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Abstract. In this study, the conformable fractional derivative(CFD) of order % in conjunc-

tion with the LC operator of orderρ is used to develop the model of the transmission of the

A(H1N1) influenza infection. A brand-new A(H1N1) influenza infection model is presented,

with a population split into four different compartments. Fixed point theorems were used

to prove the existence of the solutions and uniqueness of this model. The basic reproduction

number R0 was determined. The least and most sensitive variables that could alter R0 were

then determined using normalized forward sensitivity indices. Through numerical simula-

tions carried out with the aid of the Adams-Moulton approach, the study also investigated

the effects of numerous biological characteristics on the system. The findings demonstrated

that if % < 1 and ρ < 1 under the CFD, also the findings demonstrated that if % = 1 and

ρ = 1 under the CFD, the A(H1N1) influenza infection will not vanish.

1. Introduction

Fractional calculus has become a basic tool for modeling phenomena involv-
ing memory. However, due to the non-local nature of fractional derivatives,
the computations involved in solving fractional differential equations (FDEs)
are tedious and time-consuming [11, 12]. Developing numerical and analytical
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methods for solving nonlinear FDEs has been a subject of intense research at
present [13]. Across the span of human history, infectious diseases have con-
tinuously threatened the general health of individuals, persistently standing as
the primary cause of extensive suffering and mortality in developing nations.
The spread of infectious diseases is influenced by various factors, such as the
nature of the infectious agent, transmission routes, incubation and infectious
periods, as well as the susceptibility and immunity of individuals. The agents
responsible for infectious diseases demonstrate adaptability and possess adap-
tive characteristics, contributing to the emergence of novel infectious diseases
and the resurgence of previously known ones. Illustrative instances of recently
identified diseases include conditions like Lyme disease (discovered in 1975),
Legionnaire’s disease (1976), toxic shock syndrome (1978), hepatitis C (1989),
hepatitis E (1990), and Hantavirus (1993). The virus (HIV) responsible for
(AIDS) emerged in 1981 and has since become an important global sexually
transmitted disease. In addition, strains of tuberculosis, pneumonia, and gon-
orrhea resistant to antibiotics have developed. Simultaneously, there has been
a resurgence of illnesses such as malaria, dengue, and yellow fever, expand-
ing their geographical range into previously untouched places, mostly due to
changes in climatic patterns. Diseases like plague, cholera, and several hemor-
rhagic fevers, including but not limited to Bolivian, Ebola, Lassa, COVID-19,
and Marburg, persistently manifest themselves intermittently [1, 4, 23].

The emergence of the H1N1 strain, implicated in the ongoing worldwide
pandemic of swine-origin influenza, was first identified along the Mexico-
United States border in April 2009. Within a short span of 2 months, it
became the first pandemic of the 21st century [3].

H1N1 influenza known as swine flu is a subtype of influenza that may affect
both people and animals [16, 24]. The virus is a zoonotic disease that may
infect pigs, birds, horses, and other animals. Swine have been recognized as
crucial influenza virus mixing vessels, enabling reassortment among diverse
influenza virus strains due to their vulnerability to infection by both human
and avian influenza viruses [2, 10]. The virus is named for the two proteins
on its surface, hemagglutinin (H1) and neuraminidase (N1). Consequently,
there are 18 H1 subtypes and 11 N1 subtypes, with H1N1 and H3N2 being
endemic in humans [22]. H1N1 influenza is a respiratory virus with symptoms
comparable to the common cold, including fever, cough, sore throat, runny or
stuffy nose, muscular pains, and exhaustion [7, 16].

Before 2009, the identical triple-reassorted virus was discovered in pigs as
early as 1998, with occasional human infections [18]. The H1N1 2009 virus
(A/2009/H1N1) caused the first pandemic influenza of the new century, af-
fecting over 214 regions and killing over 18,449 people [20].
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In some cases, the H1N1 flu might result in more serious diseases, such as
pneumonia, bronchitis, and even death [9]. The H1N1 virus is transmitted
from person to person by droplets of air that form when a person with the
virus breathes or sneezes. These tiny particles may enter the lips or noses of
persons close to the infected person or be inhaled into the lungs [5].

Many mathematical models, consisting of fractional differential equations
and fractional differential operators, have emerged to describe the H1N1 virus,
control its spread, and understand its transmission mechanisms between peo-
ple. For example, Shahram Rezapour et al. [21] explore the SEIR epidemic
model, evaluate the stability of the disease-free equilibrium point, and research
the influence of the derivative order on the actions of the resultant functions.
Sina Etemad et al. [8] formulated a novel model of the A(H1N1)/09 influenza
virus using advanced operators known as the fractalfractional operators, which
have two fractal orders and fractional orders through power law-type kernels.

