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Abstract. In this study, a class of nonlinear boundary fractional Caputo Volterra-Fredholm

integro-differential equations (CV-FIDEs) is taken into account. Under specific assumptions

about the available data, we firstly demonstrate the existence and uniqueness features of the

solution. The Gronwall’s inequality, a adequate singular Hölder’s inequality, and the fixed

point theorem using an a priori estimate procedure. Finally, a case study is provided to

highlight the findings.

1. Introduction

Due to its capacity to generalize classical calculus to non-integer orders,
fractional calculus has drawn a lot of interest. This mathematical framework
is effective for simulating complicated events with non-local and memory-
dependent behaviors [3, 4, 5, 6, 7, 10, 9]. A complete bibliography on this
topic is available from Miller and Ross [25]. The notion of fractional differen-
tial equations (FDEs) has therefore undergone substantial development, the
monographs by Lakshmikantham et al. [24], as well as Kilbas et al. [23]
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Any initial value problem and boundary value problem that is transformed
into an IE often yields an integro-differential equation (IDE), which may be
observed in several scientific models. Both integral and differential operators
may be found in many IDE. We must thus look for an effective method for
locating analytical solutions to fractional differential equations [13, 20, 29, 30,
31]. In his 1908 thesis, Traian Lalescu became the first scientist to analyses
the Volterra integral equations (VIE). Numerous scientific fields, including
demography, insurance mathematics, and physics, have numerous uses for
VIE.

Due to their usefulness in several engineering and scientific fields, fractional
Volterra integro-differential equations (FVIDEs) have recently attracted the
attention of many scholars [19, 23, 24, 25, 26, 27, 28]. In particular, using the
Caputo fractional derivative for FV-FIDEs, Hamoud [14] provides the required
conditions for the existence and uniqueness of solutions for numerous classes
of boundary value issues. The existence of impulsive FV-FIDEs in Banach
spaces has recently been demonstrated by Hamoud and Ghadle [16] used a
combination of the fixed point method, Grownwall’s generalized inequality,
and Caputo derivative.

In this study, the authors examine an arbitrary border condition, we gen-
eralize the result from [11] using the generalized border condition, and we
will extend the past studies [2, 29] on fractional boundary value problems for
FV-FIDEs of order Υ ∈ (2, 3)

cDσ=(ς) = <(ς,=(ς), (Λ=)(ς), (ϑ=)(ς)), ς ∈ I = [0, α], σ ∈ (Υ− 1,Υ),

=(0) = =0,=′(0) = =1
0,=′′(0) = =2

0, · · · ,=(Υ−1)(0) = =Υ−2
0 ,

=(Υ−1)(α) = =α, =α ∈ {,
(1.1)

where cDσ is the fractional Caputo derivative of order σ, < : I×{×{×{→ {
is a predefined function, and =0,=j0(j = 1, 2, · · · ,Υ−2,Υ ≥ 4,Υ is a integer),
and Λ, ϑ are defined by

(Λ=)(ς) =

∫ ς

0
ψ(ς, ℘)=(℘)d℘, (ϑ=)(ς) =

∫ α

0
ψ1(ς, ℘)=(℘)d℘,

with

ϕ0 = max

{∫ ς

0

ψ(ς, ℘)d℘ : (ς, ℘) ∈ I × I
}
, ϕ1

0 = max

{∫ α

0

ψ1(ς, ℘)d℘ : (ς, ℘) ∈ I × I
}

where ψ,ψ1 ∈ C (I × I,R+) .

By combining the fixed point approach, an appropriate singular Gronwall’s
inequality, and Holder’s inequality, several existence and uniqueness conclu-
sions for the FV-FIDE (1.1) be demonstrated.
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2. Auxiliary results

In recent years, both conceptually and practically, a lot of emphasis has
been paid to the study of these issues. Without attempting to be thorough,
the following recent papers on this issue will be addressed in [7, 15, 17, 18, 22].
A lot of writers utilize the following conditions: The nonlinear term < must
meet the mathematical condition F(=) that functions exist for there to be
solutions.

