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1. Introduction and preliminaries

The fixed point theorem is fundamental to many well-known mathematical
theories and is used in many contexts. After Banach’s [5] fundamental result,
commonly referred to as it Banach’s contraction mapping principle, “the field
of fixed point theory saw a significant uptick in progress”. The following is a
correct statement of this result.

Theorem 1.1. ([5]) Let (X, d) be a complete metric space and Q : X → X be
a map satisfying

d(Q(µ), Q(ν)) ≤ β d(µ, ν), for all µ, ν ∈ X, (1.1)

where 0 < β < 1 is a constant. Then
(1) Q has a unique fixed point p in X;
(2) The Picard iteration {µn}∞n=0 defined by

µn+1 = Qµn, n = 0, 1, 2, . . . (1.2)

converges to p, for any µ0 ∈ X.

Remark 1.2. (i) A self-map satisfying (1) and (2) is said to be a Picard
operator (see, [25, 26]).

(ii) Inequality (1.1) also implies the continuity of Q.

The existence and uniqueness of a solution to an operator equation Qµ = µ
can be proven by applying Banach’s contraction mapping principle. In light of
these advancements, Bhashkar and Lakshmikantham [8] introduced the con-
cept of coupled fixed point of a mapping F : X ×X → X and explored some
coupled fixed point theorems in partially ordered complete metric spaces.
They also presented the first proof of the mixed monotone property and a
classical proof of a fixed point for a mapping satisfying that property. An asso-
ciated first order differential equation with a periodic boundary value problem
was investigated for its existence and uniqueness.

Some coupled fixed point theorems in metric spaces were later proven by
Ciric and Lakshmikantham [7], Sabetghadam et al. [27] and Olaleru et al. [23].
When dealing with weakly compatible mappings in the context of cone metric
spaces, Abbas et al. [1] established common coupled fixed point results. Com-
mon coupled fixed point results for generalized nonlinear contraction mappings
with mixed monotone property in partially ordered metric spaces were proven
by Kim and Chandok [12] (also see [9], [15], [16], [22], [20], [21], [28], [29],
[30]), among other related works.

Aydi [3] proved some coupled fixed point theorems in partial metric spaces
in 2011. Recently, in the context of partial metric spaces, Kim et al. [13]
proved some general fixed point theorems for weak compatible mappings.
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Matthews [18, 19] introduced the concept of partial metric space (PMS) to
the field of denotational semantics of data flow networks. Model building in
the theory of computation relies heavily on partial metric spaces (for examples,
see [10], [23], and others). When it Matthews introduced the concept of partial
metric space, he proved a version of the Banach fixed point theorem [5] that
applied to this new setting. In the PMS, the distance between any two points,
denoted by d(µ, µ), need not be zero. For more information, (see [2], [17],
[24]).

We will need some fundamental theorems, lemmas, and supplementary re-
sults in partial metric spaces for the continuation.

Definition 1.3. ([19]) Let X be a nonempty set and p : X × X → R+ be a
self-mapping of X such that for all µ, ν, ξ ∈ X the followings are satisfied:

(P1) µ = ν ⇔ p(µ, µ) = p(µ, ν) = p(ν, ν),
(P2) p(µ, µ) ≤ p(µ, ν),
(P3) p(µ, ν) = p(ν, µ),
(P4) p(µ, ν) ≤ p(µ, ξ) + p(ξ, ν)− p(ξ, ξ).

Then p is called partial metric on X and the pair (X, p) is called partial metric
space (in short, PMS).

Remark 1.4. It is clear that if p(µ, ν) = 0, then from (P1), (P2), and (P3),
µ = ν. But if µ = ν, p(µ, ν) may not be 0.

If p is a partial metric on X, then the function ps : X ×X → R+ given by

ps(µ, ν) = 2p(µ, ν)− p(µ, µ)− p(ν, ν) (1.3)

is a metric on X.

Example 1.5. ([4]) Let X = R+, where R+ = [0,+∞) and p : X ×X → R+

be given by p(µ, ν) = max{µ, ν} for all µ, ν ∈ R+. Then (R+, p) is a partial
metric space.

Example 1.6. ([4]) Let I denote the set of all intervals [a1, a2] for any real
numbers a1 ≤ a2. Let p : I × I → [0,∞) be a function such that

p
(
[a1, a2], [b1, b2]

)
= max{a2, b2} −min{a1, b1}.

Then (I, p) is a partial metric space.

Example 1.7. ([6]) Let X = R and p : X ×X → R+ be given by p(µ, ν) =

emax{µ,ν} for all µ, ν ∈ R. Then (X, p) is a partial metric space.

Numerous authors have extensively studied the various applications of this
space (see [14], [31] for details). Note also that each partial metric p on
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X generates a T0 topology τp on X, whose base is a family of open p-balls
{Bp(µ, ε) : µ ∈ X, ε > 0}, where

Bp(µ, ε) = {ν ∈ X : p(µ, ν) < p(µ, µ) + ε}
for all µ ∈ X and ε > 0. Similarly, closed p-ball is defined as

Bp[µ, ε] = {ν ∈ X : p(µ, ν) ≤ p(µ, µ) + ε}
for all µ ∈ X and ε > 0.

Definition 1.8. ([18]) Let (X, p) be a partial metric space. Then

(i) a sequence {sn} in (X, p) is said to be convergent to a point s ∈ X if
and only if p(s, s) = limn→∞ p(sn, s);

(ii) a sequence {sn} is called a Cauchy sequence if limm,n→∞ p(sm, sn)
exists and is finite;

(iii) (X, p) is said to be complete if every Cauchy sequence {sn} in X
converges to a point s ∈ X with respect to τp. Furthermore,

lim
m,n→∞

p(sm, sn) = lim
n→∞

p(sn, s) = p(s, s);

(iv) a mapping F : X → X is said to be continuous at s0 ∈ X if for every
ε > 0, there exists a > 0 such that F

(
Bp(s0, a)

)
⊂ Bp

(
F (s0), ε

)
.

