn − p‖ = ‖Srxn − Srp‖ ≤ ‖xn − p‖. (3.3)

Set Snx := 1
tn

∫ tn
0 S(s)xds and A := (I + µA). Since

‖SnPC2x− SnPC2y‖ =

∥∥∥∥ 1

tn

∫ tn

0
S(s)PC2xds−

1

tn

∫ tn

0
S(s)PC2yds

∥∥∥∥
≤ ‖x− y‖,

(3.4)

so SnPC2 is nonexpansive. Put M1 = max{‖x1 − p‖, ‖γf(p)−Ap‖+‖u‖
1+µγ−γξ }. Clearly,

‖x1 − p‖ ≤M1. Suppose that ‖xn − p‖ ≤M1, it follows from (3.2), (3.3) and
(3.4) that

‖xn+1 − p‖
= ‖αn(u+ γf(yn)) + βnxn

+((1− βn)I − αnA))SnPC2Wnyn − p‖
= ‖αnu+ αn(γf(yn)−Ap) + βn(xn − p)

+((1− βn)I − αnA))(SnPC2Wnyn − p)‖
≤ αn‖u‖+ αn‖γf(yn)−Ap‖+ βn‖xn − p‖

+(1− βn − αn − αnµγ))‖xn − p‖‖
≤ αn‖u‖+ αn‖γf(yn)−Ap‖+ (1− αn − αnµγ))‖xn − p‖‖
≤ αn‖u‖+ αn‖γf(yn)− γf(p)‖+ αn‖γf(p)−Ap‖

+(1− αn − αnµγ))‖xn − p‖‖
≤ αn‖u‖+ αnγξ‖xn − p‖+ αn‖γf(p)−Ap‖

+(1− αn − αnµγ))‖xn − p‖
= [1− (1 + µγ − γξ)αn]‖xn − p‖+ αn(‖u‖+ ‖γf(p)−Ap‖)
= [1− (1 + µγ − γξ)αn]‖xn − p‖

+(1 + µγ − γξ)αn (‖u‖+‖γf(p)−Ap‖)
1+µγ−γξ

= [1− (1 + µγ − γξ)αn]M1 + (1 + µγ − γξ)αnM1

≤ M1.

(3.5)
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It follows from (3.5) by induction that ‖xn−p‖ ≤M1, for all n ≥ 1 and hence
{xn} is bounded. We also obtain that {yn}, {Wnxn}, {SnPC2Wnxn}, {Wnyn},
{SnPC2Wnyn} and {f(yn)} are bounded. Denote by

M2 = sup
n≥1
{‖xn‖, ‖yn‖, ‖f(yn)‖, ‖Wnxn‖, ‖Wnyn‖,

‖S(s)PC2Wnxn‖, ‖S(s)PC2Wnyn‖}.
(3.6)

Step 2. We prove that ‖xn+1 − xn‖ → 0 and ‖yn+1 − yn‖ → 0 as n → ∞.
Define xn+1 = βnxn + (1− βn)zn for all n ≥ 1. We observe that

zn+1 − zn = xn+2−βn+1xn+1

1−βn+1
− xn+1−βnxn

1−βn

=
αn+1(u+γf(yn+1))+[(1−βn+1)I−αn+1A]Sn+1PC2

Wn+1yn+1

1−βn+1

−αn(u+γf(yn))+[(1−βn)I−αnA]SnPC2
Wnyn

1−βn
≤ αn+1

1−βn+1
[u+ γf(yn+1)−ASn+1PC2Wn+1yn+1]

+ αn
1−βn [ASnPC2Wnyn − u− γf(yn)]

+Sn+1PC2Wn+1yn+1 − SnPC2Wnyn.

That is

‖zn+1 − zn‖ ≤ αn+1

1−βn+1
[‖u‖+ ‖γf(yn+1‖)

+‖ASn+1PC2Wn+1yn+1‖]
+ αn

1−βn [‖ASnPC2Wnyn‖+ ‖u‖+ ‖γf(yn)‖]
+‖Sn+1PC2Wn+1yn+1 − SnPC2Wnyn‖.

