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Abstract. The main motivation for this paper is to investigate the fixed point property for

nonlinear contraction defined on b-Menger inner product spaces. First, we introduce a b-

Menger inner product spaces, then the topological structure is discussed and the probabilistic

Pythagorean theorem is given and established. Also we prove the existence and uniqueness

of fixed point in these spaces. This result generalizes and improves many previously known

results.

1. Introduction and preliminaries

Hilbert spaces are complete normed linear spaces in which the norm is deriv-
able from an inner product satisfying appropriate conditions. Correspondingly,
we would expect a theory of probabilistic inner product or probabilistic Hilbert
spaces. We recall the classical inner product space notion. The symbol η will
denote the null vector of a real vector space.

Definition 1.1. Let Z be a real vector space. An inner product on Z is a
function 〈., .〉 from Z × Z into R such that

(1) 〈p, p〉 ≥ 0 for all p ∈ Z, 〈p, p〉 = 0 if and only if p = η,
(2) 〈p, q〉 = 〈q, p〉, for all p, q ∈ Z,
(3) 〈αp, q〉 = α〈p, q〉, for all p, q ∈ Z and α ∈ R,
(4) 〈p+ q, r〉 = 〈p, r〉+ 〈q, r〉, for all p, q, r ∈ Z.

Then (Z, 〈., .〉) is called an inner product space.
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We give some definitions and notions from fixed point theory and proba-
bilistic metric spaces theory that we will use in the sequel. For more details,
we refer the reader to [4, 6, 7, 10, 11, 12, 13].

Definition 1.2. A function T : [0, 1]× [0, 1]→ [0, 1] is called a t-norm if the
following conditions are satisfied for any λ, µ, ν, ξ ∈ [0, 1]:

(1) T (µ, 1) = µ,
(2) T (µ, ν) = T (ν, µ),
(3) T (µ, ν) ≥ T (λ, ξ), for µ ≥ λ, ν ≥ ξ,
(4) T (T (µ, ν), ξ) = T (µ, T (ν, ξ)).

If T is a t-norm, then its dual triangular conorm (for short, t-conorm)
T ∗ : [0, 1] × [0, 1] → [0, 1] is given by T ∗(µ, ν) = 1 − T (1 − µ, 1 − ν) for
µ, ν ∈ [0, 1].

Definition 1.3. A t-norm T is said to be of H-type if the sequence {Tn(x)}
is equicontinuous at x = 1, where T 1(x) = x, Tn(x) = T (Tn−1(x)) for every
n ≥ 2.

A t-norm T is considered continuous if it exhibits continuity at every point
(µ, ν) ∈ [0, 1]× [0, 1]. We mention some usual continuous t-norms:

(1) The minimum t-norm TM (µ, ν) = min(µ, ν).
(2) The product t-norm Tp(µ, ν) = µν.
(3) The Lukasiewicz t-norm TL(µ, ν) = max(µ+ ν − 1, 0).

Remark 1.4. We have

(1) T ≤ TM for each t-norm T .
(2) TM is a t-norm of H-type but there are many t-norms T of H-type

with T 6= TM (see [3]).
(3) The dual t-conorm of TM is T ∗M (µ, ν) = max(µ, ν).

Definition 1.5. A function F : R→ [0, 1] is called a distribution function if it
is nondecreasing and left-continuous with infγ∈R F (γ) = 0 and supγ∈R F (γ) =
1. The class of all distribution functions is denoted by D.

For F ∈ D, we consider the following limits

`−F (γ) = lim
γ′→γ−

F (γ′), `+F (γ) = lim
γ′→γ+

F (γ′).

Let D+ = {F ∈ D : F (0) = 0}. A simple example of distribution function
is the unit step function in D+

εa(γ) =

{
0, if γ ≤ a,
1, if γ > a.
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Definition 1.6. ([6]) A b-Menger space is a quadruple (Z,F, T,K), where Z
is a nonempty set, F is a function from Z ×Z into D+, T is a t-norm, K ≥ 1
is a real number, and the following conditions are satisfied for all p, q, r ∈ Z
and a, b > 0

(1) Fp,q = ε0 ⇔ p = q,
(2) Fp,q = Fq,p,
(3) Fp,q(K(a+ b)) ≥ T (Fp,r(a), Fr,q(b)).