Lemma 1.9. ([3, 18, 19]) Let (X, p) be a partial metric space. Then

(a) a sequence {sn} in (X, p) is a Cauchy sequence if and only if it is a
Cauchy sequence in the metric space (X, ps),

(b) a partial metric space (X, p) is complete if and only if the metric space
(X, ps) is complete, furthermore, limn→∞ p

s(sn, s) = 0 if and only if

p(s, s) = lim
n→∞

p(sn, s) = lim
n,m→∞

p(sn, sm). (1.4)

Lemma 1.10. ([11]) Let (X, p) be a partial metric space.

(1) If for all µ, ν ∈ X, p(µ, ν) = 0, then µ = ν.
(2) If µ 6= ν, then p(µ, ν) > 0.

Definition 1.11. ([3]) An element (µ, ν) ∈ X × X is said to be a coupled
fixed point of the mapping F : X ×X → X if F (µ, ν) = µ and F (ν, µ) = ν.

Example 1.12. Let X = [0,+∞) and F : X ×X → X defined by F (µ, ν) =
µ+ν
6 for all µ, ν ∈ X. One can easily see that F has a unique coupled fixed

point (0, 0).

Example 1.13. Let X = [0,+∞) and F : X×X → X be defined by F (µ, ν) =
µ+ν
2 for all µ, ν ∈ X. Then we see that F has two coupled fixed point (0, 0)

and (1, 1), that is, the coupled fixed point is not unique.
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Definition 1.14. ([1],[12]) An element (µ, ν) ∈ X ×X is called

(1) a coupled coincidence point of mappings F : X×X → X and A : X →
X if A(µ) = F (µ, ν) and A(ν) = F (ν, µ), and (Aµ,Aν) is called a
coupled point of coincidence;

(2) a common coupled fixed point of mappings F : X × X → X and
A : X → X if µ = A(µ) = F (µ, ν) and ν = A(ν) = F (ν, µ).

Definition 1.15. ([1]) The mappings F : X × X → X and A : X → X
are called weakly compatible if A(F (µ, ν)) = F (Aµ,Aν) and A(F (ν, µ)) =
F (Aν,Aµ) for all µ, ν ∈ X, whenever A(µ) = F (µ, ν) and A(ν) = F (ν, µ).

Example 1.16. Let X = [0, 3] endowed with p(µ, ν) = max{µ, ν} for all
µ, ν ∈ X. Define F : X ×X → X and A : X → X by

F (µ, ν) =

{
µ+ ν, if µ, ν ∈ [0, 1),

3, otherwise,

for all µ, ν ∈ X and

A(µ) =

{
µ, if µ ∈ [0, 1),
3, if µ ∈ [1, 3],

for all µ, ν ∈ X. Then for any µ, ν ∈ [1, 3],

F (Aµ,Aν) = F (3, 3) = 3 = A(F (µ, ν)) = A(3) = 3.

Similarly, we have

F (Aν,Aµ) = F (3, 3) = 3 = A(F (ν, µ)) = A(3) = 3.

Thus,

F (Aµ,Aν) = A(F (µ, ν)) and F (Aν,Aµ) = A(F (ν, µ)).

This shows that the mappings F and A are weakly compatible on [0, 3].

Example 1.17. LetX = R endowed with the usual metric p(µ, ν) = max{µ, ν}
for all µ, ν ∈ X. Define F : X ×X → X and A : X → X by F (µ, ν) = µ + ν
and A(µ) = µ2 for all µ, ν ∈ X. Then F and A are not weakly compatible
maps on R, since

F (Aµ,Aν) = F (µ2, ν2) = µ2 + ν2, but A(F (µ, ν)) = A(µ+ ν) = (µ+ ν)2.

Therefore,

F (Aµ,Aν) 6= A(F (µ, ν)).

Hence the mappings F and A are not weakly compatible on R.

Sabetghadam et al. [27] obtained the following result in cone metric space.
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Theorem 1.18. Let (X, d) be a complete cone metric space. Suppose that the
mapping F : X × X → X satisfies the following contractive condition for all
µ, ν, u, v ∈ X

d(F (µ, ν), F (u, v)) ≤ k1d(µ, u) + k2d(ν, v), (1.5)

where k1, k2 are nonnegative constants with k1 +k2 < 1. Then F has a unique
coupled fixed point.

Recently, Aydi [3] obtained the following results in partial metric space.

Theorem 1.19. Let (X, p) be a complete partial metric space. Suppose that
the mapping F : X ×X → X satisfies one of the following contractive condi-
tions (Γ1), (Γ2), (Γ3):

(Γ1) for all µ, ν, u, v ∈ X and nonnegative constants k1, k2 with k1 +k2 < 1,

p(F (µ, ν), F (u, v)) ≤ k1p(µ, u) + k2p(ν, v), (1.6)

(Γ2) for all µ, ν, u, v ∈ X and nonnegative constants k1, k2 with k1 +k2 < 1,

p(F (µ, ν), F (u, v)) ≤ k1p(F (µ, ν), µ) + k2p(F (u, v), u), (1.7)

(Γ3) for all µ, ν, u, v ∈ X and nonnegative constants k1, k2 with k1+2k2 < 1,

p(F (µ, ν), F (u, v)) ≤ k1p(F (µ, ν), u) + k2p(F (u, v), µ). (1.8)

Then F has a unique coupled fixed point.

