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Abstract. In this paper we prove the existence of mild solutions of the nonlinear neutral

integrodifferential equations of Sobolev type and the nonlinear neutral evolution integrodif-

ferential equations in Banach spaces. The results are obtained by using the Schaefer fixed

point theorem. Examples are provided to illustrate the theory.

1. Introduction

The theory of integrodifferential equations has emerged as an active area of
research due to its applications in many areas of science and engineering such
as the study of unsteady aerodynamics and aeroelastic phenomena, viscoelas-
tic panel in supersonic gas flow, fluid dynamics, electrodynamics of complex
media, many models of complex growth, neural network modeling, materials
with fading memory, mathematical modeling of the diffusion of discrete parti-
cles in a turbulent fluid, theory of population dynamics and nuclear reactors.
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Systems with memory have the property that the mathematical physical de-
scription of their state at a given point of time includes such states in which the
systems have been at earlier points of time. This leads to the inclusion of an
integral term in the basic differential equation yielding an integrodifferential
equation. Such models which contain past information are called hereditary
systems.

In recent years there has been a resurgence of interest in the study of neu-
tral hereditary systems motivated largely by new applications. For instance,
a simplified model for compartmental systems with pipes is represented by
nonlinear neutral integrodifferential equation. Compartmental models are fre-
quently used in theoretical epidemiology, physiology, population dynamics,
analysis of ecosystems. Sobolev type equation considered here occurs in ther-
modynamics [14], in the flow of fluid through fissured rocks [12], in the shear
of second order fluids [29] and in soil mechanics [28]. The neutral evolution
integrodifferential equation arises in viscoelasticity, in heat conduction in ma-
terials with memory and in control systems with a feedback control governed
by a proportional integrodifferential law [1, 20].

The existence of solutions of functional differential equations of Sobolev
type has been studied by many authors. Showalter [27] and Brill [13] estab-
lished the existence of solutions of semilinear evolution equations of Sobolev
type in Banach spaces. Lightbourne and Rankin [21] discussed the solution
of partial functional differential equation of Sobolev type in a Banach space.
Balachandran et al. [6, 8] studied the existence of solutions for nonlinear inte-
grodifferential equations of Sobolev type with nonlocal conditions in a Banach
space. Balachandran et al. [9] established the existence of mild solutions
for neutral functional integrodifferential equations in Banach spaces. For the
controllability of nonlinear systems, one can refer the survey paper [7].

The problem of existence of solutions for partial functional differential equa-
tions and partial neutral functional differential equations with delay has been
studied by many researchers. Using the method of semigroups, existence and
uniqueness of mild, strong and classical solutions of semilinear evolution equa-
tions has been discussed in Pazy [25]. Ntouyas et al. [22] studied the existence
of solutions of the initial value problems for neutral functional differential
equations and also the global existence of solutions for functional integrodif-
ferential equations via Leray-Schauder alternative in [23, 24]. Hernandez and
Henriquez [17] obtained some existence results for neutral functional differ-
ential equations in Banach spaces and in [18], they established the existence
of periodic solutions for the same kind of equations by describing them as
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abstract functional differential equations. For more details regarding the ex-
istence of solutions of neutral differential equations the reader can refer the
articles [3, 4], the book [16] and the references therein. Balachandran and Sak-
thivel [5], Dauer and Balachandran [15] investigated the existence of solutions
of nonlinear neutral integrodifferential equations in Banach spaces. Hernandez
and Balachandran [19] obtained some existence results for abstract degenerate
neutral functional differential equations. Annapoorani and Balachandran [2]
studied the existence of solutions of partial neutral integrodifferential equa-
tions in Banach spaces. Balachandran et al. [10] established the existence
results for nonlinear abstract neutral integrodifferential equation using the
Schaefer fixed point theorem and the existence of mild solutions of neutral
evolution integrodifferential equations has been discussed in [11].

This article contains six sections. In Section 2, we introduce some prelim-
inary results on the nonlinear neutral integrodifferential equation of Sobolev
type. In Section 3, we discuss the existence of mild solutions by the Schaefer
fixed point theorem. The neutral evolution integrodifferential equation is con-
sidered in Section 4. The existence of mild solutions is established in Section
5 using the same technique as in Section 3. Finally examples are presented in
Section 6 to show the applications of the obtained results.

2. Preliminaries

Consider the nonlinear neutral integrodifferential equation of the form

d

dt

[
Ex(t)− g

(
t, xt,

∫ t

0
e1(t, s, xs)ds

)]
= Ax(t) + h(t, xt) + f

(
t, xt,

∫ t

0
e2(t, s, xs)ds

)
, t ∈ J = [0, b], (2.1)

x0 = φ on [−r, 0],

where E and A are linear operators with domains contained in a Banach
space X and ranges contained in a Banach space Y . The functions g, f :
J×C×C → Y, e1, e2 : J×J×C → C, h : J×C → Y are continuous functions.
Here C = C([−r, 0], Y ) is the Banach space of all continuous functions φ :
[−r, 0] → Y endowed with the norm ‖φ‖ = sup {|φ(θ)| : −r ≤ θ ≤ 0}. Also,
for x ∈ C([−r, b], Y ), we have xt ∈ C for t ∈ [0, b], xt(θ) = x(t + θ) for
θ ∈ [−r, 0]. The norm of X is denoted by |.| and Y by ‖.‖.

