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Abstract. In this paper, some iterative methods are used to discuss the behavior of general

mixed-harmonic variational inequalities. We employ the auxiliary principle technique and g-

strongly harmonic monotonicity of the operator to obtain results on the existence of solutions

to a generalized class of mixed harmonic variational inequality.

1. Introduction

For the last six decades, it has been found that the theory of variational
inequality has a very rich and varied source. Stampacchia [31], who first
introduced and studied this theory in 1964, used it as a very effective unifying
model to address equilibrium issues. Later on, it has explosive and dynamical
growth in both pure and applied mathematics. This field has a wide range
of applications in industry, physical, regional, engineering, pure and applied
sciences.
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Variational inequality theory has been extended and generalized in differ-
ent directions by applying novel and innovative techniques. One of the most
convenient and major generalizations of variational inequalities is the mixed
variational inequality, introduced and studied by Lions and Stampacchia [7]
and further extended by Noor [12]. The most important and significant gen-
eralization of a convex function is a harmonic convex function. Iscan [6] and
Noor et. al. [28, 29] have obtained several Hermite-Hadamard, Simpson, and
Cholowski type integral inequalities for the harmonic convex function and their
variant forms. For recent advancements in the work related to harmonic vari-
ational inequalities and mixed variational inequalities, see [2, 3, 8–10, 27, 30]
and the references therein.

Glowinski and Tremolieres [5] used the auxiliary principal technique to
study the existence of solutions to mixed variational inequalities. In recent
years, this technique has been used to suggest and analyze many iterative
methods for solving various classes of variational inequalities [22]. For other
applications, formulations, numerical methods and other aspects of variational
inequalities, see, for example, [1, 4, 11, 13–23] and the references therein. Mo-
tivated and inspired by the work of Noor et al. [24–26], we use the auxiliary
principle technique, which is mainly due to Lions and Stampacchia [31] for the
existence of solutions to the general mixed harmonic variational inequalities.

The rest of the paper is organized as follows: In Section 2, we formulate
the general mixed harmonic variational inequality with some special cases as
remarks are discussed and recall some important definitions from the literature
for their subsequent usage. In Section 3, we employ the auxiliary principle
technique for obtaining an approximate solution to the general mixed harmonic
variational inequality.

2. Preliminaries

Let H be a real Hilbert space and the symbols ‖.‖ and 〈., .〉 represent the
norm and inner product on H, respectively. Let K be a nonempty nonzero
closed harmonic convex set in H.

Let T, g : H → H be continuous nonlinear mappings and ψ : R→ R+ ∪ {∞}
be a semi-continuous linear functional. Then the problem of finding u ∈ H
such that〈

Tu,
g(u)g(v)

g(u)− g(v)

〉
+ ψ(g(v))− ψ(g(u)) ≥ 0, ∀ g(v) ∈ H (2.1)

known as general mixed harmonic variational inequality which appears to be
new.
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Remark 2.1. We see, if we take g(u) = − (g(u)−g(v))2
g(v) and g(v) = − (g(u)−g(v))2

g(u)

in the second component of 〈., .〉 in (2.1), then

〈Tu, g(v)− g(u)〉+ ψ(g(v))− ψ(g(u)) ≥ 0, ∀ g(u) ∈ H, (2.2)

known as general mixed variational inequality or general variational inequality
of 2nd kind, introduced and studied by Noor [12].

Remark 2.2. If we take g ≡ I, identity operator, then the above inequalities
(2.1) and (2.2) are analogous to finding u in H such that〈

Tu,
uv

u− v

〉
+ ψ(v)− ψ(u) ≥ 0, ∀ v ∈ H, (2.3)

known as mixed harmonic variational inequality which appears to be new one
and the inequality (2.2) implies

〈Tu, v − u〉+ ψ(v)− ψ(u) ≥ 0, ∀ u ∈ H, (2.4)

known as mixed variational inequality introduced by Lions and Stampachhia[7].

Note that the function ψ is an indicator function for the closed convex
harmonic set K in H, defined as

ψ(u) = IK(u) =

{
0 if u ∈ K,
+∞ otherwise.