We’ll now go through the vocabulary, notation, and early results that will
be applied to the whole task. Every continuous function in the Banach
space I into { are denoted by the notation C(I, {) with the norm ‖=‖∞ :=
sup{‖=(ς)‖ : ς ∈ I}. Regarding measurable functions µ : I → R, the norm
given by 1 ≤ ω <∞,

‖µ‖Lω(I,R) =

(∫
I
|µ(ς)|ωdt

) 1
ω

.

We define Lω(I,R) all measurable Lebesgue functions µ in Banach space
with ‖µ‖Lω(I,R) <∞.

The following fundamental definitions and characteristics of fractional cal-
culus theory are necessary in order to understand the content of this article,
see [23], for example, for further details.

Definition 2.1. ([21, 26]) The fractional Caputo derivative of order σ of χ
for an appropriate function χ define on [s, d] is given by(

cDσ
s+χ

)
(ς) =

1

Γ(Υ− σ)

∫ ς

s
(ς − ℘)Υ−σ−1χ(Υ)(℘)d℘.

Lemma 2.2. ([1]) Let $ : I → { be continuous. A function = ∈ C(I, {) is a
solution of the following equation

=(ς) =
1

Γ(σ)

∫ ς

0
(ς − ℘)σ−1$(℘)d℘

− ςΥ−1

(Υ− 1)!Γ(σ −Υ + 1)

∫ α

0
(α− ℘)σ−Υ$(℘)d℘

+ =0 + =1
0ς +

=2
0

2!
ς2 + · · ·+ =Υ−2

0

(Υ− 2)!
ςΥ−2 +

=α
(Υ− 1)!

ςΥ−1

if and only if = is a solution of the following equation
cDσ=(ς) = $(ς), ς ∈ I = [0, α], σ ∈ (Υ− 1,Υ),

=(0) = =0,=′(0) = =1
0,=′′(0) = =2

0, · · · ,=(Υ−1)(0) = =Υ−2
0 ,

=(Υ−1)(α) = =α.
(2.1)
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Lemma 2.3. ([1]) Let < : I×{×{×{→ { be continuous function. = ∈ C(I, {)
is a solution of the following equation

=(ς) =
1

Γ(σ)

∫ ς

0
(ς − ℘)σ−1<(℘,=(℘), (Λ=)(℘), (ϑ=)(℘))d℘

− ςΥ−1

(Υ− 1)!Γ(σ −Υ + 1)

∫ α

0
(α− ℘)σ−Υ<(℘,=(℘), (Λ=)(℘), (ϑ=)(℘))d℘

+ =0 + =1
0ς +

=2
0

2!
ς2 + · · ·+ =Υ−2

0

(Υ− 2)!
ςΥ−2 +

=α
(Υ− 1)!

ςΥ−1 (2.2)

if and only if = is a solution of the FV-FIDE (1.1).

Lemma 2.4. ([26]) Let Ξ : I → { be a measurable function. If ‖Ξ‖ is Lebesgue
integrable, then Ξ is Bochner integrable.

3. Main results

Before expressing and demonstrating the key findings, we first introduce
the following hypothesis. The foundation of our initial finding is the Banach
contraction principle. We make the following presumptions:

(E1) < : I × {× {× {→ { is measurable with respect to ς on I.

(E2) There exist real-valued functions m1(ς), m2(ς),m3(ς) ∈ L
1
σ1 (I, {) and

a constant σ1 ∈ (0, σ −Υ + 1) such that

‖<(ς, y(ς), (Λy)(ς), (ϑy)(ς))−<(ς,=(ς), (Λ=)(ς), (ϑ=)(ς))‖
≤ m1(ς)‖y −=‖+m2(ς)‖Λy − Λ=‖+m3(ς)‖ϑy − ϑ=‖,

for each ς ∈ I, and all y,= ∈ {.