(3.7)

On the other hand, it follows from (2.2) that

‖Wn+1yn −Wnyn‖
= ‖µ1T1Un+1,2xn + (1− µ1)xn − µ1T1Un,2xn + (1− µ1)xn‖
≤ µ1‖Un+1,2xn − Un,2xn‖
≤ µ1µ2‖Un+1,3xn − Un,3xn‖

...
≤ µ1µ2 · · ·µn‖Un+1,n+1xn − xn‖
= µ1µ2 · · ·µnµn+1‖Tn+1xn − xn‖
≤ bn+1M3,

(3.8)
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where M3 = supn≥1 ‖Tn+1xn−xn‖ is some positive constant. Notice (3.6) and
(3.8), we obtain

‖Sn+1PC2Wn+1yn+1 − SnPC2Wnyn‖
= ‖ 1

tn+1

∫ tn+1

0 S(s)PC2Wn+1yn+1ds− 1
tn

∫ tn
0 S(s)PC2Wnynds‖

= ‖ 1
tn+1

∫ tn+1

0 S(s)PC2Wn+1yn+1ds+ 1
tn+1

∫ tn+1

0 S(s)PC2Wnynds

− 1
tn+1

∫ tn+1

0 S(s)PC2Wnynds− 1
tn

∫ tn
0 S(s)PC2Wnynds‖

≤ 1
tn+1

∫ tn+1

0 ‖S(s)PC2Wn+1yn+1 − S(s)PC2Wnyn‖ds
+‖ 1

tn+1
(
∫ tn

0 S(s)PC2Wnynds+
∫ tn+1

tn
S(s)PC2Wnynds)

− 1
tn

∫ tn
0 S(s)PC2Wnynds‖

≤ ‖Wn+1yn+1 −Wnyn‖+ 2 |tn+1−tn|
tn+1

M2

≤ ‖Wn+1yn+1 −Wn+1yn‖+ ‖Wn+1yn −Wnyn‖+ 2 |tn+1−tn|
tn+1

M2

≤ ‖yn+1 − yn‖+ ‖Wn+1yn −Wnyn‖+ 2 |tn+1−tn|
tn+1

M2

≤ ‖xn+1 − xn‖+ bn+1M3 + 2 |tn+1−tn|
tn+1

M2.

(3.9)

Substituting (3.9) into (3.7), we get

‖zn+1 − zn‖
≤ αn+1

1−βn+1
[‖u‖+ ‖γf(yn+1‖) + ‖ASn+1PC2Wn+1yn+1‖]

+ αn
1−βn [‖ASnPC2Wnyn‖+ ‖u‖+ ‖γf(yn)‖]

+‖xn+1 − xn‖+ bn+1M3 + 2 |tn+1−tn|
tn+1

M2.

(3.10)

Hence

‖zn+1 − zn‖ − ‖xn+1 − xn‖
≤ αn+1

1−βn+1
[‖u‖+ ‖γf(yn+1‖) + ‖ASn+1PC2Wn+1yn+1‖]

+ αn
1−βn [‖ASnPC2Wnyn‖+ ‖u‖+ ‖γf(yn)‖]

+bn+1M3 + 2 |tn+1−tn|
tn+1

M2,

(3.11)

which implies that

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) = 0.

Hence by Lemma 2.5, we obtain

lim
n→∞

‖zn − xn‖ = 0.

By the definition of {zn}, we have

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

βn‖zn − xn‖ = 0. (3.12)

Notice

‖yn+1 − yn‖ = ‖Srxn+1 − Srxn‖ ≤ ‖xn+1 − xn‖. (3.13)
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This implies that

lim
n→∞

‖yn+1 − yn‖ = 0.

Step 3. We show

lim
n→∞

‖xn − S(s)PC2xn‖ = 0, lim
n→∞

‖yn − S(s)PC2yn‖ = 0, ∀s ≥ 0.

Note that

xn+1 = αn(u+ γf(yn)) + βnxn + ((1− βn)I − αnA)SnPC2Wnyn,

we obtain that

‖xn − SnPC2Wnyn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − SnPC2Wnyn‖
≤ ‖xn − xn+1‖+ αn‖u+ γf(yn)−ASnPC2Wnyn‖

+βn‖xn − SnPC2Wnyn‖,
that is,

‖xn−SnPC2Wnyn‖ ≤
1

1− βn
‖xn−xn+1‖+

αn
1− βn

‖u+γf(yn)−ASnPC2Wnyn‖.