Mbarki and Oubrahim [6, 8, 9] point out that if the t-norm T of a b-Menger
space is continuous, then (Z,F, T, L) is a first countable Hausdorff topological
space in the topology τ , that is, the family of sets {Vp(γ) : γ > 0} is a base of
neighborhoods of point p ∈ Z for τ , where

Vp(γ) = {q ∈ Z : Fp,q(γ) > 1− γ}.
Probabilistic normed spaces were introduced by Erstnev [15] in 1963. We

define a b-Menger normed space as follows.

Definition 1.7. A b-Menger normed space is a quadruple (Z,F, T,K) where
Z is a real vector space, F is a function from Z into D+, T is a t-norm, K ≥ 1
is a real number, and the following conditions are satisfied:

(1) Fp = ε0 if and only if p = η,
(2) Fαp(γ) = Fp(

γ
|α|) for all p ∈ Z, γ ∈ R and α 6= 0,

(3) Fp+q(K(a+ b)) ≥ T (Fp(a), Fq(b)) for all p, q ∈ Z and a, b ≥ 0.

It is evident that, if (Z,F, T,K) is a b-Menger normed space, and for each
(p, q) ∈ Z × Z, F : Z × Z → D+ is defined by F p,q = Fp−q, then (Z,F , T,K)
is a b-Menger space.

Many important applications of the theory of probabilistic metric spaces can
be found in approximation of random signals, integral equations, stochastic
optimizations and quantum particle physics (see [2],[5]).

2. b-Menger inner product spaces

The first attempt to develop a theory of probabilistic inner product spaces
was made by Senechal [14] in 1965. After then a simplified form of this defi-
nition was given by Zhang in [16]. Inspired by the work of these researchers,
we introduce a b-Menger inner product space as follows.

Definition 2.1. A b-Menger inner product space is a quadruple (Z,F, T,K)
where Z is a real vector space, F is a function from Z × Z into D, T is a
t-norm, K ≥ 1 is a real number, and the following conditions are satisfied for
all p, q, r ∈ Z and a, b > 0

(1) Fp,p(0) = 0, Fp,p = ε0 if and only if p = η,
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(2) Fp,q = Fq,p,
(3) For any real number α ∈ R, Fαp,q(γ) = Fp,q(

γ
α)ifα > 0,

Fαp,q = ε0ifα = 0,
Fαp,q(γ) = 1− `+Fp,q( γα)ifα < 0,

(4) Fp+q,r(K(a+ b)) ≥ T (Fp,r(a), Fq,r(b)),
(5) Fp,q(ab) ≥ T (Fp,p(a

2), Fq,q(b
2)).

Every classical real inner product space is a b-Menger inner product space.
Moreover, we have the following example.

Example 2.2. Let (Z, 〈., .〉) be a real inner product space, T be a t-norm and
consider the mapping Fp,q(γ) = εK〈p,q〉(γ) with K ≥ 1. Then (Z,F, T,K) is a
b-Menger inner product space.

We verify that all conditions of Definition 2.1 are satisfied. It is easy to
check the conditions (1) and (2).

For each α ∈ R, if α > 0, then

Fαp,q(γ) = εK〈αp,q〉(γ) = εK〈p,q〉(
γ

α
) = Fp,q(

γ

α
).

If α = 0, then

Fαp,q(γ) = εK〈αp,q〉(γ) = εK〈η,q〉(γ) = ε0(γ),

and if α < 0,

Fαp,q(γ) = εK〈αp,q〉(γ) = ε−K〈p,q〉(−
γ

α
)

= 1− `+εK〈p,q〉(
γ

α
) = 1− `+Fp,q(

γ

α
).

Then the condition (3) is satisfied. Let a, b > 0 and p, q, r ∈ Z. If a + b >
〈p+ q, r〉, then it is evident that

Fp+q,r(K(a+ b)) = εK〈p+q,r〉(K(a+ b)) = 1 ≥ T (Fp,r(a), Fq,r(b)).

If a+b ≤ 〈p+q, r〉 = 〈p, r〉+ 〈q, r〉, then we have either a ≤ 〈p, r〉 or b ≤ 〈q, r〉,
and so

Fp+q,r(K(a+ b)) = εK〈p+q,r〉(K(a+ b)) = 0

= T
(
εK〈p,r〉(a), εK〈q,r〉(b)

)
= T (Fp,r(a), Fq,r(b)).