(E3) There exists a real-valued function h(ς) ∈ L
1
σ2 (I, {) such that

‖<(ς,=,Λ=, ϑ=)‖ ≤ h(ς),

for each ς ∈ I, and all = ∈ { and constant σ2 ∈ (0, σ −Υ + 1).
Let’s keep this brief M =

∥∥m1 + ϕ0m2 + ϕ1
0m3

∥∥
L

1
σ1

(I,{) and H =

‖h‖
L

1
σ2 (I,{)

.

(E4) There exists G > 0 and ρ ∈
[
0, 1− 1

p

)
for some 1 < p < 1

Υ−σ such

that

‖<(ς, c,Λc, ϑc)‖ ≤ G
(
1 + ϕ0‖c‖ρ + ϕ1

0‖c‖ρ
)
, ∀ ς ∈ I and ∀ c ∈ {.
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(E5) For all ς ∈ I, the set

K1 =
{

(ς − ℘)σ−1<(℘,=(℘), (Λ=)(℘), (ϑ=)(℘)) : = ∈ C(I, {), ℘ ∈ [0, ς]
}

and

K2 =
{

(ς − ℘)σ−Υ<(℘,=(℘), (Λ=)(℘), (ϑ=)(℘)) : = ∈ C(I,X), ℘ ∈ [0, ς]
}

are relatively compact.

Theorem 3.1. Assume (E1)-(E3) are true. If

Φσ,α,Υ =
M

Γ(σ)

ασ−σ1(
σ−σ1
1−σ1

)1−σ1
+

M

(Υ− 1)!Γ(σ −Υ + 1)

ασ−σ1(
σ−σ1−Υ+1

1−σ1

)1−σ1

< 1, (3.1)

then the FV-FIDE (1.1) has a unique solution on I.

Proof. For all ς ∈ I, we get∫ ς

0

∥∥(ς − ℘)σ−1<(℘,=(℘), (Λ=)(℘), (ϑ=)(℘))
∥∥ d℘

≤
(∫ ς

0
(ς − ℘)

σ−1
1−σ2 d℘

)1−σ2
(∫ ς

0
(h(℘))

1
σ2 d℘

)σ2

≤
(∫ ς

0
(ς − ℘)

σ−1
1−σ2 d℘

)1−σ2
(∫ α

0
(h(℘))

1
σ2 d℘

)σ2

≤ ασ−σ2H(
σ−σ2
1−σ2

)1−σ2
.

Thus
∥∥(ς − ℘)σ−1<(℘,=(℘), (Λ=)(℘), (ϑ=)(℘))

∥∥ is Lebesgue integrable with

respect to ℘ ∈ [0, ς] for all ς ∈ I and = ∈ C(I, {). Hence, we know that
(ς − ℘)σ−1<(℘,=(℘), (Λ=)(℘), (ϑ=)(℘)) is Bochner integrable with respect to
℘ ∈ [0, ς] for all ς ∈ I due to Lemma 2.4,∫ α

0

∥∥(ς − ℘)σ−1<(℘,=(℘), (Λ=)(℘), (ϑ=)(℘))
∥∥ d℘

≤
(∫ α

0
(α− ℘)

σ−Υ
1−σ2 d℘

)1−σ2
(∫ α

0
(h(℘))

1
σ2 d℘

)σ2

≤ ασ−σ2−Υ+1H(
σ−σ2−Υ+1

1−σ2

)1−σ2
.

Thus,
∥∥(α− ℘)σ−Υ<(℘,=(℘), (Λ=)(℘), (ϑ=)(℘))

∥∥ is Lebesgue integrable with
respect to ℘ ∈ [0, α] for all ς ∈ I and = ∈ C(I,X). Hence we know that
(α−℘)σ−Υ<(℘,=(℘), (Λ=)(℘), (ϑ=)(℘)) is Bochner integrable with respect to
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℘ ∈ [0, α], for all ς ∈ I due to Lemma 2.4. Therefore, the following fractional
integral equation is what the FV-FIDE (1.1) represents.