By the assumpation (iv) and (3.12), we get

lim
n→∞

‖xn − SnPC2Wnyn‖ = 0. (3.14)

Since {PC2Wnyn} is a bounded sequence in C2, from Lemma 2.7, we can obtain

lim
n→∞

‖SnPC2Wnyn − S(h)SnPC2Wnyn‖ = 0, ∀h ≥ 0. (3.15)

So for each s ≥ 0 we have

‖xn − S(s)PC2xn‖
≤ ‖xn − SnPC2Wnyn‖+ ‖SnPC2Wnyn − S(s)SnPC2Wnyn‖

+‖S(s)SnPC2Wnyn − S(s)PC2xn‖
≤ ‖xn − SnPC2Wnyn‖+ ‖SnPC2Wnyn − S(s)SnPC2Wnyn‖

+‖SnPC2Wnyn − PC2xn‖
= ‖xn − SnPC2Wnyn‖+ ‖SnPC2Wnyn − S(s)SnPC2Wnyn‖

+‖PC2SnPC2Wnyn − PC2xn‖
≤ 2‖xn − SnPC2Wnyn‖+ ‖SnPC2Wnyn − S(s)SnPC2Wnyn‖.

Hence from (3.14) and (3.15), we have

lim
n→∞

‖xn − S(s)PC2xn‖ = 0. (3.16)

For given p ∈ Γ, we have

‖yn − p‖2 = ‖Srxn − p‖2
≤ 〈Srxn − Srp, xn − p〉
≤ 〈yn − p, xn − p〉
= 1

2(‖yn − p‖2 + ‖xn − p‖2 − ‖xn − yn‖2),
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and hence

‖yn − p‖2 ≤ ‖xn − p‖2 − ‖xn − yn‖2. (3.17)

From Lemma 2.9 and (3.2), we have

‖xn+1 − p‖2
= ‖αn(u+ γf(yn)−Ap) + βn(xn − SnPC2Wnyn)

+(I − αnA)(SnPC2Wnyn − p)‖2
≤ ‖βn(xn − SnPC2Wnyn) + (I − αnA)(SnPC2Wnyn − p)‖2

+2αn〈u+ γf(yn)−Ap, xn+1 − p〉
≤ ‖βn(xn − SnPC2Wnyn) + (1− αn − αnµγ)(yn − p)‖2

+2αn〈u+ γf(yn)−Ap, xn+1 − p〉
≤ β2

n‖(xn − SnPC2Wnyn‖2 + (1− αn − αnµγ)2‖yn − p‖2
+2αn‖u+ γf(yn)−Ap‖‖xn+1 − p‖
+2(1− αn − αnµγ)βn‖xn − SnPC2Wnyn‖‖yn − p‖

≤ β2
n‖(xn − SnPC2Wnyn‖2 + (1− αn − αnµγ)2[‖xn − p‖2 − ‖xn − yn‖2]

+2(1− αn − αnµγ)βn‖xn − SnPC2Wnyn‖‖yn − p‖
+2αn‖u+ γf(yn)−Ap‖‖xn+1 − p‖

≤ ‖xn − p‖2 + α2
n(1 + µγ)2‖xn − p‖2 − (1− αn − αnµγ)2‖xn − yn‖2

+2(1− αn − αnµγ)βn‖xn − SnPC2Wnyn‖‖yn − p‖
+2αn‖u+ γf(yn)−Ap‖‖xn+1 − p‖
+β2

n‖xn − SnPC2Wnyn‖2.

Therefore

(1− αn − αnµγ)2‖xn − yn‖2
≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + α2

n(1 + µγ)2‖xn − p‖2
+2(1− αn − αnµγ)βn‖xn − SnPC2Wnyn‖‖yn − p‖
+2αn‖u+ γf(yn)−Ap‖‖xn+1 − p‖+ β2

n‖xn − SnWnyn‖2
≤ [‖xn − p‖+ ‖xn+1 − p‖][xn+1 − xn] + α2

n(1 + µγ)2‖xn − p‖2
+2(1− αn − αnµγ)βn‖xn − SnPC2Wnyn‖‖yn − p‖
+2αn‖u+ γf(yn)−Ap‖‖xn+1 − p‖+ β2

n‖xn − SnPC2Wnyn‖2.