This means that the condition (4) is satisfied.
Let a, b > 0 and p, q ∈ Z. If ab > K〈p, q〉, then it is evident that

Fp,q(ab) = εK〈p,q〉(ab) = 1 ≥ T (Fp,p(a
2), Fq,q(b

2)).
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If ab ≤ K〈p, q〉, then from 〈p, q〉 ≤
√
〈p, p〉〈q, q〉 we have either a2 ≤ K〈p, p〉

or b2 ≤ K〈q, q〉, and so

Fp,q(ab) = εK〈p,q〉(ab) = 0 = T
(
εK〈p,p〉(a

2), εK〈q,q〉(b
2)
)

= T
(
Fp,p(a

2), Fq,q(b
2)
)
.

Hence the condition (5) is also satisfied.

Using the above definition, we study the topological structure and some
elementary properties for b-Menger inner product spaces.

Lemma 2.3. Let (Z,F, T,K) be a b-Menger inner product space. Then

(1) Fη,p(γ) = ε0(γ) for all p ∈ Z and γ ∈ R,
(2) Fr,p+q(K(a+ b)) ≥ T (Fr,p(a), Fr,q(b)) for all p, q, r ∈ Z and a, b > 0,
(3) Fp,q(ab) ≥ T (Fp,p(a

2), Fq,q(b
2)) for all p, q, r ∈ Z and a, b < 0,

(4) F−p,q(γ) = 1 − `+Fp,q(−γ) and `+F−p,q(γ) = 1 − Fp,q(−γ), for all
p, q ∈ Z and γ ∈ R,

(5) F−p,−q(γ) = Fp,q(γ) and F−p,q(γ) = Fp,−q(γ), for all p, q ∈ Z and
γ ∈ R,

(6) F−p,p(γ) = 1 for all p ∈ Z and γ > 0,
(7) Fp−q,q(Kγ) ≥ Fp,q(γ) for all p, q ∈ Z and γ > 0,
(8) Fp+q,r(K(a+ b)) ≤ T ∗(Fp,r(a), Fq,r(b)) for all p, q, r ∈ Z and a, b < 0,

where T is continuous.

Proof. (1) It follows from assertion (3) of Definition 2.1.
(2) It follows from conditions (2) and (4) of Definition 2.1.
(3) It follows from (5) of Definition 2.1.
(4) It follows from (3) of Definition 2.1.
(5) From (4) we deduce that the assertion holds.
(6) Let γ > 0 and p ∈ Z. From (1) of Definition 2.1 it follows that

Fp,p(−γ) ≤ Fp,p(0) = 0, which implies that `+Fp,p(−γ) = 0. Thus,
from (3) of Definition 2.1 we obtain

F−p,p(γ) = 1− `+Fp,p(−γ) = 1.

(7) Let γ > 0 and p, q ∈ Z. For any ε ∈ (0, γ), from (4) of Definition 2.1
and Lemma 2.3 (6) we obtain

Fp−q,q(Kγ) = Fp−q,q(K(γ − ε+ ε)

≥ T (Fp,q(γ − ε), F−q,q(ε))
= T (Fp,q(γ − ε), 1).

Then

Fp−q,q(Kγ) ≥ Fp,q(γ − ε). (2.1)

Thus, letting ε → 0+ in (2.1), we obtain the inequality by the left-
continuity of Fp,q.
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(8) Let a, b < 0 and p, q, r ∈ Z. From (4) of Definition 2.1 it follows that

Fp+q,−r(K(−a− b)) ≥ T (Fp,−q(−a), Fq,−r(−b)). (2.2)

Since T is continuous, from (2.2) we have

`+Fp+q,−r(K(−a− b)) ≥ T (`+Fp,−q(−a), `+Fq,−r(−b)). (2.3)

Thus, by Lemma 2.3 (4) and (2.3) we get

Fp+q,r(K(a+ b)) = 1− `+Fp+q,−r(K(−a− b))
≤ 1− T (`+Fp,−r(−a), `+Fq,−r(−b))
= 1− T (1− Fp,r(a), 1− Fq,r(b))
= T ∗(Fp,r(a), Fq,r(b)).