=(ς) =
1

Γ(σ)

∫ ς

0
(ς − ℘)σ−1<(℘,=(℘), (Λ=)(℘), (ϑ=)(℘))d℘

− ςΥ−1

(Υ− 1)!Γ(σ −Υ + 1)

∫ α

0
(α−℘)σ−Υ<(℘,=(℘), (Λ=)(℘), (ϑ=)(℘))d℘

+ =0 + y1
0ς +

=2
0

2!
ς2 + · · ·+ =Υ−2

0

(Υ− 2)!
ςΥ−2 +

=α
(Υ− 1)!

ςΥ−1, ς ∈ I.

Let

r ≥ Hασ−σ2

Γ(σ)
(
σ−σ2
1−σ2

)1−σ2
+

Hασ−σ1

(Υ− 1)!Γ(σ −Υ + 1)

(
σ − σ2 −Υ + 1

1− σ2

)1−σ2

+ ‖=0‖+
∥∥=1

0

∥∥α+

∥∥=2
0

∥∥
2!

α2 + · · ·+

∥∥∥=Υ−2
0

∥∥∥
(Υ− 2)!

αΥ−2 +
‖=α‖

(Υ− 1)!
αΥ−1.

Now, the operator is defined on Br := {= ∈ C(I, {) : ‖=‖ ≤ r} as follows

(ð(=))(ς)

=
1

Γ(σ)

∫ ς

0
(ς − ℘)σ−1<(℘,=(℘), (Λ=)(℘), (ϑ=)(℘))d℘

− ςΥ−1

(Υ− 1)!Γ(σ −Υ + 1)

∫ α

0
(α−℘)σ−Υ<(℘,=(℘), (Λ=)(℘), (ϑ=)(℘))d℘

+ =0 + =1
0ς +

ς2
0

2!
t2 + · · ·+ =Υ−2

0

(Υ− 2)!
ςΥ−2 +

=α
(Υ− 1)!

ςΥ−1, ς ∈ I. (3.2)

An operator’s fixed point on Br is therefore implied by the presence of a FV-
FIDE (1.1) solution. There being a fixed point will be demonstrated using the
Banach contraction principle. The evidence consists of two steps.

Step 1. = ∈ Br, ∀ y ∈ Br.
By using (E3) and Holder’s inequality, we get = ∈ Br and θ > 0.

‖(ð(=))(ς + θ)− (ð(=))(ς)‖

≤ ‖ 1

Γ(σ)

∫ v+θ

0
(ς + θ − ℘)σ−1<(℘,=(℘), (Λ=)(℘), (ϑ=)(℘))d℘

− 1

Γ(σ)

∫ ς

0
(ς − ℘)σ−1<(℘,=(℘), (Λ=)(℘), (ϑ=)(℘))d℘‖

+ ‖ (ς + θ)Υ−1

(Υ− 1)!Γ(σ −Υ + 1)

∫ α

0
(α−℘)σ−Υ<(℘,=(℘), (Λ=)(℘), (ϑ=)(℘))d℘
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+
(ς + θ)Υ−1

(Υ− 1)!Γ(σ −Υ + 1)

∫ α

0
(α−℘)σ−Υ<(℘,=(℘), (Λ=)(℘), (ϑ=)(℘))d℘‖

+ ‖=1
0(ς + θ − t) +

=2
0

2!

[
(t+ θ)2 − ς2

]
+ . . .

+
=Υ−2

0

(Υ− 2)!

[
(ς + θ)Υ−2 − ςΥ−2

]
+

=α
(Υ− 1)!