Motivated by [3, 13] and others, the purpose of this paper is to establish
coupled fixed point and common coupled fixed point theorems for contractive
type conditions in the context of partial metric spaces utilizing the control
function. Our findings extend and generalize a number of previously published
findings (see, for example, [3, 13, 27] and numerous others).

2. Main results

In this section, we will demonstrate unique coupled fixed point and common
coupled fixed point theorems for partial metric spaces. We shall define the
control function Ψ as follows:

Definition 2.1. Let Ψ be the set of functions ψ : [0,∞) → [0,∞) satisfying
the following conditions:

(Ψ1) ψ is continuous;
(Ψ2) ψ(t) < t for all t > 0.

Obviously, if ψ ∈ Ψ, then ψ(0) = 0 and ψ(t) ≤ t for all t ≥ 0.
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Theorem 2.2. Let (X, p) be a complete partial metric space. Suppose that
the mapping F : X ×X → X satisfying the following contractive condition for
all µ, ν, u, v ∈ X

p(F (µ, ν), F (u, v)) ≤ ψ
(
M(µ, ν, u, v)

)
, (2.1)

where

M(µ, ν, u, v) = a1 p(µ, u) + a2 [p(F (µ, ν), µ) + p(F (u, v), u)]

+a3 [p(F (µ, ν), u) + p(F (u, v), µ)]

+a4
[1 + p(F (u, v), u)]p(F (µ, ν), µ)

1 + p(F (µ, ν), u)
, (2.2)

a1, a2, a3, a4 are nonnegative constants with a1 + 2a2 + 2a3 + a4 < 1 and ψ is
defined as in Definition 2.1. Then F has a unique coupled fixed point.

Proof. Choose µ0, ν0 ∈ X. Set µ1 = F (µ0, ν0) and ν1 = F (ν0, µ0). Repeating
this process, we obtain two sequences {µn} and {νn} in X such that µn+1 =
F (µn, νn) and νn+1 = F (νn, µn). Then, from equations (2.1), (2.2) and using
(P2), (P3), (P4), we have

p(µn, µn+1) = p(F (µn−1, νn−1), F (µn, νn))

≤ ψ
(
M(µn−1, νn−1, µn, νn)

)
, (2.3)

where

M(µn−1, νn−1, µn, νn) = a1 p(µn−1, µn) + a2 [p(F (µn−1, νn−1), µn−1)

+ p((F (µn, νn), µn)]

+ a3 [p(F (µn−1, νn−1), µn) + p(F (µn, νn), µn−1)]

+ a4
[1 + p(F (µn, νn), µn)]p(F (µn−1, νn−1), µn−1)

1 + p(F (µn−1, νn−1), µn)

= a1 p(µn−1, µn) + a2 [p(µn, µn−1) + p(µn+1, µn)]

+ a3 [p(µn, µn) + p(µn+1, µn−1)]

+ a4
[1 + p(µn+1, µn)]p(µn, µn−1)

1 + p(µn, µn)

≤ a1 p(µn−1, µn) + a2 [p(µn, µn−1) + p(µn+1, µn)]

+ a3 [p(µn, µn)+p(µn+1, µn)+p(µn, µn−1)−p(µn, µn)]

+ a4
[1 + p(µn+1, µn)]p(µn, µn−1)

1 + p(µn, µn+1)

= (a1 + a2 + a3 + a4) p(µn−1, µn)

+ (a2 + a3) p(µn, µn+1). (2.4)
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From equations (2.3) and (2.4), we obtain

p(µn, µn+1) ≤ ψ
(

(a1 + a2 + a3 + a4) p(µn−1, µn)

+ (a2 + a3) p(µn, µn+1)
)
. (2.5)

Using the property of ψ in the above equation, we get

p(µn, µn+1) ≤ (a1 + a2 + a3 + a4) p(µn−1, µn)

+ (a2 + a3) p(µn, µn+1). (2.6)

Similarly, we have

p(νn, νn+1) ≤ (a1 + a2 + a3 + a4) p(νn−1, νn)

+ (a2 + a3) p(νn, νn+1). (2.7)

Set

ζn = p(µn, µn+1), ωn = p(νn, νn+1) (2.8)

and

λn = ζn + ωn = p(µn, µn+1) + p(νn, νn+1). (2.9)

From equations (2.5) - (2.9), we obtain

λn ≤ (a1 + a2 + a3 + a4)λn−1 + (a2 + a3)λn.

This implies that

λn ≤
(a1 + a2 + a3 + a4

1− a2 − a3

)
λn−1

= δ λn−1, (2.10)

where δ =
(
a1+a2+a3+a4

1−a2−a3

)
< 1, since a1 + 2a2 + 2a3 + a4 < 1. Then for each

n ∈ N, we have

λn ≤ δλn−1 ≤ δ2λn−2 ≤ · · · ≤ δnλ0. (2.11)

If λ0 = 0, then p(µ0, µ1) + p(ν0, ν1) = 0. Hence, from Remark 1.4, we get
µ0 = µ1 = F (µ0, ν0) and ν0 = ν1 = F (ν0, µ0), means that (µ0, ν0) is a coupled
fixed point of F .