�

In the next theorem we show that every b-Menger inner product space is a
b-Menger normed space.

Theorem 2.4. Let (Z,F, T,K) be a b-Menger inner product space. Define
F : Z → D+ by

F p(Kγ) =

{
0 if γ ≤ 0,

Fp,p(γ
2) if γ > 0.

If T = TM , then (Z,F , TM ,K) is a b-Menger normed space.

Proof. We verify that all conditions of Definition 1.7 are satisfied. It is clear
that the conditions (1) and (2) follow from conditions (1) and (2) of Definition
2.1 respectively. For any p, q ∈ Z and a, b > 0, setting, u = Fp,p(a

2), v =
Fp,q(ab) and w = Fq,q(b

2), by the condition (5) of Definition 2.1 we have
v ≥ TM (u,w). Moreover, by the condition (4) of Definition 2.1 we obtain

F p+q(K(a+ b)) = Fp+q,p+q(K(a+ b)2)

≥ TM (TM (u, v), TM (v, w))

= TM (TM (u,w), v)

≥ TM (TM (u,w), TM (u,w))

= TM (u,w)

= TM (F p(a), F q(b)).

Then the condition (3) holds. �

Theorem 2.5. Let (Z,F, T,K) be a b-Menger inner product space with con-
tinuous t-norm T . Then it is first countable Hausdorff topological vector space
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with the topology τF whose neighborhood base of origin η is {V (ε, λ) : ε >
0, λ ∈ (0, 1]}, where

V (ε, λ) = {p ∈ Z : Fp,p(ε
2) > 1− λ}

Proof. Using the structure of topological vector space given in [1], we can
verify the following assertions.

(a) If L1 = V (ε1, λ1) and L2 = V (ε2, λ2), there is L0 = V (ε0, λ0) such that
L0 ⊂ L1 ∩ L2.

(b) If L = V (ε, λ), there is L′ = V (ε′, λ′) such that L′ + L′ ⊂ L.
(c) If L = V (ε, λ) and α ∈ R with |α| ≤ 1, it holds αL ⊂ L.
(d) If L = V (ε, λ) and each p ∈ Z, there is µ > 0 such that µp ∈ L.
(e) If p ∈ Z and p 6= η, there exist ε0 > 0 and λ0 ∈ (0, 1] such that

p /∈ V (ε0, λ0). Let εn = λn = 1
n . The sets {V (ε, λ) : ε > 0, λ ∈ (0, 1]}

and {V (εn, λn) : n ∈ N} are equivalent. Since {V (εn, λn) : n ∈ N} is
countable, τF is first countable.

�

3. Orthogonality

In this section we study the orthogonality of two vectors in a b-Menger inner
product space.

Definition 3.1. Let (Z,F, T,K) be a b-Menger inner product space. Two
vectors p, q ∈ Z are orthogonal if Fp,q = ε0 and we write p ⊥ q.

Lemma 3.2. Let (Z,F, T,K) be a b-Menger inner product space. Then the
following assertions hold:

(1) p ⊥ η, for all p ∈ Z,
(2) If p ⊥ q, then q ⊥ p,
(3) If p ⊥ p, then p = η,
(4) If p ⊥ q, then for any α ∈ R, p ⊥ αq,
(5) If T is a continuous t-norm, p ⊥ q and p ⊥ r, then p ⊥ (q + r).

Proof. The properties (1)-(4) follow immediately from the conditions (1), (2)
and (3) of Definition 2.1. We prove the property (5). Let γ > 0, from Lemma
2.3 (2) we get

Fp,q+r(γ) ≥ T (Fp,q(
γ

2K
), Fp,r(

γ

2K
)) = T (1, 1) = 1.

Let γ < 0, in view of Lemma 2.3 (8) we obtain

Fp,q+r(γ) ≤ T ∗(Fp,q(
γ

2K
), Fp,r(

γ

2K
)) = T ∗(0, 0) = 0.

Hence, by the left-continuity of Fp,q+r, we have Fp,q+r(γ) = ε0(γ) for every
γ ∈ R, then p ⊥ (q + r). �
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Theorem 3.3. Let (Z,F, T,K) be a b-Menger inner product space. Consider
p, q ∈ Z such that p ⊥ q.