[
(ς + θ)Υ−1 − ςΥ−1

]
‖

≤ H

Γ(σ)

(ς + θ)
σ−σ2
1−σ2

σ−σ2
1−σ2

− θ
σ−σ2
1−σ2

σ−σ2
1−σ2

− ς
σ−σ2
1−σ2

σ−σ2
1−σ2

1−σ2

+
H

Γ(σ)

θ σ−σ2
1−σ2

σ−σ2
1−σ2

1−σ2

+

[
(ς + θ)Υ−1 − ςΥ−1

]
(Υ− 1)!Γ(σ −Υ + 1)

ασ−σ2−Υ+1H(
σ−σ2−Υ+1

1−σ2

)1−σ2

+
∥∥=1

0

∥∥ (ς + θ − ς) +

∥∥=2
0

∥∥
2!

[
(ς + θ)2 − ς2

]
+ . . .

+

∥∥∥=Υ−2
0

∥∥∥
(Υ− 2)!

[
(ς + θ)Υ−2 − ςΥ−2

]
+
‖=α‖

(Υ− 1)!

[
(ς + θ)Υ−1 − ςΥ−1

]
−→ 0 as θ → 0.

Thus, ð is continuous on I, that is, ð(=) ∈ C(I,X). Also, for = ∈ Br and for
all t ∈ I, we get

‖(ð(=))(ς)‖

≤ 1

Γ(σ)

∫ ς

0
(ς − ℘)σ−1‖<(℘,=(℘), (Λ=)(℘), (ϑ=)(℘))‖d℘

+
ςΥ−1

(Υ−1)!Γ(σ−Υ+1)

∫ α

0
(α−℘)σ−Υ‖<(℘,=(℘), (Λ=)(℘), (ϑ=)(℘))‖d℘

+ ‖=0‖+
∥∥=1

0

∥∥α+

∥∥=2
0

∥∥
2!

α2 + · · ·+

∥∥∥=Υ−2
0

∥∥∥
(Υ− 2)!

αΥ−2 +
‖=α‖

(Υ− 1)!
αΥ−1

≤ r,

it suggests that ‖ð(=)‖∞ ≤ r, Consequently, we may say that for all = ∈
Br, ð(=) ∈ Br, that is, N : Br → Br.

Step 2. F is a contraction operator on Br.
For y,= ∈ Br and ∀ ς ∈ I, using (E2) and inequality of Holder, we get
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‖(ð(y))(ς)− (ð(=))(ς)‖

≤ 1

Γ(σ)

∫ ς

0
(ς − ℘)σ−1

× ‖<(℘, y(℘), (Λy)(℘), (ϑy)(℘))−<(℘,=(℘), (Λ=)(℘), (ϑ=)(℘))‖d℘

+
αΥ−1

(Υ− 1)!Γ(σ −Υ + 1)

∫ α

0
(α− ℘)σ−Υ

× ‖<(℘, y(℘), (Λy)(℘), (ϑy)(℘))−<(℘,=(℘), (Λ=)(℘), (ϑ=)(℘))‖d℘

≤ ‖y −=‖∞
Γ(σ)

(∫ ς

0
(ς − ℘)

σ−1
1−σ1 d℘

)1−σ1

×
(∫ ς

0

(
m1(℘) + ϕ0m2(℘) + ϕ1

0m3(℘)
) 1
σ1 d℘

)σ1

+

[
(ς + θ)Υ−1 − ςΥ−1

]
(Υ− 1)!Γ(σ −Υ + 1)

(∫ α

0
(α− ℘)

σ−Υ
1−σ1 d℘

)1−σ1

×
(∫ α

0

(
m1(℘) + ϕ0m2(℘) + ϕ1

0m3(℘)
) 1
σ1 d℘

)σ1

.

So, we get

‖ð(y)− ð(=)‖∞ ≤ Φσ,α,Υ‖y −=‖∞.
As a result of the criterion (3.1), W is contraction. We may infer from the
Banach contraction principle that possesses a singular fixed point, which is
the singular solution of the FV-FIDE (1.1). �

Theorem 3.2. Let’s assume that (E1), (E4) and (E5) are true. Then there
exists at least one solution to the FV-FIDE (1.1) on I.