Khalil introduced a novel concept of the derivative called the ”CFD” that
seamlessly aligns with the classical derivative, exhibiting adherence to several
standard properties, including the chain rule. Furthermore, it proves valuable
in solving conformable differential equations. A CFD shares many character-
istics with a classical derivative and has been used to model several physical
and biological problems. The author used a mathematical operator called the
conformable derivative (CD), in the sense of the Liouville-Caputo operator, to
investigate measles infection [19].

In the current study, we investigate the SEIR epidemic model for the spread
of A(H1N1) influenza under the CFD in the Liouville-Caputo sense. We first
verify the existence and uniqueness of the model solution and then discuss the
fundamental characteristics of the model, such as the disease-free equilibrium
and basic reproduction number sensitivity. Additionally, the A(H1N1) model
with the conformable-Liouville-Caputo operator is numerically solved using
the Adams-Moulton technique, and the graphical effects of different param-
eters are shown for various values of the fractional order. This study aims
to investigate the behavior of the A(H1N1) influenza model under different %
values and to analyze the effect of different factors on the disease dynamics.
The primary contribution of this study is predicting the acutely infectious
and chronically infectious courses at different derivative orders and studying
the courses of the acutely infectious and chronically infectious at different val-
ues of the rate of contact between acutely infectious people and chronically
infectious.

This research paper is presented as follows: In Sec 2, we offer some funda-
mental topics related to fractional calculus. We provide the model structure
and its associated outcomes in Sec 3. In Sec 4, we will prove the existence
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and uniqueness of results using the Liouville-Caputo operator. In Sec 5, we
calculate disease-free equilibrium and R0. The sensitivity analysis of the R0

was discussed in Sec 6. Sec 7 shows an active numerical sketch for the H1N1
model solution by asymptomatic transporters.

2. Preliminaries

We give some definitions and their properties for our main results. Here are
some fundamental ideas that will be used in this study.

Definition 2.1. [17] Let ξ(t) is a differentiable and integrable function on R.
Then for t ∈ [r, b] and % > 0,

(1)

RLD%
r,tξ(t) =

1

Γ(n− %)

dn

dtn

∫ t

r
(t− s)n−%−1ξ(s)ds, (2.1)

is the left Riemann-Liouville (RL) fractional derivative of order % > 0,
(2)

RLD%
t,bξ(t) =

1

Γ(n− %)

dn

dtn

∫ b

t
(s− t)n−%−1ξ(s)ds, (2.2)

is the right (RL) fractional derivative of order % > 0

where Γ is the gamma function.

Definition 2.2. [17] The Liouville–Caputo (LC) fractional derivative of non
integer order % may be expressed as follows:

LCD%
r,tξ(t) =

1

Γ(n− %)

∫ t

r
(t− s)n−%−1 d

n

dsn
ξ(s)ds, % ∈ (n− 1, n], % > 0.

(2.3)

Definition 2.3. [15] The expression:

ρD%
r,tξ(t) = lim

τ→0

ξ(t+ τt1−%)− ξ(t)
τ

, (2.4)

where %, t > 0, is called CFD of order %.

The most crucial feature of CFD that links it with classical derivatives is as

rhoD%
r,tξ(t) = (t− r)1−% d

dt
ξ(t). (2.5)

Definition 2.4. [15] Let ξ(t) ∈ Cnr,b([r, b]), Re(ρ) ≥ 0 and n = dρe+ 1. Then
the fractional conformable derivative with Caputo is defined as:

ρ
cD

%
r,tξ(t) =ρ

k D
%
r,t[ξ(t)−

n−1∑
k=0

%
rTr,tξ(r)

k!%k
](t− r)%k](x). (2.6)
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Definition 2.5. [15] Let ξ(t) ∈ Cnr,b([r, b]), Re(ρ) ≥ 0 and n = dρe+ 1. Then
the fractional conformable derivative with Liouville-Caputo is defined as

ρ
cD

%
r,tξ(t) =

1

Γ(n− ρ)

∫ t

r
(
(t− r)% − (s− r)%

%
)n−ρ−1

Dn
r,t

(s− r)1−% ξ(s)ds

= cn−ρI%a,tξ(t)(c
nD%

r,tξ(t)). (2.7)

Definition 2.6. [15] Let ξ(t) ∈ Cnr,b([r, b]), Re(ρ) ≥ 0 and n = dρe+ 1. Then
the fractional conformable integral in the sense of Liouville-Caputo is defined
as

ρI %
r,tξ(t) =

1

Γ(ρ)

∫ t

r
(
(t− r)% − (s− r)%

%
)ρ−1 ξ(s)

(s− r)1−%ds. (2.8)

Lemma 2.7. [15] Let ξ(t) ∈ Cnr,b([r, b]), Re(ρ) ≥ 0 and n = dρe+ 1.