Now, we assume that λ0 > 0. For each n ≥ m, where n,m ∈ N, we have,
by using condition (P4)

p(µn, µm) ≤ p(µn, µn−1) + p(µn−1, µn−2) + · · ·+ p(µm+1, µm)

−p(µn−1, µn−1)− p(µn−2, µn−2)− · · · − p(µm+1, µm+1)

≤ p(µn, µn−1) + p(µn−1, µn−2) + · · ·+ p(µm+1, µm). (2.12)
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Similarly, we have

p(νn, νm) ≤ p(νn, νn−1) + p(νn−1, νn−2) + · · ·+ p(νm+1, νm)

−p(νn−1, νn−1)− p(νn−2, νn−2)− · · · − p(νm+1, νm+1)

≤ p(νn, νn−1) + p(νn−1, νn−2) + · · ·+ p(νm+1, νm). (2.13)

Thus,

p(µn, µm) + p(νn, νm) ≤ λn−1 + λn−2 + · · ·+ λm

≤ (δn−1 + δn−2 + · · ·+ δm)λ0

≤
( δm

1− δ

)
λ0. (2.14)

By definition of metric ps, we have ps(µ, ν) ≤ 2p(µ, ν), therefore for any n ≥ m

ps(µn, µm) + ps(νn, νm) ≤ 2p(µn, µm) + 2p(νn, νm)

≤
( 2δm

1− δ

)
λ0, (2.15)

which implies that {µn} and {νn} are Cauchy sequences in (X, ps) because
0 ≤ δ < 1, where δ = a1 + 2a2 + 2a3 + a4 < 1. Since the partial metric space
(X, p) is complete, by Lemma 1.9, the metric space (X, ps) is complete, so
there exist g, h ∈ X such that

lim
n→∞

ps(µn, g) = lim
n→∞

ps(νn, h) = 0. (2.16)

From Lemma 1.9, we obtain

p(g, g) = lim
n→∞

p(µn, g) = lim
n→∞

p(µn, µn) (2.17)

and

p(h, h) = lim
n→∞

p(νn, h) = lim
n→∞

p(νn, νn). (2.18)

But, from condition (P2) and equation (2.11), we have

p(µn, µn) ≤ p(µn, µn+1) ≤ λn ≤ δnλ0 (2.19)

and since 0 ≤ δ < 1, hence letting n → ∞, we get limn→∞ p(µn, µn) = 0. It
follows that

p(g, g) = lim
n→∞

p(µn, g) = lim
n→∞

p(µn, µn) = 0. (2.20)

Similarly, we obtain

p(h, h) = lim
n→∞

p(νn, h) = lim
n→∞

p(νn, νn) = 0. (2.21)
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Now, using equations (2.1), (2.2), the conditions (P3) and (P4), we have

p(F (g, h), g) ≤ p(F (g, h), µn+1) + p(µn+1, g)− p(µn+1, µn+1)

≤ p(F (g, h), µn+1) + p(µn+1, g)

= p(F (g, h), F (µn, νn)) + p(µn+1, g)

= p(F (µn, νn), F (g, h)) + p(µn+1, g)

≤ ψ
(
M(µn, νn, g, h)

)
+ p(µn+1, g), (2.22)

where

M(µn, νn, g, h) = a1 p(µn, g) + a2 [p(F (µn, νn), µn)

+p((F (g, h), g)]

+a3 [p(F (µn, νn), g) + p(F (g, h), µn)]

+a4
[1 + p(F (g, h), g)]p(F (µn, νn), µn)

1 + p(F (µn, νn), g)

= a1 p(µn, g) + a2 [p(µn+1, µn)

+p((F (g, h), g)]

+a3 [p(µn+1, g) + p(F (g, h), µn)]

+a4
[1 + p(F (g, h), g)]p(µn+1, µn)

1 + p(µn+1, g)
. (2.23)

From equations (2.22)-(2.23) and using the property of ψ, we obtain

p(F (g, h), g) ≤ ψ
(
a1 p(µn, g) + a2 [p(µn+1, µn) + p((F (g, h), g)]

+a3 [p(µn+1, g) + p(F (g, h), µn)]

+a4
[1 + p(F (g, h), g)]p(µn+1, µn)

1 + p(µn+1, g)

)
+p(µn+1, g)

≤ a1 p(µn, g) + a2 [p(µn+1, µn)

+p(F (g, h), g)] + a3 [p(µn+1, g) + p(F (g, h), µn)]

+a4
[1 + p(F (g, h), g)]p(µn+1, µn)

1 + p(µn+1, g)

+p(µn+1, g). (2.24)

Passing to the limit as n → ∞ in equation (2.24) and using equation (2.20),
we obtain

p(F (g, h), g) ≤ (a2 + a3) p(F (g, h), g)

≤ (a1 + 2a2 + 2a3 + a4) p(F (g, h), g)

< p(F (g, h), g),
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which is a contradiction, since a1 + 2a2 + 2a3 + a4 < 1. Hence, we have
p(F (g, h), g) = 0, that is, F (g, h) = g. Similarly, we can show that F (h, g) = h.
This shows that (g, h) is a coupled fixed point of F .

Now, we show the uniqueness. Suppose that (g′, h′) is another coupled fixed
point of F such that (g, h) 6= (g′, h′), then from equation (2.1), (2.2) and using
(2.20), (2.21) and (P3), we have

p(g, g′) = p(F (g, h), F (g′, h′))

≤ ψ
(
M(g, h, g′, h′)

)
, (2.25)

where

M(g, h, g′, h′) = a1 p(g, g
′) + a2 [p(F (g, h), g) + p(F (g′, h′), g′)]

+a3 [p(F (g, h), g′) + p(F (g′, h′), g)]

+a4
[1 + p(F (g′, h′), g′)]p(F (g, h), g)

1 + p(F (g, h), g′)

= a1 p(g, g
′) + a2 [p(g, g) + p(g′, g′)]

+a3 [p(g, g′) + p(g′, g)]

+a4
[1 + p(g′, g′)]p(g, g)

1 + p(g, g′)

= (a1 + 2a3) p(g, g
′). (2.26)

From equations (2.25), (2.26) and using the property of ψ, we get

p(g, g′) ≤ ψ
(

(a1 + 2a3) p(g, g
′)
)

< (a1 + 2a3) p(g, g
′)

≤ (a1 + 2a2 + 2a3 + a4) p(g, g
′)

< p(g, g′),

which is a contradiction, since a1 + 2a2 + 2a3 + a4 < 1. Hence, we have
p(g, g′) = 0, that is, g = g′. By similar fashion, we can show that h = h′.
This shows that the coupled fixed point of F is unique. This completes the
proof. �

If we set ψ(t) = k t where 0 < k < 1, a1 = a3 = a4 = 0 and ka2 → l where
l ∈ (0, 12) in Theorem 1.19, then we have the following result.