Proof. Let’s turn the FV-FIDE (1.1) into a fixed point issue. Take into account
the operator ð : C(I, {) → C(I, {) defined as (.). It is evident that F is
precisely defined thanks to (3.2), Holder’s inequality and lemma 2.4.

For clarity, the proof has been broken down into many steps.

Step 1. N is a continuous operator.
Let {=Υ} be a sequence such that =Υ → = in C(I, {). Then for all ς ∈ I,

using the continuity of <, we get

‖ð(=)Υ − ð(=)‖∞ ≤
(

ασ

Γ(σ + 1)
+

ασ

(Υ− 1)!Γ(σ −Υ + 2)

)
× ‖< (·,=Υ(·), (Λ=Υ)(·), (ϑ=Υ)(·))
−<(·,=(·), (Λ=)(·), (ϑ=)(·))‖∞
→ 0 as Υ→∞.
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Step 2. ð operators bounded sets into bounded sets in C(I, {).
In fact, it suffices to demonstrate that for all ξ∗ > 0, there exists l > 0 such

that for all = ∈ Bξ∗ =
{
= ∈ C(I, {) : ‖=‖∞ ≤ ξ∗

}
, we get ‖=‖∞ ≤ l.

For all ς ∈ I, by (E4), we have

‖(ð(=))(ς)‖ ≤
(

1

Γ(σ + 1)
+

1

(Υ− 1)!Γ(σ −Υ + 2)

)
ασϕ0N (1 + (ξ∗)ρ)

+ ‖=0‖+
∥∥=1

0

∥∥α+

∥∥=2
0

∥∥
2!

α2 + · · ·+

∥∥∥=Υ−2
0

∥∥∥
(Υ− 2)!

αΥ−2+
‖=α‖

(Υ− 1)!
αΥ−1

:= l,

it implies that ‖ð(=)‖∞ ≤ l.
Step 3. ð operators bounded sets into equicontinuous sets of C(I, {).
Let 0 ≤ ς1 < ς2 ≤ α,= ∈ Bξ∗ . Using (E4) again, we get

‖(ð(=)) (ς2)− (ð(=)) (ς1) ‖

≤ ϕ0N (1 + (ξ∗)ρ)

Γ(σ + 1)
(ςσ2 − ςσ1 ) +

ασ−Υ+1ϕ0N (1 + (ξ∗)ρ)

(Υ− 1)!Γ(σ −Υ + 2)

(
ς2
2 − ς2

1

)
+
∥∥=1

0

∥∥ (ς2 − ς1) +

∥∥=2
0

∥∥
2!

(
ς2
2 − ς2

1

)
+ · · ·+

∥∥∥=Υ−2
0

∥∥∥
(Υ− 2)!

(
ςΥ−2
2 − ςΥ−2

1

)
+
‖=α‖

(Υ− 1)!

(
ςΥ−1
2 − ςΥ−1

1

)
−→ 0 as ς2 → ς1.

Therefore ð is equicontinuous.
Let’s now {=Υ} ,Υ = 1, 2, · · · be a sequence on Bξ∗ , and

(ð(=)Υ) (ς) = (ð1=Υ) (ς) + (ð2=Υ) (ς) + (ð3=) (ς), ς ∈ I,

where

(ð1=Υ) (ς) =
1

Γ(σ)

∫ ς

0
(ς − ℘)σ−1< (℘,=Υ(℘), (Λ=Υ)(℘), (ϑ=Υ)(℘)) d℘, ς ∈ I,

(ð2=Υ) (ς) = − ςΥ−1

(Υ− 1)!Γ(σ −Υ + 1)

∫ α

0
(α− ℘)σ−Υ

×< (℘,=Υ(℘), (Λ=Υ)(℘), (ϑ=Υ)(℘)) d℘, ς ∈ I,

(ð3=) (ς) = =0 + =1
0ς +

=2
0

2!
ς2 + · · ·+ =Υ−2

0

(Υ− 2)!
ςΥ−2 +

=α
(Υ− 1)!