ρ
rI

%(ρrD
%ξ(t)) = ξ(t)−

n−1∑
k=0

k
rD

%ξ(r)(t− r)%k

%kΓ(k + 1)
. (2.9)

3. Formulation of the conformable A(H1N1) model

First, we will introduce the classical A(H1N1) model . The A(H1N1) model,
which was presented in [21], divides the total populationN (t) into four distinct
subpopulations: susceptible individuals S, individuals incubating the virus E,
infectious individuals I, and recovered individuals R. Furthermore, we denote
to birth rate by τ , while individuals exit the system due to mortality at a rate
denoted as ι. An individual in the class S migrates to the class E due to the
transmission of the A(H1N1) virus by individuals in the class I, facilitated
through effective interpersonal contacts occurring at a rate denoted by ν. In
conclusion, it is important to note that upon an individual’s recovery, they
develop enduring immunity.

The additional parameters of the model include the recovery rate µ from
the infection and the rate at which latent individuals become infected δ. The
A(H1N1) model, which is scaled to the population size, is considered without
any loss of generality and assumes a constant population size.
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dS

dt
= τνSIιS,

dE

dt
= νSI(ι+ δ)E,

dE

dt
= δE(ι+ µ)I, (3.1)

dR

dt
= µIιR.

We will provide model (3.1) in a CFD of order % with the LC operator of order
ρ. We suggest the below H1N1 infectious model:

ρD%
0,tS = τνSIιS,

ρD%
0,tE = νSI(ι+ δ)E,

ρD%
0,tI = δE(ι+ µ)I, (3.2)

ρD%
0,tR = µIιR,

where S(0) = S0 > 0, E(0) = E0 > 0, I(0) = I0 > 0,R(0) = R0 ≥ 0 are initial
conditions.

4. Existence and Uniqueness of Solution

The existence of the solution and its uniqueness with the non-integer con-
formable derivative order % regarding the LC operator of order ρ will be demon-
strated here for model (3.2).

Suppose the real-valued function Z(I) is continuous and contains the sup
norm property as a Banach space on I = [0, b] and P = Z(I)×Z(I)×Z(I)×Z(I)
with norm ‖(S, E, I, R)‖ = ‖S‖+‖E‖+‖I‖+‖R‖, ‖S‖ = supt∈I |S|, ‖E‖ =
supt∈I |E|, ‖I‖ = supt∈I |I|, ‖R‖ = supt∈I |R|.

Using the fractional integral operator on both sides of model (3.2), we get

S − S(0) =ρ I %
0,t[τνSIιS],

E − E(0) =ρ I %
0,t[νSI(ι+ δ)E],

I − I(0) =ρ I %
0,t[δE(ι+ µ)I], (4.1)

R− R(0) =ρ I %
0,t[µIιR],

by using Definition 2.5 which implies

S − S(0) =
1

Γ(ρ)

∫ t

r
(
(t− r)% − (s− r)%

%
)ρ−1 ξ1(ρ, s, S(s))

(s− r)1−% ds,
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E − E(0) =
1

Γ(ρ)

∫ t

r
(
(t− r)% − (s− r)%

%
)ρ−1 ξ2(ρ, s, E(s))

(s− r)1−% ds,

I − I(0) =
1

Γ(ρ)

∫ t

r
(
(t− r)% − (s− r)%

%
)ρ−1 ξ3(ρ, s, I(s))

(s− r)1−% ds, (4.2)

R− R(0) =
1

Γ(ρ)

∫ t

r
(
(t− r)% − (s− r)%

%
)ρ−1 ξ4(ρ, s,R(s))

(s− r)1−% ds,

where

ξ1(ρ, t, S) = τνSIιS,

ξ2(ρ, t, E) = νSI(ι+ δ)E,

ξ3(ρ, t, I) = δE(ι+ µ)I, (4.3)

ξ4(ρ, t,R) = µIιR.