(1) Let α ∈ R. Then

Fp+αp,q(
γ

K
) ≤ Fp,p(γ) ≤ Fp+αq,p(Kγ)

and

Fq+αp,q(
γ

K
) ≤ Fq,q(γ) ≤ Fq+αp,q(Kγ),

for all γ ∈ R.
(2) For all γ > 0,

TM (Fp,p(K
2γ), Fq,q(K

2γ)) ≥ Fp±q,p±q(γ)

≥ sup
γ=K2(a+b),a>0,b>0

T (Fp,p(a), Fq,q(b)). (3.1)

Proof. The assertion (2) is a Pythagorean theorem in b-Menger inner product
space.

(1) We show the first inequality, the second inequality is proved similarly.
Let γ > 0 and µ ∈ (0, γ). Since Fαq,p(γ) = 1 from Lemma 3.2 (4), by
condition (4) of Definition 2.1 we obtain

Fp+αq,p(Kγ) ≥ T (Fp,p(γ − µ), Fαq,p(µ)) = Fp,p(γ − µ).

We conclude that Fp+αq,p(Kγ) ≥ Fp,p(γ) by taking µ → 0+. On the
other hand, since F−αq,p(µ) = 1, by condition (4) of Definition 2.1 we
get

Fp,p(Kγ) = Fp+αq−αq,p(Kγ)

≥ T (Fp+αq,p(γ − µ), F−αq,p(µ))

= Fp+αq,p(γ − µ).

We deduce that Fp+αq,p(γ) ≤ Fp,p(Kγ) by taking µ→ 0+. Let γ < 0.
Then using condition (1) of Definition 2.1 we obtain Fp,p(γ) = 0. From
Lemma 2.3 (8) we get

Fp+αq,p(t) ≤ T ∗(Fp,p(
γ

2K
), Fαq,p(

γ

2K
) = T ∗(0, 0) = 0.

Taking γ → 0−, we have Fp+αq,p(0) = 0 by the left-continuity of
Fp+αq,p, the inequality holds.

(2) Let ε ∈ (0, γ). By Lemma 2.3 (6) and condition (4) of Definition 2.1
we obtain

Fp+q,−q(ε) ≥ T
(
Fp,−q(

ε

2
), Fq,−q(

ε

2
)
)

= T (1, 1) = 1.
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Thus, from Theorem 3.3 (1), using condition (4) of Definition 2.1 we
obtain

Fp,p(K
2γ) ≥ Fp+q,p(Kγ) = Fp+q,p+q−q(K(γ − ε+ ε))

≥ T (Fp+q,p+q(γ − ε), Fp+q,−q(ε)) = Fp+q,p+q(γ − ε).

We deduce that Fp,p(K
2γ) ≥ Fp+q,p+q(γ) by letting ε→ 0+. Likewise,

Fq,q(K
2γ) ≥ Fp+q,q+p(γ). For each a, b > 0 with K2(a+ b) = γ, using

Theorem 3.3 (1), from condition (4) of Definition 2.1 we get

Fp+q,p+q(γ) = Fp+q,p+q(K
2(a+ b))

≥ T (Fp+q,p(Ka), Fp+q,q(Kb))

= T (Fp,p(a), Fq,q(b)).

Then we conclude that

TM (Fp,p(K
2γ), Fq,q(K

2γ)) ≥ Fp+q,p+q(γ)

≥ sup
γ=K2(a+b),a>0,b>0

T (Fp,p(a), Fq,q(b)). (3.2)

Replacing −q by q in (3.2), by Lemma 2.3 (5) we obtain

TM (Fp,p(K
2γ), Fq,q(K

2γ)) ≥ Fp−q,p−q(γ)

≥ sup
γ=K2(a+b),a>0,b>0

T (Fp,p(a), Fq,q(b)). (3.3)

Using (3.2) and (3.3), we deduce that (3.1) holds.

�

4. Fixed point theorem in b-Menger inner product spaces

Now we can state and prove the main fixed point theorem of this paper.
We need the following concept.

Definition 4.1. Let (Z,F, T,K) be a b-Menger inner product space with T
continuous.