From (3.12) and (3.14), we have

lim
n→∞

‖xn − yn‖ = 0. (3.18)

Since

‖yn − SnPC2Wnyn‖ ≤ ‖yn − xn‖+ ‖xn − SnPC2Wnyn‖,

from (3.14) and (3.18), we have

lim
n→∞

‖yn − SnPC2Wnyn‖ = 0. (3.19)
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Since

‖yn − S(s)PC2yn‖ ≤ ‖yn − xn‖+ ‖xn − S(s)PC2xn‖
+‖S(s)PC2xn − S(s)PC2yn‖

≤ 2‖yn − xn‖+ ‖xn − S(s)PC2xn‖,

from (3.16) and (3.18), we have

lim
n→∞

‖yn − S(s)PC2yn‖ = 0. (3.20)

Step 4. Now we show that lim sup
n→∞

〈u+ [γf − (I + µA)]x∗, xn − x∗〉 ≤ 0,

where x∗ is a solution of (OP ).
To show this, we can choose a subsequence {yni} ⊂ {yn} such that

lim
i→∞
〈u+ [γf − (I + µA)]x∗, yni − x∗〉

= lim sup
n→∞

〈u+ [γf − (I + µA)]x∗, yn − x∗〉.
(3.21)

Since {yn} is bounded, there exists a subsequence {ynij
} of {yni} which con-

verges weakly to p. Without loss of generality, we can assume that yni ⇀ p.
From (3.19), we have SniPC2Wniyni ⇀ p. Since {yn} ⊂ C1 and {SnPC2Wnyn}
⊂ C2 and C1, C2 are two closed convex subsets in H, we have p ∈ C1 ∩ C2.
Next we prove that

p ∈ Γ := F (W )
⋂

Ω
⋂
F (S).

Indeed, from Lemma 2.8 and (3.16), we can obtain that p ∈ F (S). Next we
show that p ∈ Ω. Since yn = Srxn, we derive

Θ(yn, x) + ϕ(x)− ϕ(yn) +
1

r
〈K ′(yn)−K ′(xn), η(x, yn)〉 ≥ 0, ∀x ∈ H.

From the monotonicity of Θ, we have

1

r
〈K ′(yn)−K ′(xn), η(x, yn)〉+ ϕ(x)− ϕ(yn) ≥ −Θ(yn, x) ≥ Θ(x, yn),

and hence

〈K
′(yni)−K ′(xni)

r
, η(x, yni)〉+ ϕ(x)− ϕ(yni) ≥ Θ(x, yni).

By conditions (i)-(c), (ii), and yni ⇀ p, we have

Θ(x, p) + ϕ(p)− ϕ(x) ≤ 0, ∀x ∈ H.

For 0 < t ≤ 1, let xt = tx+ (1− t)p. It implies that

Θ(xt, p) + ϕ(p)− ϕ(xt) ≤ 0.
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From the convexity of equilibrium bifunction Θ(x, y) in the second variable y,
we have

0 = Θ(xt, xt) + ϕ(xt)− ϕ(xt)
≤ tΘ(xt, x) + (1− t)Θ(xt, p) + tϕ(x) + (1− t)ϕ(p)− ϕ(xt)
≤ t[Θ(xt, x) + ϕ(x)− ϕ(xt)],

and hence Θ(xt, x) + ϕ(x)− ϕ(xt) ≥ 0. This implies that

Θ(p, x) + ϕ(x)− ϕ(p) ≥ 0, ∀x ∈ H.
Therefore, p ∈ Ω. Finally we prove p ∈ F (W ) =

⋂∞
n=1 F (Wn), where F (Wn) =⋂∞

n=1 F (Ti), n ≥ 1 and F (Wn+1) ⊂ F (Wn). In fact, if p /∈ F (W ), then exists a
positive integer m such that p /∈ F (Tm), and so p /∈

⋂m
i=1 F (Ti). Hence for any

n ≥ m, p /∈
⋂n
i=1 F (Ti) = F (Wn), i.e., p /∈Wnp. This together with p = S(s)p,

∀s ≥ 0 shows p = S(s)p 6= S(s)PC2Wnp, ∀s ≥ 0. Therefore p 6= SnPC2Wnp,
∀n ≥ m. By Opial’s condition and (3.19), we obtain that

lim inf
i→∞

‖yni − p‖
< lim inf

i→∞
‖yni − SniPC2Wnip‖

≤ lim inf
i→∞

‖yni − SniPC2Wniyni‖+ lim inf
i→∞

‖SniPC2Wniyni − SniPC2Wnip‖
≤ lim inf

i→∞
‖yni − p‖.