The symbols ξ1, ξ2, ξ3, and ξ4 have to hold for the Lipschitz condition
only if S,E, I, and R possess an upper bound. Suppose that S and S∗ are
couple functions, we have

‖ξ1(ρ, t, S)− ξ1(ρ, t, S∗)‖ = ‖τνSIιS − (τ − νS∗I − ιS∗)‖,
‖ξ1(ρ, t, E)− ξ1(ρ, t, E∗)‖ = ‖νSI(ι+ δ)E − (νSI − (ι+ δ)E∗)‖,
‖ξ1(ρ, t, I)− ξ1(ρ, t, I∗)‖ = ‖δE(ι+ µ)I − (δE − (ι+ µ)I∗)‖, (4.4)

‖ξ1(ρ, t,R)− ξ1(ρ, t,R∗)‖ = ‖µImR− (µI − ιR∗)‖.

Now by taking ω1 as

ω1 = ‖νI + ι‖,
ω2 = ‖ι+ δ‖,
ω3 = ‖ι+ µ‖, (4.5)

ω4 = ‖ι‖.

Iontinuing in the same manner above, we get

‖ξ1(ρ, t, S)− ξ1(ρ, t, S∗)‖ ≤ ω1‖S − S∗‖,
‖ξ1(ρ, t, E)− ξ1(ρ, t, E∗)‖ ≤ ω2‖E − E∗‖,
‖ξ1(ρ, t, I)− ξ1(ρ, t, I∗)‖ ≤ ω3‖I − I∗‖, (4.6)

‖ξ1(ρ, t,R)− ξ1(ρ, t,R∗)‖ ≤ ω4‖R− R∗‖.

This means that the Lipschitz condition has been done for all four functions.



604 Hind Ali Ahmad Eid and Mohammed N Alkord

Now let us take the expressions in an iterative way. Indeed, (4.2) yields

Sn − S(0) =
1

Γ(ρ)

∫ t

r
(
(t− r)% − (s− r)%

%
)ρ−1 ξ1(ρ, s, Sn−1(s))

(s− r)1−% ds,

En − E(0) =
1

Γ(ρ)

∫ t

r
(
(t− r)% − (s− r)%

%
)ρ−1 ξ2(ρ, s, En−1(s))

(s− r)1−% ds,

In − I(0) =
1

Γ(ρ)

∫ t

r
(
(t− r)% − (s− r)%

%
)ρ−1 ξ3(ρ, s, In−1(s))

(s− r)1−% ds, (4.7)

Rn − R(0) =
1

Γ(ρ)

∫ t

r
(
(t− r)% − (s− r)%

%
)ρ−1 ξ4(ρ, s,Rn−1(s))

(s− r)1−% ds,

with S(0) = N1, E(0) = N2, I(0) = N3,R(0) = N4.
When the difference between the following terms is taken, we obtain

ΥS,n = Sn − Sn−1

=
1

Γ(ρ)

∫ t

r
(
(t− r)% − (s− r)%

%
)ρ−1 (ξ1(ρ, s, Sn−1(s))−ξ1(ρ, s, Sn−2(s)))

(s− r)1−% ds,

ΥE,n = En − En−1

=
1

Γ(ρ)

∫ t

r
(
(t− r)%−(s− r)%

%
)ρ−1 (ξ2(ρ, s, En−1(s))−ξ2(ρ, s, En−2(s)))

(s− r)1−% ds,

ΥI,n = In − In−1 (4.8)

=
1

Γ(ρ)

∫ t

r
(
(t− r)% − (s− r)%

%
)ρ−1 (ξ3(ρ, s, In−1(s))−ξ3(ρ, s, In−2(s)))

(s− r)1−% ds,

ΥR,n = Rn − Rn−1(0)

=
1

Γ(ρ)

∫ t

r
(
(t− r)%−(s− r)%

%
)ρ−1 (ξ4(ρ, s,Rn−1(s))−ξ4(ρ, s,Rn−2(s)))

(s− r)1−% ds.

It is important to note that, Sn =

n∑
i=1

ΥS,i, En =

n∑
i=1

ΥE,i, In =

n∑
i=1

ΥI,i, and

Rn =

n∑
i=1

ΥR,i. As well, by using (4.6), (4.7), (4.8) and fact that ΥS,n−1 =

Sn−1−Sn−2, ΥE,n−1 = En−1−En−2, ΥI,n−1 = In−1− In−2, ΥR,n−1 = Rn−1−
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Rn−1, we have

‖ΥS,n‖ ≤
1

Γ(ρ)
ω1

∫ t

r
(
(t− r)% − (s− r)%

%
)ρ−1 ‖ΥS,n−1‖

(s− r)1−%ds,

‖ΥE,n‖ ≤
1

Γ(ρ)
ω2

∫ t

r
(
(t− r)% − (s− r)%

%
)ρ−1 ‖ΥE,n−1‖

(s− r)1−%ds,

‖ΥI,n‖ ≤
1

Γ(ρ)
ω3

∫ t

r
(
(t− r)% − (s− r)%

%
)ρ−1 ‖ΥI,n−1‖

(s− r)1−%ds, (4.9)

‖ΥR,n‖ ≤
1

Γ(ρ)
ω4

∫ t

r
(
(t− r)% − (s− r)%

%
)ρ−1 ‖ΥR,n−1‖

(s− r)1−%ds.