(2.5)

The problem (2.1) is equivalent to find u ∈ H, g(u) ∈ K such that〈
Tu,

g(u)g(v)

g(u)− g(v)

〉
≥ 0, ∀g(v) ∈ K (2.6)

known as general harmonic variational inequality and the problem of the type
(2.2) is equivalent to

〈Tu, g(v)− g(u)〉 ≥ 0, ∀g(v) ∈ K, (2.7)

is known as general variational inequality.

Again, if we consider g ≡ I, the identity operator, then the above inequal-
ities (2.6) and (2.7) reduce to the original harmonic variational inequality
introduced and studied by Noor [25] and classical variational inequality by Li-
ons and Stampacchia [31], respectively. Also, we can conclude that inequalities
(2.3) and (2.4) are special cases of (2.1) and (2.2), respectively.

Definition 2.3. Let H be a Hilbert space and K ⊂ H \ {0} be a nonempty
set. Then the set K is said to be harmonic convex, if

uv

v + λ(u− v)
∈ K, ∀u, v ∈ K, λ ∈ [0, 1].
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Definition 2.4. Let f : K ⊂ H \ {0} → R be a map. Then f is said to be
harmonic convex, if

f

(
uv

v + λ(u− v)

)
≤ (1− λ)f(u) + λf(v),

∀u, v ∈ K, λ ∈ [0, 1]

Note. If -f is harmonic convex, then f is called harmonic concave, and vice
versa.

Definition 2.5. Let f : K ⊂ R \ {0} → R be a function. Then f is said to
be harmonic quasi-convex, if

f

(
uv

v + λ(u− v)

)
≤ max{f(u), f(v)}, ∀u, v ∈ K, λ ∈ [0, 1].

Note: If−f is harmonic quasi-convex then f is called harmonic quasi-concave,
and vice versa. Also, whenever f(v) ≥ f(u), f is called harmonic quasi-convex
and this implies f(v) is greater than or equal to the value of f at the point
of the path uv

v+λ(u−v) . If the strict inequality holds for f(u) 6= f(v), then f is

called strictly harmonic quasi-convex.

Definition 2.6. Let a function f be defined as f : K ⊂ R \ {0} → R+. Then
f is said to be logarithmic harmonic convex if

f

(
uv

v + λ(u− v)

)
≤ (f(u))1−λ(f(v))λ, ∀u, v ∈ K, λ ∈ [0, 1],

where f(.) > 0.

From the above definitions, we have

f

(
uv

v + λ(u− v)

)
≤ (f(u))1−λ(f(v))λ

≤ (1− λ)f(u) + λf(v)

≤ max{f(u), f(v)}.

From this, we conclude that harmonic logarithmic convex functions are
harmonic convex functions and harmonic convex functions are quasi-harmonic
convex functions. But the converse need not be true.

Again, from the above definition, we have

log f

(
uv

v + λ(u− v)

)
≤ (1− λ) log f(u) + λ log f(v),∀u, v ∈ K, λ ∈ [0, 1].
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Lemma 2.7. Let H be a real Hilbert space and for all u, v in H, we have

〈u, v〉 =
1

2
{‖u+ v‖2 − ‖u‖2 − ‖v‖2}. (2.8)

Proof.

‖u+ v‖2 = 〈u+ v, u+ v〉
= 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉
= ‖u‖2 + 2〈u, v〉+ ‖v‖2.

Hence 〈u, v〉 = 1
2{‖u+ v‖2 − ‖u‖2 − ‖v‖2}. �

3. Main results

In this section, we use the auxiliary principle technique, which is mainly
due to Lions and Stampacchia [31] and developed by Noor [22], in order to
obtain the existence results.

Definition 3.1. Let H be a real Hilbert space and T, g : H → H be two oper-
ators. Then T is said to be g- partially relaxed harmonic strongly monotone,
if there exists a constant α > 0 such that〈

Tu− Tv, g(v)g(z)

g(v)− g(z)

〉
≥ −α‖g(u)− g(z)‖2, ∀u, v, z ∈ H.

Note: If we take z = u, then g-partially relaxed harmonic strongly mono-
tonicity implies g-harmonic monotonicity.

That is,

〈
Tu− Tv, g(u)g(v)

g(v)− g(u)

〉
≥ 0,

which is called the g-harmonic monotonicity of the operator T.