(1) A sequence {zn} in Z converges to z ∈ Z, if for each ε > 0 and
λ ∈ (0, 1] there is N ∈ N such that Fzn−z,zn−z(ε

2) > 1 − λ for all
n > N (equivalently lim

n→∞
Fzn−z,zn−z(γ) = 1 for all γ > 0).

(2) {zn} is a Cauchy sequence if for each ε > 0 and λ ∈ (0, 1] there is
N ∈ N such that Fzn−zn+j ,zn−zn+j (ε

2) > 1 − λ, whenever n > N and
j ∈ N.

(3) (Z,F, T,K) is said to be complete, if each Cauchy sequence in Z con-
verges to some point in Z.
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Theorem 4.2. Let (Z,F, T,K) be a complete b-Menger inner product space
such that T is of H-type. Let ϕ : [0,+∞) → [0,+∞) be a function such that
ϕ(γ) > γ and lim

n→∞
ϕn(γ) = +∞ for all γ > 0, where ϕn(γ) is the nth iteration

of ϕ(γ). Let A,B : Z → Z be two mappings such that

FBp−Aq,r(γ) ≥ Fp−q,r(Kϕ(γ)) for p, q, r ∈ Z and γ > 0. (4.1)

Then A and B have a unique common fixed point in Z.

Proof. From Lemma 2.3 (5), by (4.1) we obtain

FAp−Bq,r(γ) = FBq−Ap,−r(γ) ≥ Fq−p,−r(Kϕ(γ)) = Fp−q,r(Kϕ(γ)) (4.2)

for p, q, r ∈ Z and γ > 0. Let p0 ∈ Z be arbitrary, and we consider the
sequence {pn} defined by p2i−1 = Ap2i−2 and p2i = Bp2i−1 for i ∈ N. Let
γ > 0. For any r ∈ Z, in view of (4.1) and (4.2) we get

Fp2i−p2i+1,r(γ) = FBp2i−1−Ap2i,r(γ)

≥ Fp2i−1−p2i,r(Kϕ(γ))

= FAp2i−2−Ap2i−1,r(ϕ(t))

≥ Fp2i−2−p2i−1,r(K
2ϕ2(γ))

...

≥ Fp0−p1,r(K2iϕ2i(γ))

(4.3)

and

Fp2i−1−p2i,r(γ) = FAp2i−2−Bp2i−1,r(γ)

≥ Fp2i−2−p2i−1,r(Kϕ(γ))

= FBp2i−3−Ap2i−2,r(ϕ(t))

≥ Fp2i−3−p2i−2,r(K
2ϕ2(γ))

...

≥ Fp0−p1,r(K2i−1ϕ2i−1(γ)).

(4.4)

Using (4.3) and (4.4) it follows that

Fpn−pn+1,r(γ) ≥ Fp0−p1,r(Knϕn(γ)) for all n ∈ N. (4.5)

Hence, by (4.5) and condition (2) of Definition 2.1 we have

Fpn−pn+1,pn−pn+1(γ) ≥ Fp0−p1,pn−pn+1(Knϕn(γ))

= Fpn−pn+1,p0−p1(Knϕn(γ))

≥ Fp0−p1,p0−p1(K2nϕ2n(γ)).

(4.6)
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Since lim
n→∞

K2nϕn(γ) = +∞, then lim
n→∞

Fp0−p1,p0−p1(K2nϕ2n(γ)) = 1. By

(4.6) we conclude that for all γ > 0,

Fpn−pn+1,pn−pn+1(γ)→ 1 as n→∞. (4.7)

Next, let r ∈ Z and n ∈ N. We shall apply induction to show that, for any
j ∈ N,

Fpn+1−pn+j+1,r(γ) ≥ T j(Fpn−pn+1,r(ϕ(γ)− γ)). (4.8)

This is obvious for j = 1, since from (4.1) and (4.2) we get

Fpn+1−pn+2,r(γ) ≥ Fpn−pn+1,r(Kϕ(γ)) ≥ Fpn−pn+1,r(ϕ(γ)− γ).