Now, the next theorem shall be proven.

Theorem 4.1. Suppose that

1

Γ(ρ+ 1)
ωj < 1, i = 1, 2, 3, 4. (4.10)

Then model (3.2) has a unique solution for t ∈ [0, b].

Proof. It is clear that functions S,E, I and R are bounded. Additionally,
from (4.5) and (4.6), the symbols ξ1, ξ2, ξ3 and ξ4 are satisfy the Lipchitz
condition. Taking (4.9) along with a recursive hypothesis, we get

‖ΥS,n‖ ≤ ‖S0‖(
1

Γ(ρ+ 1)
ω1)n,

‖ΥE,n‖ ≤ ‖E0‖(
1

Γ(ρ+ 1)
ω2)n,

‖ΥI,n‖ ≤ ‖I0‖(
1

Γ(ρ+ 1)
ω3)n, (4.11)

‖ΥR,n‖ ≤ ‖R0‖(
1

Γ(ρ+ 1)
ω4)n.

As a result, it is evident that ‖ΥS,n‖ −→ 0, ‖ΥA,n‖ −→ 0, ‖ΥI,n‖ −→ 0, and
‖ΥR,n‖ −→ 0 as n −→ ∞. Moreover, from (4.11) and imposing the triangle,
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we obtain

‖Sn+k − Sn‖ ≤
n+k∑
j=n+1

rj1 =
rn+1

1 − rn+k+1
1

1− r1
,

‖En+k − En‖ ≤
n+k∑
j=n+1

rj2 =
rn+1

2 − rn+k+1
2

1− r2
,

‖In+k − In‖ ≤
n+k∑
j=n+1

rj3 =
rn+1

3 − rn+k+1
3

1− r3
, (4.12)

‖Rn+k − Rn‖ ≤
n+k∑
j=n+1

rj4 =
rn+1

4 − rn+k+1
4

1− r4
,

with ri := 1
Γ(ρ+1)ωi < 1, by (4.10). Thus, Sn, En, In and Rn are Cauchy

sequences in the Banach space Z(I).
This proves that it is uniformly convergent [6]. The limit of (4.7) as n −→∞

confirms unique solution of these sequences and satisfy the model (3.2). This
ensures that existence of a unique solution for model (3.2) in according to
(4.10). �

5. Disease-free equilibrium (DFE)

To calculate the equilibrium point of the model (3.2), we make the model’s
left side (3.2) equal to zero as follows:

τνSIιS = 0,

νSI(ι+ δ)E = 0,

δE(ι+ µ)I = 0, (5.1)

µIιR = 0.

By solving the algebraic equations, we obtain equilibrium points of system
(3.2). The disease free equilibrium point is obtained as

E0 = (S,E, I,R) = (
τ

ι
, 0, 0, 0).

Theorem 5.1. The DFE E0 ought to achieve Re(ξj ) < 0, j = 1, . . . , 4 for
being locally asymptotically stable (LAS), when ξ the eigenvalue of the Jacobian
matrix calculated at such free equilibrium .

Proof. Since the linearization method is used, the DFE point J(E0) its LAS
can be checked. So, the Jacobian matrix is denoted by J(E0):
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
−ι 0 −ν τι 0
0 −(ι+ δ) ν τι 0
0 δ −(ι+ µ) 0
0 0 µ −ι

 . (5.2)

It is not difficult to get eigenvalues of the above 4 × 4 Jacobian matrix, We
obtained two different eigenvalues, and another one repeated twice, as given
below:

−ι < 0 ,−(ι+ δ) < 0, −(ι+ µ) < 0 (5.3)

Since all of the parameters are positive,then the eigenvalues of the above 4×4
Jacobian matrix are negative, So the E0 of the disease is (LAS). �

5.1. Basic reproduction number (R0). R0 is the number of infected cases
due to the transmission of infection from a previously injured person. It can
be calculated as explained by Van den Driessche in [25]. By using the relation
R0 = λ(FV −1), where λ the spectral radius of the second generation operator,
F and V are the matrices for the new disease class and for the rest of tran-
sitional terms, respectively. The matrices F and V connected to model (3.2)
are given by:

f =

[
νSI

0

]
. (5.4)

v =

[
(ι+ δ)E

−δE + (ι+ µ)]