Corollary 2.3. ([3]) Let (X, p) be a complete partial metric space. Suppose
that the mapping F : X×X → X satisfying the following contractive condition
for all µ, ν, u, v ∈ X

p(F (µ, ν), F (u, v)) ≤ l [p(F (µ, ν), µ) + p(F (u, v), u)], (2.27)

where l ∈ (0, 12) is a constant. Then F has a unique coupled fixed point.
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If we set ψ(t) = k t where 0 < k < 1, a1 = a2 = a4 = 0 and ka3 → m where
m ∈ (0, 12) in Theorem 1.19, then we have the following result.

Corollary 2.4. ([3]) Let (X, p) be a complete partial metric space. Suppose
that the mapping F : X×X → X satisfying the following contractive condition
for all µ, ν, u, v ∈ X,

p(F (µ, ν), F (u, v)) ≤ m [p(F (µ, ν), u) + p(F (u, v), µ)], (2.28)

where m ∈ (0, 12) is a constant. Then F has a unique coupled fixed point.

Remark 2.5. (1) Theorem 2.2 extends the results of t Aydi [3].
(2) Theorem 2.2 also extends the results of Sabetghadam et al. [27] from

cone metric space to the setting of partial metric space.

Example 2.6. Let X = [0,+∞) endowed with the usual partial metric p
defined by p : X ×X → [0,+∞) with p(µ, ν) = max{µ, ν}. The partial metric
space (X, p) is complete because (X, ps) is complete. Indeed, for any µ, ν ∈ X,

ps(µ, ν) = 2p(µ, ν)− p(µ, µ)− p(ν, ν)

= 2 max{µ, ν} − (µ+ ν) = |µ− ν|.
Thus, (X, ps) is the Euclidean metric space which is complete. Consider the
mapping F : X ×X → X defined by F (µ, ν) = µ+ν

6 . Now, for any µ, ν, u, v ∈
X, we have

p(F (µ, ν), F (u, v)) =
1

6
max{µ+ ν, u+ v}

≤ 1

6
[max{µ+ ν, u}+ max{u+ v, µ}]

=
1

6
[p(F (µ, ν), u) + p(F (u, v), µ)],

which is the contractive condition of Corollary 2.4 for m = 1/6 < 1/2. There-
fore, by Corollary 2.4, F has a unique coupled fixed point, which is (0, 0).

Note that if the mapping F : X ×X → X is given by F (µ, ν) = µ+ν
2 , then

F satisfies contractive condition of Corollary 2.4 for m = 1/2, that is,

p(F (µ, ν), F (u, v)) =
1

2
max{µ+ ν, u+ v}

≤ 1

2
[max{µ+ ν, u}+ max{u+ v, µ}]

=
1

2
[p(F (µ, ν), u) + p(F (u, v), µ)].

In this case (0, 0) and (1, 1) are both coupled fixed points of F , and hence,
the coupled fixed point of F is not unique. This shows that the condition
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m < 1/2 in Corollary 2.4, and hence k1 + 2k2 < 1 in Theorem 1.18 (Γ3) can
not be omitted in the statement of the aforesaid results.

Theorem 2.7. Let (X, p) be a complete partial metric space. Suppose that
the mappings F : X×X → X and A : X → X satisfy the following contractive
condition for all µ, ν, u, v ∈ X,

p(F (µ, ν), F (u, v)) ≤ q1 ψ
( [1 + p(F (µ, ν), Aµ)]p(F (u, v), Au)

1 + p(Aµ,Au)

)
+ q2 ψ

(
max

{
[p(Aµ,Au) + p(Aν,Av)],

[p(F (µ, ν), Aµ) + p(F (u, v), Au)],

[p(F (µ, ν), Au) + p(F (u, v), Aµ)]
})
, (2.29)

where q1, q2 are nonnegative constants with q1 + 2q2 < 1 and ψ is defined as
in Definition 2.1. If F (X × X) ⊆ A(X) and A(X) is a complete subset of
X, then F and A have a coupled coincidence point in X. Moreover, if F and
A are weakly compatible, then F and A have a unique common coupled fixed
point in X.

Proof. Since F (X×X) ⊆ A(X), for µ0, ν0 ∈ X, we can define Aµ1 = F (µ0, ν0)
and Aν1 = F (ν0, µ0). Repeating this process, we obtain two sequences {µn}
and {νn} in X such that Aµn+1 = F (µn, νn) and Aνn+1 = F (νn, µn). Then,
from equations (2.29) and using (P3), (P4), we have

p(Aµn, Aµn+1) = p(F (µn−1, νn−1), F (µn, νn))

≤ q1 ψ
( [1 + p(F (µn−1, νn−1), Aµn−1)]p(F (µn, νn), Aµn)

1 + p(Aµn−1, Aµn)

)
+q2 ψ

(
max

{
[p(Aµn−1, Aµn) + p(Aνn−1, Aνn)],

[p(F (µn−1, νn−1), Aµn−1) + p(F (µn, νn), Aµn)],

[p(F (µn−1, νn−1), Aµn) + p(F (µn, νn), Aµn−1)]
})