Next, suppose that (4.8) is true for j = k. in view of (4.1) and (4.2), condi-
tion (4) of Definition 2.1, the monotonicity of T and by induction hypothesis,
we obtain

Fpn+1−pn+k+2,r(γ) ≥ Fpn−pn+k+1,r(Kϕ(γ))

= Fpn−pn+1+pn+1−pn+k+1,r(K(ϕ(γ)− γ + γ))

≥ T
(
Fpn−pn+1,r(ϕ(γ)− γ), Fpn+1−pn+k+1,r(γ)

)
≥ T

(
Fpn−pn+1,r(ϕ(γ)− γ), T kFpn−pn+1,r(ϕ(γ)− γ))

)
= T k+1(Fpn−pn+1,r(ϕ(γ)− γ)),

which completes the induction. Hence, by (4.8) and assertion (2) of Definition
2.1, we obtain

Fpn+1−pn+j+1,pn+1−pn+j+1(γ) ≥ T j
(
Fpn−pn+1,pn+1−pn+j+1(ϕ(γ)− γ)

)
= T j

(
Fpn+1−pn+j+1,pn−pn+1(ϕ(γ)− γ)

)
≥ T 2j

[
Fpn−pn+1,pn−pn+1 (ϕ(ϕ(γ)−γ)−(ϕ(γ)−γ))

]
(4.9)

for all n, j ∈ N.
Fix ε > 0 and δ ∈ (0, 1]. Since T is a t-norm of H-type, there exists λ > 0

such that

T 2j(x) > 1− λ, for all x ∈ (1− λ, 1] and j ∈ N. (4.10)

We have ϕ(γ) > γ for all γ > 0, then ϕ(ϕ(γ) − γ) − (ϕ(γ) − γ) > 0. From
(4.7), so lim

n→∞
Fpn−pn+1,pn−pn+1(ϕ(ϕ(γ) − γ) − (ϕ(γ) − γ)) = 1 for all γ > 0.

Then, there exists N ∈ N such that

Fpn−pn+1,pn−pn+1

(
ϕ(ϕ(ε2)− ε2)− (ϕ(ε2)− ε2)

)
> 1− λ

for all n ≥ N . Thus, by (4.9) and (4.10) we obtain

Fpn+1−pn+j+1,pn+1−pn+j+1(ε2) > 1− λ
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for all n ≥ N and j ∈ N. We conclude that {pn} is a Cauchy sequence. Since
Z is complete, there exists v ∈ Z such that lim

n→∞
pn = v, that is,

lim
n→∞

Fpn−v,pn−v(γ) = 1 for all γ > 0. (4.11)

Now we will show that v is a common fixed point of A and B. By (4.1),
(4.2), assertion (2) of Definition 2.1 and (4.11), it follows that

Fp2i−Av,p2i−Av(γ) = FBp2i−1−Av,Bp2i−1−Av(γ)

≥ Fp2i−1−v,p2i−1−v(K
2ϕ2(γ))

→ 1 as i→∞
and

Fp2i+1−Bv,p2i+1−Bv(γ) = FAp2i−Bv,Ap2i−Bv(γ)

≥ Fp2i−v,p2i−v(K2ϕ2(γ))

→ 1 as i→∞,
which means that lim

i→∞
p2i = Av and lim

i→∞
p2i+1 = Av. By Theorem 2.5,

(Z,F, T,K) is a Hausdorff space and by (4.11) we get Av = v = Bv.
To prove uniqueness, suppose that there exists another common fixed point

w in Z of A and B. For each γ > 0, by (4.1) we get inductively

Fv−w,v−w(γ) = FBv−Aw,Bv−Aw(γ)

≥ Fv−w,Bv−Aw(Kϕ(γ))

= FBv−Aw,v−w(ϕ(γ))

≥ Fv−w,v−w(K2ϕ2(γ))

≥ Fv−w,v−w(K4ϕ4(γ))

...

≥ Fv−w,v−w(K2nϕ2n(γ)).

(4.12)

Then in view of (4.12) we have Fv−w,v−w(γ) = 1 because lim
n→∞

ϕ2n(γ) = +∞,

then v = w. This completes the proof. �

Corollary 4.3. Let (Z,F, T,K) be a complete b-Menger inner product space
such that T is of H-type. Let s ∈ (0, 1

K ) and A : Z → Z be a mapping such
that

FAp−Aq,r(γ) ≥ Fp−q,r(
γ

s
) for p, q, r ∈ Z and γ > 0.

Then A has a unique fixed point in Z.

Proof. We take ϕ(γ) = γ
s and A = B in the Theorem 4.2. �
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