]
, (5.5)

F =

[
0 νS0

0 0

]
. (5.6)

Since S0 = τ
ι , then

F =

[
0 ν τι
0 0

]
(5.7)

and

V =

[
(ι+ δ) 0
δ (ι+ µ)

]
, (5.8)

V −1 =

[
1

(ι+δ) 0
δ

(ι+δ)(ι+µ)
1

(ι+µ)

]
. (5.9)
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So

FV −1 =

[ τδν
ι(ι+δ)(ι+µ)

τν
ι(ι+µ)

0 0

]
. (5.10)

The expression for R0 is the spectral radius of the matrix FV −1 and is
written as follows R0 = νδτ

ι(ι+δ)(ι+µ) , which is less than one, by using [26], we

can say that the DFE point is locally stable and that the population cannot
be infected by the illness.

6. Analysis of the fundamental reproduction number’s
sensitivity

In this portion, we explain a sensitivity analysis performed on a subset of
the parameters in the proposed model (3.2). As a result, it will be easier to
distinguish between factors in terms of their positive or negative effect on the
basic reproduction rate. We find it by using method given in [26] and using
R0 = νδτ

ι(ι+δ)(ι+µ) , as:

∝R0
τ =

∂R0

∂τ

τ

R0
= 1, ∝R0

ν = 1, ∝R0
µ =

−µ
µ+ ι

< 0,

∝R0
ι = −1− ι

ι+ δ
− ι

µ+ ι
< 0, ∝R0

δ =
ι

(ι+ δ)
< 1. (6.1)

Table 1. Description of the parameters of the model (3.2).

Parameters Sensitivity indices
τ 1
ν 1
δ 0.0014977
µ −0.9987
ι -0.0027977

Through the Table 1, the sensitivity indices ν, τ and δ are greater than
zero and µ and ι, are not. thus R0 is decreasing with τ and δ while rising
with ν, τ and δ.

7. Discussion and numerical results

In this part, we discuss the numerical simulations for the A(H1N1) infectious
model (3.2) with the aid of an iterative method known as the Adams-Moulton
technique, Hoofnagle [14] used approximate solutions of fractional type of
(ODE) to get different results of emulations for state variables (S, E, I, R)
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contained in the H1N1 infectious model (3.2). The Cauchy ODE by the LC
operator of the order ρ has been considered as the following:

ρ
cD0,ty(t) = f(t, y(t)), ρ > 0, t ∈ [0, B],

y(j)(0) = y
(j)
(0),

(7.1)

wherej = 0, 1, 2, . . . , dρe− 1. The Cauchy-mentioned above initial value prob-
lem can be turned into a Volterra integral equation of the second kind as
follows:

y(t) = Σn−1
j=0 y

(j)
(0)

tj

j!
+

1

Γ(ρ)

∫ t

0
(t− ζ)ρ−1f(ζ, y(ζ))dζ , ρ ∈ (n− 1, n]. (7.2)

To get the repeated approach, we suppose the constant time step size 4t =
B
N , tj = j4t, j = 0, 1, 2, . . . , N where N is the number of times of integration
in the interval [0, B]. Estimating the preceding equation in terms of fractions
by taking the differential operator into account the of order %, we get the
Adams Moulton technique [19] for the CFD of order % with LC operator of
order ρ:

yn+1 = y(0) +
(4t)ρ

bΓ(ρ)
Σn
j=0[(n+ 1− j)ρ − (n− j)ρ]D%

0,tf(tj , yj), j ∈ [0, n].

(7.3)

By using the CFD of order % then we get:

D%
0,tf(tj , y(tj)) =

1

t%−1
j

d

dt
f(tj , y(tj)), % > 0. (7.4)

Now, by applying the iterative process described in (7.3), the H1N1 model
(3.2) with the CFD of order % with (LC) operator of order ρ can be expressed
as follows:

Sn+1 = S(0) +
(4t)ρ

ρΓ(ρ)
Σn
j=0[(n+ 1− j)ρ − (n− j)ρ]D%

0,tf1(tj , Sj , Ej , Ij ,Rj),

En+1 = E(0) +
(4t)ρ

ρΓ(ρ)
Σn
j=0[(n+ 1− j)ρ − (n− j)ρ]D%

0,tf2(tj , Sj , Ej , Ij ,Rj),

In+1 = I(0) +
(4t)ρ

ρΓ(ρ)
Σn
j=0[(n+ 1− j)ρ − (n− j)ρ]D%

0,tf3(tj , Sj , Ej , Ij ,Rj),

(7.5)