This is a contradiction. Hence we get p ∈ Γ. The conclusion p ∈ F (W )
⋂

Ω
⋂
F (S) is proved. Therefore, from Lemma 2.11, (3.18) and (3.21), we have

lim sup
n→∞

〈u+ [γf − (I + µA)]x∗, xn − x∗〉

= lim sup
n→∞

〈u+ [γf − (I + µA)]x∗, yn − x∗〉

= lim
i→∞
〈u+ [γf − (I + µA)]x∗, yni − x∗〉

= 〈u+ [γf − (I + µA)]x∗, p− x∗〉
≤ 0.

Step 5. We prove that {xn} and {yn} converge strongly to x∗.

‖xn+1 − x∗‖2
= ‖αn(u+ γf(yn)−Ax∗) + βn(xn − x∗)

+((1− βn)I − αnA)(SnPC2Wnyn − x∗)‖2
≤ ‖βn(xn − x∗) + ((1− βn)I − αnA)(SnPC2Wnyn − x∗)‖2

+2αn〈u+ γf(yn)−Ax∗, xn+1 − x∗〉
≤ [βn‖xn − x∗‖+ ((1− βn − αn(1 + µ)γ)‖xn − x∗‖]2

+2αn〈u+ γf(x∗)−Ax∗〉+ 2αn〈γf(yn)− γf(x∗), xn+1 − x∗〉
≤ ((1− αn(1 + µ)γ)2‖xn − x∗‖2 + 2αnγξ‖xn − x∗‖‖xn+1 − x∗‖

+2αn〈u+ γf(x∗)−Ax∗, xn+1 − x∗〉
≤ ((1− αn(1 + µ)γ)2‖xn − x∗‖2 + αnγξ{‖xn − x∗‖2 + ‖xn+1 − x∗‖2}

+2αn〈u+ γf(x∗)−Ax∗, xn+1 − x∗〉.
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Hence

‖xn+1 − x∗‖2

≤ (1−αn(1+µ)γ)2+αnγξ
1−αnγξ

‖xn − x∗‖2 + 2αn
1−αnγξ

〈u+ γf(x∗)−Ax∗, xn+1 − x∗〉
= [1− 2((1+µ)γ−γξ)αn

1−αnγξ
]‖xn − x∗‖2 + ((1+µ)αnγn)2

1−αnγξ
‖xn − x∗‖2

+ 2αn
1−αnγξ

〈u+ γf(x∗)−Ax∗, xn+1 − x∗〉

≤ [1− 2((1+µ)γ−γξ)αn

1−αnγξ
]‖xn − x∗‖2 + 2((1+µ)γ−γξ)αn

1−αnγξ

×{ (αn(1+µ)γ2)M4

2((1+µ)γ−γξ) + 1
(1+µ)γ−γξ 〈u+ γf(x∗)−Ax∗, xn+1 − x∗〉},

where M4 = sup{‖xn − x∗‖ : n ≥ 1‖}.
Taking an = ‖xn − x∗‖2, γn = 2((1+µ)γ−γξ)αn

1−αnγξ
and δn = 2((1+µ)γ−γξ)αn

1−αnγξ
×

{ (αn(1+µ)γ2)M4)
2((1+µ)γ−γξ) + 1

(1+µ)γ−γξ 〈u + γf(x∗) − Ax∗, xn+1 − x∗〉}, by the assump-

tion of Theorem 3.1, we can see all the conditions in Lemma 2.6 are satisfied.
So the sequence xn → x∗ ∈ Γ. This completes the proof. �

In the case that C1 = C2 = C, we have the following result.

Corollary 3.1. Let C be two nonempty closed convex subsets of a real Hilbert
space H. Let ϕ : C → R be a lower semicontinous and convex function,
f : H → H be a contractive mapping with a contractive constant ξ ∈ (0, 1)
and let Θ : C×C → R be an equilibrium bifunction satisfying conditions (H1)-
(H3). Let {Vi : C → C}∞i=1 be a countable family of uniformly k−strict pseudo-
contractions and {Ti : C → C}∞i=1 be the countable family of nonexpansive
mappings defined by (2.1). For each n ≥ 1, let Wn : C → C be the W−mapping
define by (2.2). Let S={S(s) : 0 ≤ s < ∞} be a nonexpansive semi-group on
C. Let µ > 0, γ > 0, r > 0 be three constants and let A be a strongly
positive bounded linear operator on H with coefficient γ > 0 such that 0 < γ <
(1 + µγ)/ξ. For given x0 ∈ H arbitrarily and fixed u ∈ H, {xn}, {yn} are the
sequences generated by