ςΥ−1, ς ∈ I.
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From (E5), we have that conςK1 is compact. For all ς∗ ∈ I, we have

(ð1=Υ) (ς∗) =
1

Γ(σ)
lim
k→∞

k∑
j=1

ς∗

k

(
ς∗ − it∗

k

)σ−1

×<
(
it∗

k
,=Υ

(
it∗

k

)
, (Λ=Υ)

(
it∗

k

)
, (ϑ=Υ)

(
it∗

k

))
=
=∗

Γ(σ)
ωΥ1,

where

ωΥ1 = lim
k→∞

k∑
j=1

1

k

(
ς∗ − it∗

k

)σ−1

f

(
it∗

k
,=Υ

(
it∗

k

)
, (Λ=Υ)

(
it∗

k

)
, (ϑ=Υ)

(
it∗

k

))
.

Since conςK1 is convex and compact, we know that ωΥ1 ∈ conςK1. Hence,
the set {(ð1=Υ) (ς∗)} is relatively compact, for any ς∗ ∈ I. From Ascoli-
Arzela theorem, every {(ð1=Υ) (ς)} contains a uniformly convergent subse-
quence {(ð1=Υk) (ς)} , k = 1, 2, · · · on I. Thus, the set {ð1= : = ∈ Bξ∗} is
relatively compact.

Set(
ð2=Υ

)
(ς) = − ςΥ−1

(Υ− 1)!Γ(σ −Υ + 1)

×
∫ ς

0
(ς − ℘)σ−Υ< (℘,=Υ(℘), (Λ=Υ) (℘), (ϑ=Υ) (℘)) d℘, ς ∈ I.

Then, for any ς∗ ∈ I,

(
ð2=Υ

)
(ς∗) =− (ς∗)Υ−1

(Υ− 1)!Γ(σ −Υ + 1)
lim
k→∞

k∑
j=1

ς∗

k

(
ς∗ − it∗

k

)σ−Υ

×<
(
it∗

k
,=Υ

(
it∗

k

)
, (Λ=Υ)

(
it∗

k

)
, (ϑ=Υ)

(
it∗

k

))
=− (ς∗)Υ

(Υ− 1)!Γ(σ −Υ + 1)
ωΥ2,

where

ωΥ2 = lim
k→∞

k∑
j=1

1

k

(
ς∗ − it∗

k

)σ−Υ

×<
(
it∗

k
,=Υ

(
it∗

k

)
, (Λ=Υ)

(
it∗

k

)
, (ϑ=Υ)

(
it∗

k

))
.
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Since conςK2 is compact and convex, we have that ωΥ2 ∈ conv K2. Hence,
the set

{(
ð2=Υ

)
(ς∗)

}
is relatively compact for all ς∗ ∈ I. From Ascoli-Arzela

theorem, every
{(

ð2=Υ

)
(ς)
}

contains a uniformly convergent subsequence{(
ð̄2=Υk

)
(ς)
}
, k = 1, 2, · · · on I. Particularly, {(ð2=Υ) (ς)} contains a uni-

formly convergent subsequence {(ð2=Υk) (ς)} , k = 1, 2, · · · on I. Then, the
set {ð2= : = ∈ Bξ∗} is relatively compact.

Clearly, the set {ð3= : = ∈ Bξ∗} is relatively compact. Consequently, the
set {ð(=) : = ∈ Bξ∗} is relatively compact. As a result of Step 1-3, we get
that ð is continuous and then completely continuous.