Rn+1 = R(0) +
(4t)ρ

ρΓ(ρ)
Σn
j=0[(n+ 1− j)ρ − (n− j)ρ]D%

0,tf4(tj , Sj , Ej , Ij ,Rj),



610 Hind Ali Ahmad Eid and Mohammed N Alkord

where

f1(tj , Sj , Ej , Ij ,Rj) = 1

t%−1
j

[τνSIιS],

f2(tj , Sj , Ej , Ij ,Rj) = 1

t%−1
j

[νSI(ι+ δ)E],

f3(tj , Sj , Aj , Ij ,Rj) = 1

t%−1
j

[δE(ι+ µ)I],

f4(tj , Sj , Aj , Ij ,Rj) = 1

t%−1
j

[µIιR],

Throughout simulations, ∆t is the magnitude of the time step is equal
10−1. The interval time is [0, 100] and it is arbitrarily supposed that the initial
conditions (0.999, 0, 0.001, 0), also the biological parameters are chosen to
be τ = 0.0003, ι = 0.0003, ν = 2.5, µ = 0.14, δ = 0.2, ρ = 0.94, % value
chosen to be (0.8, 0.85, 0.90, 0.95 and 1).

Our simulations are based on continuous model tracking, where the order
of derivative and parameters are considered for different values.

ρ=1

ρ=0.95

ρ=0.90

ρ=0.85

ρ=0.80

Figure 1. The approximate solution of S of the considered
model (3.2) for ρ value chosen to be (0.8, 0.85, 0.90, 0.95 and
1).

ρ=1

ρ=0.95

ρ=0.90

ρ=0.85

ρ=0.80

Figure 2. The approximate solution of E of the considered
model (3.2) for ρ value chosen to be (0.8, 0.85, 0.90, 0.95 and
1).
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ρ=1

ρ=0.95

ρ=0.90

ρ=0.85

ρ=0.80

Figure 3. The approximate solution of I of the considered
model (3.2) for ρ value chosen to be (0.8, 0.85, 0.90, 0.95 and
1).

ρ=1

ρ=0.95

ρ=0.90

ρ=0.85

ρ=0.80

Figure 4. The approximate solution of R of the considered
model (3.2) for ρ value chosen to be (0.8, 0.85, 0.90, 0.95 and
1).

ϱ=1

ϱ=0.95

ϱ=0.90

ϱ=0.85

ϱ=0.80

Figure 5. The approximate solution of S of the considered
model (3.2) for different values of %.



612 Hind Ali Ahmad Eid and Mohammed N Alkord

ϱ=1

ϱ=0.95

ϱ=0.90

ϱ=0.85

ϱ=0.80

Figure 6. The approximate solution of E of the considered
model (3.2) for different values of %.

ϱ=1

ϱ=0.95

ϱ=0.90

ϱ=0.85

ϱ=0.80

Figure 7. The approximate solution of I of the considered
model (3.2) for different values of %.

ϱ=1

ϱ=0.95

ϱ=0.90

ϱ=0.85

ϱ=0.80

Figure 8. The approximate solution of R of the considered
model (3.2) for different values of %.
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γ=2.5

γ=3.5

γ=4.5

γ=5.5

Figure 9. The approximate solution of S of the considered
model (3.2) varying the value of λ and using a fixed value for
% = 0.95 and ρ = 0.94.

γ=2.5

γ=3.5

γ=4.5

γ=5.5

Figure 10. The approximate solution of E of the considered
model (3.2) varying the value of λ and using a fixed value for
% = 0.95 and ρ = 0.94.

γ=2.5

γ=3.5

γ=4.5

γ=5.5

Figure 11. The approximate solution of I of the considered
model (3.2)varying the value of λ and using a fixed value for
% = 0.95 and ρ = 0.94.
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γ=2.5

γ=3.5

γ=4.5

γ=5.5

Figure 12. The approximate solution of R of the considered
model (3.2) varying the value of λ and using a fixed value for
% = 0.95 and ρ = 0.94.

γ=1.5

γ=2.5

Figure 13. clearfy susceptible population S at order % = 0.90
, ρ = 0, 85 while other parameters are as mentioned above.

γ=1.5

γ=2.5

Figure 14. clearfy susceptible population S at order % = 1 ,
ρ = 1 while other parameters are as mentioned above.
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γ=1.5

γ=2.5

Figure 15. clearfy class E at order % = 0.90 , ρ = 0.85 while
other parameters are as mentioned above.