= q1 ψ
( [1 + p(Aµn, Aµn−1)]p(Aµn+1, Aµn)

1 + p(Aµn−1, Aµn)

)
+q2 ψ

(
max

{
[p(Aµn−1, Aµn) + p(Aνn−1, Aνn)],

[p(Aµn, Aµn−1) + p(Aµn+1, Aµn)],

[p(Aµn, Aµn) + p(Aµn+1, Aµn−1)]
})



572 H. K. Nashine, G. S. Saluja, G. V. V. J. Rao and W. H. Lim

≤ q1 ψ
(
p(Aµn, Aµn+1)

)
+q2 ψ

(
max

{
[p(Aµn−1, Aµn) + p(Aνn−1, Aνn)],

[p(Aµn−1, Aµn) + p(Aµn, Aµn+1)],

[p(Aµn, Aµn) + p(Aµn−1, Aµn)

+p(Aµn, Aµn+1)− p(Aµn, Aµn)]
})

= q1 ψ
(
p(Aµn, Aµn+1)

)
+q2 ψ

(
max

{
[p(Aµn−1, Aµn) + p(Aνn−1, Aνn)],

[p(Aµn−1, Aµn) + p(Aµn, Aµn+1)],

[p(Aµn−1, Aµn) + p(Aµn, Aµn+1)]
})
. (2.30)

Similarly, we have

p(Aνn, Aνn+1) = p(F (νn−1, µn−1), F (νn, µn))

≤ q1 ψ
(
p(Aνn, Aνn+1)

)
+q2 ψ

(
max

{
[p(Aνn−1, Aνn) + p(Aµn−1, Aµn)],

[p(Aνn−1, Aνn) + p(Aνn, Aνn+1)],

[p(Aνn−1, Aνn) + p(Aνn, Aνn+1)]
})
. (2.31)

Let

cn = p(Aµn, Aµn+1), dn = p(Aνn, Aνn+1), (2.32)

A1 = max
{

[p(Aµn−1, Aµn) + p(Aνn−1, Aνn)],

[p(Aµn−1, Aµn) + p(Aµn, Aµn+1)],

[p(Aµn−1, Aµn) + p(Aµn, Aµn+1)]
}

= max{cn−1 + dn−1, cn−1 + cn, cn−1 + cn} (2.33)

and

A2 = max
{

[p(Aνn−1, Aνn) + p(Aµn−1, Aµn)],

[p(Aνn−1, Aνn) + p(Aνn, Aνn+1)],

[p(Aνn−1, Aνn) + p(Aνn, Aνn+1)]
}

= max{dn−1 + cn−1, dn−1 + dn, dn−1 + dn}. (2.34)
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Again, we assume that

en = cn + dn = p(Aµn, Aµn+1) + p(Aνn, Aνn+1). (2.35)

Then from equations (2.30) - (2.35), we have

en ≤ q1 [ψ(cn) + ψ(dn)] + q2 [ψ(A1) + ψ(A2)]. (2.36)

Consider the following possible cases:

Case I. If A1 = cn−1+dn−1 and A2 = dn−1+cn−1, then from (2.36) and using
the property of ψ, we have

en ≤ q1 [ψ(cn) + ψ(dn)] + 2q2 ψ(cn−1 + dn−1)

≤ q1 [cn + dn] + 2q2 [cn−1 + dn−1]

= q1 en + 2q2 en−1,

that is,

en ≤
( 2q2

1− q1

)
en−1. (2.37)

Case II. If A1 = cn−1 + cn and A2 = dn−1 + dn, then from (2.36) and using
the property of ψ, we have

en ≤ q1 [ψ(cn) + ψ(dn)] + q2 [ψ(cn−1 + cn)

+ψ(dn−1 + dn)]

≤ q1 [cn + dn] + q2 [cn−1 + cn + dn + dn−1]

= q1 en + q2 [en−1 + en]

= (q1 + q2) en + q2 en−1,

that is,

en ≤
( q2

1− q1 − q2

)
en−1. (2.38)

Let

h = max
{ 2q2

1− q1
,

q2
1− q1 − q2

}
. (2.39)

Then h < 1, since q1 +2q2 < 1. Thus from equations (2.37) - (2.39), we obtain

en ≤ h en−1. (2.40)

Then for each n ∈ N, we have

en ≤ hen−1 ≤ h2en−2 ≤ · · · ≤ hne0. (2.41)

If e0 = 0, then p(Aµ0, Aµ1) + p(Aν0, Aν1) = 0. Hence, from Remark 1.4,
we get Aµ0 = Aµ1 = F (µ0, ν0) and Aν0 = Aν1 = F (ν0, µ0), meaning that
(Aµ0, Aν0) is a coupled fixed point of F and A.
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Now, we assume that e0 > 0. For each n ≥ m, where n,m ∈ N, we have,
by using condition (P4)

p(Aµn, Aµm) ≤ p(Aµn, Aµn−1) + p(Aµn−1, Aµn−2) + . . .

+p(Aµm+1, Aµm)− p(Aµn−1, Aµn−1)− p(Aµn−2, Aµn−2)
− · · · − p(Aµm+1, Aµm+1)

≤ p(Aµn, Aµn−1) + p(Aµn−1, Aµn−2) + . . .

+p(Aµm+1, Aµm). (2.42)

Similarly, we have

p(Aνn, Aνm) ≤ p(Aνn, Aνn−1) + p(Aνn−1, Aνn−2) + . . .

+p(Aνm+1, Aνm)− p(Aνn−1, Aνn−1)− p(Aνn−2, Aνn−2)
− · · · − p(Aνm+1, Aνm+1)

≤ p(Aνn, Aνn−1) + p(Aνn−1, Aνn−2) + . . .