The operators A : D(A) ⊂ X → Y and E : D(E) ⊂ X → Y satisfy the
hypotheses:

(C1) A and E are closed linear operators.
(C2) D(E) ⊂ D(A) and E is bijective.
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(C3) E−1 : Y → D(E) is continuous.
(C4) The resolventR(λ,AE−1) is a compact operator for some λ ∈ ρ(AE−1),

the resolvent set of (AE−1).

The hypotheses (C1), (C2) and the closed graph theorem imply the bound-
edness of the linear operator AE−1 : Y → Y .

Lemma 2.1. (See [25]) Let S(t) be a strongly continuous semigroup and A be
its infinitesimal generator. If the resolvent R(λ : A) of A is compact for some
λ ∈ ρ(A) and S(t) is continuous in the uniform operator topology, then S(t)
is compact.

From the above fact, AE−1 generates a compact semigroup T (t), t > 0, on
Y .

Definition 2.2. A solution x : (−r, b) → Y, b > 0, is called a mild solution
of the Cauchy problem (2.1) if

(i) x0 = φ;
(ii) the restriction of x(·) to the interval [0, b) is continuous;

(iii) for each 0 ≤ t < b, the function AE−1T (t−s)g
(
s, xs,

∫ s

0
e1(s, τ, xτ )dτ

)
,

s ∈ [0, t), is integrable and
(iv) the integral equation

x(t) = E−1T (t) [Eφ(0)− g(0, φ, 0)] + E−1g

(
t, xt,

∫ t

0
e1(t, s, xs)ds

)
+

∫ t

0
E−1AE−1T (t− s)g

(
s, xs,

∫ s

0
e1(s, τ, xτ )dτ

)
ds

+

∫ t

0
E−1T (t− s)h(s, xs)ds

+

∫ t

0
E−1T (t− s)f

(
s, xs,

∫ s

0
e2(s, τ, xτ )dτ

)
ds, t ∈ J

is satisfied.

Assume that the following hold:

(C5) The strongly continuous semigroup of bounded linear operators T (t)
generated by A is compact and there exists a constant M1 ≥ 1 such
that ‖T (t)‖ ≤M1, for t > 0.

(C6) There exist constants c∗1, c
∗
2 > 0 and c∗3 ≥ 0 with c1=max{c∗1, c∗2} such

that∥∥AE−1T (t− s)g(t, φ, y)
∥∥ ≤ c∗1 ‖φ‖+c∗2 |y|+c∗3, for all t ∈ J, φ ∈ C, y ∈
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C and for c3 > 0,
∥∥AE−1T (t1−s)g(s, φ, y)−AE−1T (t2−s)g(s, φ, y)

∥∥ ≤
c3(|t1 − t2|), for t1, t2 ∈ J.

(C7) For each s ∈ J, x ∈ C, the function e1(., s, x) : J → C is completely
continuous, the function e1(., ., x) : J × J → C is strongly measurable
and {t→ e1(t, s, xs)} is equicontinuous in C([0, b], Y ).

(C8) For each (t, s) ∈ J × J , the function e2(t, s, .) : C → C is continuous
and, for each x ∈ C, e2(., ., x) : J × J → C is strongly measurable.

(C9) For each t ∈ J , the function h(t, .) : C → Y is continuous and, for each
x ∈ C, the function h(., x) : J → Y is strongly measurable.

(C10) For each t ∈ J , the function f(t, ., .) : C × C → Y is continuous and,
for each (x, y) ∈ C × C, the function f(., x, y) : J → Y is strongly
measurable.

(C11) There exist integrable functions pi : J → [0,∞), i = 0, 1, 2, such that

‖f(t, x, y)‖ ≤ p1(t)Ω1(‖x‖) + p2(t)Ω2(|y|), t ∈ J, x, y ∈ C,
‖h(t, xt)‖ ≤ p0(t)Ω0(‖xt‖), 0 ≤ t ≤ b, xt ∈ C,

where Ωi : [0,∞)→ (0,∞), i = 0, 1, 2, are continuously differentiable
nondecreasing functions, such that lim

s→∞
Ω0(s) =∞, Ω′i, i = 0, 1, 2, (the

first derivative of Ωi) are also nondecreasing and Ω′0(‖Eφ(0)‖
∣∣E−1∣∣M1)