Algorithm 3.2. For a given u0 ∈ H and ρ > 0, we compute the approximate
solution un+1 by the iterative scheme.〈

ρTun,
g(un+1)g(v)

g(un+1)− g(v)

〉
+ 〈g(un+1)− g(un), g(v)− g(un+1)〉

+ ρψ(g(v))− ρψ(g(un+1)) ≥ 0. (3.1)

Theorem 3.3. Let H be a real Hilbert space, ū ∈ H be the solution of gen-
eral mixed harmonic variational inequality (2.1) and un+1 be the approximate
solution acquired from Algorithm 3.2. If T : H → H is a g-partially relaxed
harmonic strongly monotone operator with constant α > 0, then

‖g(un+1)− g(ū)‖2 ≤ ‖g(un)− g(ū)‖2 − (1− 2ρα)‖g(un+1)− g(un)‖2.
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Proof. Let ū ∈ H be the solution of (2.1), we have〈
ρT (ū),

g(ū)g(v)

g(ū)− g(v)

〉
+ ρψ(g(v))− ρψ(g(ū)) ≥ 0, ∀v ∈ H, (3.2)

where ρ > 0 is a constant. Take v = un+1 in (3.2) and v = ū in (3.1), we have〈
ρT ū,

g(ū)g(un+1)

g(ū)− g(un+1)

〉
+ ρψ(g(un+1))− ρψ(g(ū)) ≥ 0 (3.3)

and 〈
ρTun,

g(un+1)g(ū)

g(un+1)− g(ū)

〉
+ 〈g(un+1)− g(un), g(ū)− g(un+1)〉

+ ρψ(g(ū))− ρψ(g(un+1)) ≥ 0. (3.4)

On adding (3.3) and (3.4), and in view of g- partially relaxed harmonic strongly
monotonicity of the operator T , it follows that

〈g(un+1)− g(un), g(ū)− g(un+1)〉 ≥ ρ
〈
Tun − T ū,

g(ū)g(un+1)

g(ū)− g(un+1)

〉
≥ −αρ‖g(un)− g(un+1)‖2. (3.5)

Using Lemma 2.7, we have

〈g(un+1)− g(un), g(ū)− g(un+1)〉 =
1

2
{‖g(ū)− g(un)‖2 − ‖g(un+1)− g(un)‖2

− ‖g(ū)− g(un+1)‖2}. (3.6)

From (3.5) and (3.6), we have

1

2
{‖g(ū)− g(un)‖2 − ‖g(un+1)− g(un)‖2 − ‖g(ū)− g(un+1)‖2}

≥ −αρ‖g(un)− g(un+1)‖2,
it implies that

‖g(ū)− g(un)‖2 − ‖g(un+1)− g(un)‖2 − ‖g(ū)− g(un+1)‖2

+ 2αρ‖g(un+1)− g(un)‖2 ≥ 0.

Hence we have

‖g(un+1)− g(ū)‖2 ≤ ‖g(un)− g(ū)‖2 − (1− 2ρα)‖g(un+1)− g(un)‖2.
�

Definition 3.4. Let H be a Hilbert space and T, g : H → H be two operators.
Then T is said to be:

(i) strongly g-monotone, if there exists a constant γ > 0, such that

〈Tu− Tv, g(u)− g(v)〉 ≥ γ‖g(u)− g(v)‖2, ∀u, v ∈ H.
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(ii) Lipschitz g-continuous, if there exists a constant β > 0 such that

‖Tu− Tv‖ ≤ β‖g(u)− g(v)‖, ∀u, v ∈ H.

Note: If we take g ≡ I, the identity operator, then strongly g-monotonicity
and Lipschitz g-continuity reduce to strongly monotonicity and Lipschitz con-
tinuity of the operator T , respectively.

Algorithm 3.5. Consider the problem of finding w ∈ H such that g(w) ∈ H,
satisfying the general auxiliary harmonic variational inequality.〈

ρTu+ g(w)− g(u),
g(w)g(v)

g(w)− g(v)

〉
+ ρψ(g(v))− ρψ(g(u)) ≥ 0, (3.7)

where ρ > 0 is a constant.

Note: In particular, if we take w = u, then we see that w is a solution of
general mixed harmonic variational inequality (2.1).