+p(Aνm+1, Aνm). (2.43)

Thus,

p(Aµn, Aµm) + p(Aνn, Aνm) ≤ en−1 + en−2 + · · ·+ em

≤ (hn−1 + hn−2 + · · ·+ hm)e0

≤
( hm

1− h

)
e0. (2.44)

By definition of metric ps, we have ps(Aµ,Aν) ≤ 2p(Aµ,Aν), therefore for
any n ≥ m,

ps(Aµn, Aµm) + ps(Aνn, Aνm) ≤ 2p(Aµn, Aµm) + 2p(Aνn, Aνm)

≤
( 2hm

1− h

)
e0, (2.45)

which implies that {Aµn} and {Aνn} are Cauchy sequences in (X, ps) because
0 ≤ h < 1, where h = q1 + 2q2 < 1. Since the partial metric space (X, p) is
complete, by Lemma 1.9, the metric space (X, ps) is complete, so there exist
p1, p2 ∈ X such that

lim
n→∞

ps(Aµn, Ap1) = lim
n→∞

ps(Aνn, Ap2) = 0. (2.46)

From Lemma 1.9, we obtain

p(Ap1, Ap1) = lim
n→∞

p(Aµn, Ap1) = lim
n→∞

p(Aµn, Aµn) (2.47)

and

p(Ap2, Ap2) = lim
n→∞

p(Aνn, Ap2) = lim
n→∞

p(Aνn, Aνn). (2.48)
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But, from condition (P2) and equation (2.41), we have

p(Aµn, Aµn) ≤ p(Aµn, Aµn+1) ≤ en ≤ hne0, (2.49)

and since 0 ≤ h < 1, hence letting n → ∞, we get limn→∞ p(Aµn, Aµn) = 0.
It follows that

p(Ap1, Ap1) = lim
n→∞

p(Aµn, Ap1) = lim
n→∞

p(Aµn, Aµn) = 0. (2.50)

Similarly, we obtain

p(Ap2, Ap2) = lim
n→∞

p(Aνn, Ap2) = lim
n→∞

p(Aνn, Aνn) = 0. (2.51)

Therefore, using equation (2.29), the conditions (P3) and (P4), we have

p(F (p1, p2), Ap1) ≤ p(F (p1, p2), Aµn+1) + p(Aµn+1, Ap1)

−p(Aµn+1, Aµn+1)

≤ p(F (p1, p2), Aµn+1) + p(Aµn+1, Ap1)

= p(F (p1, p2), F (µn, νn)) + p(Aµn+1, Ap1)

= p(F (µn, νn), F (p1, p2)) + p(Aµn+1, Ap1)

≤ q1 ψ
( [1 + p(F (µn, νn), Aµn)]p(F (p1, p2), Ap1)

1 + p(Aµn, Ap1)

)
+q2 ψ

(
max

{
[p(Aµn, Ap1) + p(Aνn, Ap2)],

[p(F (µn, νn), Aµn) + p(F (p1, p2), Ap1)],

[p(F (µn, νn), Ap1) + p(F (p1, p2), Aµn)]
})

+p(Aµn+1, Ap1)

= q1 ψ
( [1 + p(Aµn+1, Aµn)]p(Ap1, Ap1)

1 + p(Aµn, Ap1)

)
+q2 ψ

(
max

{
[p(Aµn, Ap1) + p(Aνn, Ap2)],

[p(Aµn+1, Aµn) + p(Ap1, Ap1)],

[p(Aµn+1, Ap1) + p(Ap1, Aµn)]
})

+p(Aµn+1, Ap1). (2.52)

Letting n → ∞ in equation (2.52) and using equations (2.46), (2.50) and the
property of ψ, we obtain

p(F (p1, p2), Ap1) ≤ 0.

Hence, we have p(F (p1, p2), Ap1) = 0, that is, F (p1, p2) = Ap1. Since the pair
(F,A) is weakly compatible, so by weak compatibility of F and A, we have

A(F (p1, p2)) = F (Ap1, Ap2) and A(F (p2, p1)) = F (Ap2, Ap1).
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Hence (Ap1, Ap2) is a common coupled fixed point of F and A.
Now, we show the uniqueness of the common coupled fixed point of F and

A. Assume that (At1, At2) is another common coupled fixed point of F and
A with Ap1 6= At1 and Ap2 6= At2, that is, (Ap1, Ap2) 6= (At1, At2). Then
by using equations (2.29) and using equations (2.49), (2.50), (P3) and the
property of ψ, we have

p(Ap1, At1) = p(F (p1, p2), F (t1, t2))

≤ q1 ψ
( [1 + p(F (p1, p2), Ap1)]p(F (t1, t2), At1)

1 + p(Ap1, At1)

)
+q2 ψ

(
max

{
[p(Ap1, At1) + p(Ap2, At2)],

[p(F (p1, p2), Ap1) + p(F (t1, t2), At1)],

[p(F (p1, p2), At1) + p(F (t1, t2), Ap1)]
})

= q1 ψ
( [1 + p(Ap1, Ap1)]p(At1, At1)

1 + p(Ap1, At1)

)
+q2 ψ

(
max

{
[p(Ap1, At1) + p(Ap2, At2)],

[p(Ap1, Ap1) + p(At1, At1)],

[p(Ap1, At1) + p(At1, Ap1)]
})

= q2 ψ
(

max
{

[p(Ap1, At1) + p(Ap2, At2)], 0,

2p(Ap1, At1)
})
. (2.53)

Similarly, we obtain

p(Ap2, At2) ≤ q2 ψ
(

max
{

[p(Ap2, At2) + p(Ap1, At1)], 0,

2p(Ap2, At2)
})
. (2.54)