Step 4. A priori bounds.
Now, demonstrating that the set

E(ð) =
{
= ∈ C(I, {) : = = ρ∗ð(=), for some ρ∗ ∈ [0, 1]

}
is bounded. Let = ∈ E(ð). Then = = ρ∗ð(=) for some ρ∗ ∈ [0, 1]. Hence, for
all ς ∈ I, we get

=(ς) = ρ∗
(

1

Γ(σ)

∫ ς

0
(ς − ℘)σ−1< (℘,=(℘), (Λ=) (℘), (ϑ=) (℘)) d℘

− ςΥ−1

(Υ− 1)!Γ(σ −Υ + 1)

∫ α

0
(α−℘)σ−Υ<(℘,=(℘), (Λ=) (℘), (ϑ=) (℘))d℘

+=0 + =1
0ς +

=2
0

2!
ς2 + · · ·+ =Υ−2

0

(Υ− 2)!
ςΥ−2 +

=α
(Υ− 1)!

ςΥ−1

)
.

For all ς ∈ I, we get

‖=(ς)‖ ≤‖(ð(=))(ς)‖

≤ ϕ0Nα
σ

Γ(σ + 1)
+

ϕ0Nα
σ

(Υ− 1)!Γ(σ −Υ + 1)
+ ‖=0‖+

∥∥=1
0

∥∥α
+

∥∥=2
0

∥∥
2!

α2 + · · ·+

∥∥∥=Υ−2
0

∥∥∥
(Υ− 2)!

αΥ−2 +
‖=α‖

(Υ− 1)!
αΥ−1

+
ϕ0N

Γ(σ)

∫ ς

0
(ς − ℘)σ−1‖=(℘)‖ρd℘

+
ϕ0Nα

Υ−1

(Υ− 1)!Γ(σ −Υ + 1)

∫ α

0
(α− ℘)σ−Υ‖=(℘)‖ρd℘.

From Lemma 2.9 in [10], there exists M∗ > 0 such that ‖=(ς)‖ ≤ M∗, ς ∈ I.
Then for all ς ∈ I, we get ‖=‖∞ ≤M∗.

By using Schaefer’s fixed point theorem to demonstrate that ð has a fixed
point that is a solution of the FV-FIDE (1.1). �
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4. An example

In this section, we give one instances to illustrate how useful our key findings
are.

Example 4.1. Let’s think about the FBVPs listed below:

cDσ=(ς) =
e−ς |=(ς)|

(1 + keς) (1 + |=(ς)|)
+

∫ ς

0

e−ς

16
℘
|=(℘)|

1 + |=(℘)|
d℘

+

∫ α

0

e−(ς+℘)

16

|=(℘)|
1 + |=(℘)|

d℘,

ς ∈ I = [0, α], σ ∈ (3, 4), k > 0,

=′(0) = 0, =′′(0) = 0, =′′′(α) = 0,

=(0) = =(1) = 0 ς > 0,= > 0.

(4.1)

Set

<(ς) =
e−ςς

(1 + keς) (1 + ς)
, ς ∈ I1 × [0,∞), k(ς) =

e−ς

16
℘.

Let =1,=2 ∈ [0,∞) and ς ∈ I1. Then, we get

|< (ς,=1,Λ=1, ϑ=1)−< (ς,=2,Λ=2, ϑ=2)| ≤ 9e−ς

16
|=1 −=2| .

Naturally, for all = ∈ [0,∞) and each ς ∈ I1,

|<(ς,=,Λ=, ϑ=)| ≤ 9e−ς

16
.

For ς ∈ I1, ζ ∈ (0, σ − 3), let m1(ς) = m2(ς) = m3(ς) = h(ς) = e−ς

32 ∈
L

1
ζ (I1,R), M =

∥∥∥9e−ς

16

∥∥∥
L

1
ζ

(I1,R) . Selecting an appropriate α ≥ 1 and big enough

k > 0 and an appropriate σ ∈ (3, 4) and ζ ∈ (0, σ − 3). Using the following
inequality as a starting point

Ωσ,α =
M

Γ(σ)

ασ−ζ(
σ−ζ
1−ζ

)1−ζ +
M

3!Γ(σ − 3)

ασ−ζ(
σ−ζ−2

1−ζ

)1−ζ < 1,

Clearly, Theorem 3.1’s presumptions are all true. Our conclusions can be
utilized to address the problem with (4.1).
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