Θ(yn, x) + ϕ(x)− ϕ(yn) + 1
r 〈K

′(yn)−K ′(xn), η(x, yn)〉, ∀x ∈ C,
xn+1 = αn(u+ γf(yn)) + βnxn

+((1− βn)I − αn(I + µA)) 1
tn

∫ tn
0 S(s)Wnynds, ∀n ≥ 1,

(3.22)

where {αn}, {βn} are two sequences in (0, 1) and {tn} is a sequence in (0,∞).
If the following conditions are satisfied:

(i) η : C × C → H is λ−Lipschitz continuous such that
(a) η(x, y) + η(y, x) = 0, ∀x, y ∈ C;
(b) η(·, ·) is affine in the first variable;
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(c) for each fixed x ∈ C, the mapping y 7→ η(x, y) is sequentially
continuous from the weak topology to the weak topology;

(ii) K : C → R is η-strongly convex with constant µ > 0, and its derivative
K ′ is not only sequentially continuous from the weak topology to the
strong topology but also Lipschitz continuous with a Lipschitz constant
ν > 0 and µ ≥ λν;

(iii) for each x ∈ C, there exists a bounded subset Dx ⊂ C and a point
zx ∈ C such that for any y ∈ C1 \Dx,

Θ(y, zx) + ϕ(zx)− ϕ(y) +
1

r
〈K ′(y)−K ′(x), η(zx, y)〉 < 0.

(iv) lim
n→∞

αn = 0,
∑∞

n=0 αn =∞;

(v) 0 < lim inf
n→∞

β ≤ lim sup
n→∞

βn < 1;

(vi) lim
n→∞

tn =∞ with bounded supn≥1 |tn − tn+1|;
(vii) Γ := F (W )

⋂
Ω
⋂
F (S) 6= ∅, F (W ) =

⋂∞
i=1 F (Ti).

Then the sequences {xn} and {yn} defined by (3.22) converge strongly to x∗ ∈ Γ
which solves the following optimization problem (OP).

min
x∈Γ

µ

2
〈Ax, x〉+

1

2
‖x− u‖2 − h(x)

provided Sr is firmly nonexpansive, i.e.,

‖Srx− Sry‖2 ≤ 〈Srx− Sry, x− y〉, ∀x, y ∈ C.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert
space H and f : H → H be a contractive mapping with a contractive con-
stant ξ ∈ (0, 1). Let {Vi : C → C}∞i=1 be a countable family of uniformly
k−strict pseudo-contractions and {Ti : C → C}∞i=1 be the countable family of
nonexpansive mappings defined by (2.1). For each n ≥ 1, let Wn : C → C
be the W−mapping define by (2.2). Let S={S(s) : 0 ≤ s < ∞} be a nonex-
pansive semi-group on C. Let µ > 0, γ > 0 be two constants and let A be a
strongly positive bounded linear operator on H with coefficient γ > 0 such that
0 < γ < (1 + µγ)/ξ. For given x0 ∈ H arbitrarily and fixed u ∈ H, {xn} are
the sequence generated by

xn+1 = αn(u+ γf(xn)) + βnxn

+ ((1− βn)I − αn(I + µA))
1

tn

∫ tn

0
S(s)Wnxnds, ∀n ≥ 1,

(3.23)

where {αn}, {βn} are two sequences in (0,1) and {tn} is a sequence in (0,∞).
If the following conditions are satisfied:

(i) lim
n→∞

αn = 0,
∑∞

n=0 αn =∞;
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(ii) 0 < lim inf
n→∞

β ≤ lim sup
n→∞

βn < 1;

(iii) Γ := F (W )
⋂
F (S) 6= ∅, F (W ) =

⋂∞
i=1 F (Ti);

(iv) lim
n→∞

tn =∞ with bounded supn≥1 |tn − tn+1|.

Then the sequence {xn} defined by (3.23) converge strongly to x∗ ∈ Γ which
solves the following optimization problem (OP)

min
x∈Γ

µ

2
〈Ax, x〉+

1

2
‖x− u‖2 − h(x).

Proof. Put Θ(x, y) = 0, ϕ(x) = 0 for all x, y ∈ H and r = 1. Take K(x) = ‖x‖2
2

for all x, y ∈ H. Then we get yn = xn in Corollary 3.2. Then the conclusion
follows. �
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