Let

N = p(Ap1, At1) + p(Ap2, At2), (2.55)

N1 = max
{

[p(Ap1, At1) + p(Ap2, At2)], 0, 2p(Ap1, At1)
}

(2.56)

and

N2 = max
{

[p(Ap2, At2) + p(Ap1, At1)], 0, 2p(Ap2, At2)
}
. (2.57)

Then from equations (2.53)-(2.57), we have

N ≤ q2 [ψ(N1) + ψ(N2)]. (2.58)
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Consider the following possible cases:

Case I0. If N1 = p(Ap1, At1) + p(Ap2, At2), N2 = p(Ap2, At2) + p(Ap1, At1),
then from (2.58) and using the property of ψ, we have

N ≤ 2q2 [ψ(p(Ap1, At1) + p(Ap2, At2))]

= 2q2 ψ(N)

≤ 2q2N < (q1 + 2q2)N

< N, (2.59)

which is a contradiction, since q1 + 2q2 < 1. Hence, we have N = 0, that is,
p(Ap1, At1) + p(Ap2, At2) = 0 and so Ap1 = At1 and Ap2 = At2.

Case II0. If N1 = 0 and N2 = 0, then from (2.58) and using the property of
ψ, we have

N ≤ q2 [ψ(0) + ψ(0)]

= q2.0 = 0,

and hence N = 0, that is, p(Ap1, At1) + p(Ap2, At2) = 0 and so Ap1 = At1
and Ap2 = At2.

Case III0. If N1 = 2p(Ap1, At1) and N2 = 2p(Ap2, At2), then from (2.58) and
using the property of ψ, we have

N ≤ q2 [2ψ(p(Ap1, At1)) + 2ψ(p(Ap2, At2))]

≤ 2q2[p(Ap1, At1) + p(Ap2, At2)]

≤ (q1 + 2q2)N < N,

which is a contradiction, since q1 + 2q2 < 1. Hence, we have N = 0, that is,
p(Ap1, At1) + p(Ap2, At2) = 0 and so Ap1 = At1 and Ap2 = At2. Thus in all
the above cases we get Ap1 = At1 and Ap2 = At2. Consequently, F and A
have a unique common coupled fixed point. This completes the proof. �

If we set q2 = 0 in Theorem 2.7, then we have the following result.

Corollary 2.8. Let (X, p) be a complete partial metric space. Suppose that
the mappings F : X×X → X and A : X → X satisfy the following contractive
condition for all µ, ν, u, v ∈ X

p(F (µ, ν), F (u, v)) ≤ q1 ψ
( [1 + p(F (µ, ν), Aµ)]p(F (u, v), Au)

1 + p(Aµ,Au)

)
,

where q1 ∈ (0, 1) is a constant and ψ is defined as in Definition 2.1. If F (X×
X) ⊆ A(X) and A(X) is a complete subset of X, then F and A have a coupled
coincidence point in X. Moreover, if F and A are weakly compatible, then F
and A have a unique common coupled fixed point in X.
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If we set q1 = 0 in Theorem 2.7, then we have the following result.

Corollary 2.9. Let (X, p) be a complete partial metric space. Suppose that
the mappings F : X×X → X and A : X → X satisfy the following contractive
condition for all µ, ν, u, v ∈ X

p(F (µ, ν), F (u, v)) ≤ q2 ψ
(

max
{

[p(Aµ,Au) + p(Aν,Av)],

[p(F (µ, ν), Aµ) + p(F (u, v), Au)],

[p(F (µ, ν), Au) + p(F (u, v), Aµ)]
})
,

where q2 ∈ (0, 12) is a constant and ψ is defined as in Definition 2.1. If
F (X×X) ⊆ A(X) and A(X) is a complete subset of X, then F and A have a
coupled coincidence point in X. Moreover, if F and A are weakly compatible,
then F and A have a unique common coupled fixed point in X.

Remark 2.10. (1) Theorem 2.7 is an extension and a generalization of the
results of Aydi [3].

(2) Theorem 2.7 also extends the results of Sabetghadam et al. [27] from
cone metric space to the setting of partial metric space.

(3) Theorem 2.7 is also an extension of the results of Kim et al. [13].

Example 2.11. Let X = [0,+∞) endowed with the usual partial metric p
defined by p : X ×X → [0,+∞) with p(µ, ν) = max{µ, ν}. The partial metric
space (X, p) is complete because (X, ps) is complete. Indeed, for any µ, ν ∈ X,

ps(µ, ν) = 2p(µ, ν)− p(µ, µ)− p(ν, ν)

= 2 max{µ, ν} − (µ+ ν) = |µ− ν|. (2.60)

Thus, (X, ps) is the Euclidean metric space which is complete. Consider the
mappings F : X ×X → X and A : X → X defined by

A(µ) =

 6µ, if µ ∈ [0, 1],

4µ, if µ ∈ (1,∞),

and

F (µ, ν) =


µ
6 + ν

6 , if µ ∈ [0, 1] and ν ∈ R,

µ
8 + ν

8 , if µ ∈ (1,∞) and ν ∈ R.

Clearly, F and A satisfies all the conditions of Theorem 2.7, by taking q1 = 2
5

and q2 = 1
6 with q1 + 2q2 < 1. Moreover (0, 0) is common coupled coincidence

point of F and A.
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3. Conclusion

In the context of partial metric spaces, we prove a unique coupled fixed
point theorem and a unique common coupled fixed point theorem, and we
provide some corollaries of the established results. In addition, we provide an
illustration to back up the result. Our findings generalize and expand upon a
number of previously published findings in the literature (such as those found
in [3, 13, 27], and many others).
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