Theorem 3.6. Let K be a nonzero nonempty closed harmonic convex subset
of a real Hilbert space H and T, g : H → H be two operators such that T is
Lipschitz g-continuous and strongly g- monotone. Then for

0 < ρ <
2γ

β2
, (3.8)

there exists a solution to the general mixed harmonic variational inequality
(2.1).

Proof. For u ∈ H such that g(u) ∈ K, we see that inequality (3.7) defines a
mapping g(u) to g(w) in K. To prove the existence of a solution, we need to
show that the mapping g(u) → g(w) has a fixed point. For this, it is enough
to show that g(w) is a contraction mapping.

Let g(w1) 6= g(w2) be two solutions of (3.7) corresponding to g(u1) 6= g(u2)
in K, respectively. Then for a constant ρ > 0, we have〈

ρTu1 + g(w1)− g(u1),
g(w1)g(v)

g(w1)− g(v)

〉
+ ρψ(g(v))− ρψ(g(u1)) ≥ 0 (3.9)

and〈
ρTu2 + g(w2)− g(u2),

g(w2)g(v)

g(w2)− g(v)

〉
+ ρψ(g(v))− ρψ(g(u2)) ≥ 0. (3.10)
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Taking g(v) = g(w2) in (3.9) and g(v) = g(w1) in (3.10) and then adding, we
have〈

ρTu2 − ρTu1 + g(u1)− g(u2),
g(w1)g(w2)

g(w2)− g(w1)

〉
+ ρ(ψ(g(w1)) + ψ(g(w2)))

− ρ(ψ(g(u1)) + ψ(g(u2))) ≥
〈
g(w1)− g(w2),

g(w1)g(w2)

g(w2)− g(w1)

〉
. (3.11)

Since ψ is an indicator function, then from (3.11), we have〈
ρTu2 − ρTu1 + g(u1)− g(u2),

g(w1)g(w2)

g(w2)− g(w1)

〉
≥
〈
g(w1)− g(w2),

g(w1)g(w2)

g(w2)− g(w1)

〉
.

Therefore

‖ρ(Tu2 − Tu1) + g(u1)− g(u2)‖ ≥ ‖g(w1)− g(w2)‖. (3.12)

Now consider

‖ρ(Tu2 − Tu1) + g(u1)− g(u2)‖2

= 〈ρ(Tu2 − Tu1) + g(u1)− g(u2), ρ(Tu2 − Tu1) + g(u1)− g(u2)〉
= ρ2‖(Tu2 − Tu1)‖2 + ‖g(u1)− g(u2)‖2 + 2ρ〈Tu2 − Tu1, g(u1)− g(u2)〉
= ρ2‖(Tu1 − Tu2)‖2 + ‖g(u1)− g(u2)‖2 − 2ρ〈Tu1 − Tu2, g(u1)− g(u2)〉
≤ ρ2β2‖g(u1)− g(u2)‖2 − 2ργ‖g(u1)− g(u2)‖2 + ‖g(u1)− g(u2)‖2

≤ (ρ2β2 − 2ργ + 1)‖g(u1)− g(u2)‖2. (3.13)

From (3.12) and (3.13), we have

‖g(w1)− g(w2)‖2 ≤ (ρ2β2 − 2ργ + 1)‖g(u1)− g(u2)‖2

and hence
‖g(w1)− g(w2)‖ ≤ δ‖g(u1)− g(u2)‖,

where δ =
√
ρ2β2 − 2ργ + 1 < 1, follows from (3.8).

This shows that the mapping g(w) is a contraction mapping and hence
has a fixed point g(w) = g(u) ∈ K, satisfying the general mixed harmonic
variational inequality (2.1). �

4. Conclusion

In this paper, we introduced and studied general mixed harmonic varia-
tional inequality and established the existence of a solution to this inequality
by using auxiliary principle techniques and some iterative methods. The de-
velopments of such algorithms applied for obtaining solutions are interesting
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to find most suitable to establish their approximate solution and some of their
characterizations are also discussed. Further efforts are required to explore
several applications of this new class of variational inequality in pure as well
as applied sciences. The concept of general mixed harmonic variational in-
equality is a new class of general mixed variational inequality, and it is highly
expected that the ideas and methods used in this paper may stimulate further
research in this area.
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