γ=1.5

γ=2.5

Figure 16. clearfy E at order % = 1 , ρ = 1 while other
parameters are as mentioned above.

γ=1.5

γ=2.5

Figure 17. clearfy I with mentioned operator of order % =
0.90 , ρ = 0.85 while other parameters are as mentioned above.
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γ=1.5

γ=2.5

Figure 18. clearfy I with mentioned operator of order % = 1,
ρ = 1 while other parameters are as mentioned above.

γ=1.5

γ=2.5

Figure 19. clearfy R with mentioned operator of order % = 1,
ρ = 1 while other parameters are as mentioned above.

γ=1.5

γ=2.5

Figure 20. clearfy R with mentioned operator of order % =
0.90, ρ = 0.85 while other parameters are as mentioned above.
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The approximate solution of the mathematical model is illustrated in fig. 1
figs. 2 to 4 for various values of ρ, while keeping % = 0.95 constant. In the
fig. 5, a decrease in the representation curve for the susceptible population is
observed due to an increase in the infection transmission rate from the infected
group, leading to a rise in the number of infected individuals, as depicted in
fig. 6, and fig. 7, during the initial fifteen days.

Additionally, mild recovery cases are noted during this period. However,
after the first 20 days, an increase in recovery processes is witnessed, as shown
in fig. 8. We also simulated the model for different values of % , as in fig. 5,
fig. 6, fig. 7, fig. 8. In fig. 9, fig. 10, fig. 11, fig. 12,we altered the transmission
rate from an infectious class to another and assigned values to % and ρ as
0.95 and 0.94, respectively. It was found that an increase in the infection
transmission rate leads to more infections and a shortened virus incubation
period, and vice versa. In the fig. 13 and fig. 14, we assigned values to γ the
values (1.5 and 2.5) and compared the fractional model with % = 0.90 and
ρ = 0.85, to the proper-order model with % = 1 and ρ = 1. Notably fig. 13,
for γ = 1.5 infections do not spread to the entire exposed group, leaving a few
unaffected after 25 days.

Comparisons were also made for the categories (E, I, R) in fig. 15, fig. 16,
fig. 17, fig. 18, fig. 20 and fig. 19. It is observed from figs. 1 to 4 that the
increase and decrease in the values of E, I,R are proportional to the changes
in ρ, while the variations in %, result in constant increases and decreases, as
seen in figs. 5 to 8. We found that the model with the fractional order is more
representative and accurate than the model with integer order.

Conclusion

In this study, the CFD of order % in conjunction with the Liouville-Caputo
operator of order ρ is used to develop the model of the transmission of the
A H1N1 influenza infection. A brand-new A(H1N1) influenza infection model
is presented, with a population split into four different compartments. Fixed
point theorems were used to investigate the existence of the solutions and
uniqueness of this model. The system’s basic reproduction number R0 was
determined. The least and most sensitive variables that could alter R0 were
then determined using normalized forward sensitivity indices. Through nu-
merical simulations carried out with the aid of the Adams-Moulton approach,
the study also investigated the effects of numerous biological characteristics
on the system. The findings demonstrated that if % < 1 and ρ < 1 under the
CFD, also the findings demonstrated that if % = 1 and ρ = 1 under the CFD,
the A(H1N1) influenza infection will not vanish.
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In our forthcoming research endeavors, we aim to enhance the model by
incorporating more intricate dynamics, such as demographics, waning immu-
nity, and vaccination. We plan to estimate model parameters by aligning them
with real epidemiological data, ensuring a more accurate representation of the
underlying dynamics.

Our future work also involves the development of optimal control strategies
to effectively curb infection spread and reduce the basic reproduction num-
ber.This entails a comprehensive examination of the model’s parameters and
their impact on disease dynamics.

Furthermore, we intend to conduct a thorough dynamical systems analysis,
including the creation of bifurcation diagrams, to explore qualitative changes
in the model’s dynamics. This analysis will provide valuable insights into the
system’s behavior under various conditions.

To broaden the scope of our research, we propose extending the model to ac-
commodate multiple strains, allowing for an in-depth investigation into strain
interaction and competition. Additionally, we plan to create a metapopula-
tion version, incorporating spatial dynamics to study interconnected subpop-
ulations.

In our comparative analysis, we will assess the model under various frac-
tional derivative definitions, such as Caputo-Fabrizio and Atangana-Baleanu,
to evaluate their impact on the model’s behavior.

To ensure the practical relevance of our model, we will validate its pre-
dictions against empirical data and refine the model based on observed mis-
matches. This iterative validation process will enhance the model’s reliability
and predictive accuracy.
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