> 0.
(C12) The function g : J ×C×C → Y is completely continuous and, for any

bounded set D in C([−r, b], X), the set

{
t→ g

(
t, xt,

∫ t

0
e1(t, s, xs)ds

)
: x ∈ D

}

is equicontinuous in C([0, b], Y ). There exist c1, c2 > 0 and c3 ≥ 0
with c2 = max{c1, c2} and c2 ∈ (0, 1

|E−1|) such that ‖g(t, φ, y)‖ ≤
c1 ‖φ‖ + c2 |y| + c3, for all t ∈ J, φ ∈ C, y ∈ C. There exist mi :
J × J → [0,∞), i = 1, 2, differentiable a.e., with respect to the first

variable, such that
∫ t
0 mi(t, s)ds,

∫ t
0
∂mi
∂t (t, s)ds are bounded on J and

∂m1

∂t
(t, s) ≥ 0, for a.e., 0 ≤ s < t ≤ b. Moreover

|e1(t, s, x)| ≤ m1(t, s)ψ1(‖x‖), 0 ≤ s < t ≤ b, x ∈ C,
|e2(t, s, x)| ≤ m2(t, s)ψ2(‖x‖), 0 ≤ s < t ≤ b, x ∈ C,

where ψi : [0,∞) → (0,∞), i = 1, 2 are continuous nondecreasing
functions.
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(C13) Let p(t) = max

{
a(t), b(t),

M1|E−1|
1−|E−1|c2 q(t),

|E−1|c1
1−|E−1|c2

}
be such that

∫ b

0
p(s)ds <

∫ ∞
a
{[s+ ψ1(s) + Ω0(s) + Ω1(s) + Ω2(L0ψ2(s))]

×
[
1 +

Ω′1(s)

Ω′0(s)

]
+
ψ2(s)

Ω′0(s)
Ω′2(L0ψ2(s))

}−1
ds,

where

a(t) =

∣∣E−1∣∣
1− |E−1| c2

{
c2m1(t, t) +

∫ t

0

(
c2
∂m1

∂t
(t, s) + c1m1(t, s)

)
ds

}
,

b(t) = m2(t, t) +

∫ t

0

∣∣∣∣∂m2

∂t
(t, s)

∣∣∣∣ ds,
q(t) = max {p0(t), p1(t), p2(t)} .

L0 is a finite bound for
∫ t
0m2(t, s)ds and a = Ω−10 (Ω0(α0)+Ω1(α0)+Ω2(0))

with α0 =
1

(1− |E−1| c2)
[(‖Eφ(0)‖ + c1 ‖φ‖)

∣∣E−1∣∣M1 +
∣∣E−1∣∣ c3(1 + M1) +∣∣E−1∣∣ c∗3b].

Schaefer Theorem: (See [26]) Let E be a convex subset of a normed linear
space V containing 0. If H : E → E is a completely continuous operator, then
either H has a fixed point or the subset

ζ(H) = {x ∈ E : x = λHx, for some λ ∈ (0, 1)}

is unbounded.

3. Main Results

Theorem 3.1. Assume that the hypotheses (C1) − (C13) hold. Then, the
problem (2.1) admits a mild solution on [−r, b].

Proof. Consider the space Cb = C([−r, b] : Y ) endowed with the norm,

‖x‖1 = sup {|x(t)| : −r ≤ t ≤ b} .

To prove the existence of mild solution of (2.1), let us consider the nonlinear
operator equation,

x(t) = λFx(t), 0 < λ < 1 (3.1)

where F : Cb → Cb is given by
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Fx(t) = E−1T (t)[Eφ(0)− g(0, φ, 0)] + E−1g

(
t, xt,

∫ t

0
e1(t, s, xs)ds

)
+

∫ t

0
E−1AE−1T (t− s)g

(
s, xs,

∫ s

0
e1(s, τ, xτ )dτ

)
ds

+

∫ t

0
E−1T (t− s)h(s, xs)ds

+

∫ t

0
E−1T (t− s)f

(
s, xs,

∫ s

0
e2(s, τ, xτ )dτ

)
ds, t ∈ J.

Now,

|x(t)| = |λFx(t)|
≤

∣∣E−1∣∣M1 [‖Eφ(0)‖+ c1 ‖φ‖+ c3] +
∣∣E−1∣∣ c2 ‖xt‖+

∣∣E−1∣∣ c3
+
∣∣E−1∣∣ c2 ∫ t

0
m1(t, s)ψ1(‖xs‖)ds+

∣∣E−1∣∣ c1 ∫ t

0
‖xs‖ ds

+
∣∣E−1∣∣ c1 ∫ t

0

(∫ s

0
m1(s, τ)ψ1(‖xτ‖)dτ

)
ds+

∣∣E−1∣∣ c∗3b
+
∣∣E−1∣∣M1

∫ t

0
p0(s)Ω0(‖xs‖)ds+

∣∣E−1∣∣M1

∫ t

0
p1(s)Ω1(‖xs‖)ds

+
∣∣E−1∣∣M1

∫ t

0
p2(s)Ω2

(∫ s

0
m2(s, τ)ψ2(‖xτ‖)dτ

)
ds. (3.2)

Let us define the function µ by µ(t) = sup {|x(s)| : −r ≤ s ≤ t} , t ∈ J . If
µ(t) = |x(t∗)|, for some t∗ ∈ [0, b], then, from (3.2) and from our assumptions,
we infer

µ(t) ≤
∣∣E−1∣∣M1 [‖Eφ(0)‖+ c1 ‖φ‖+ c3] +

∣∣E−1∣∣ c2µ(t)

+
∣∣E−1∣∣ c2 ∫ t∗

0
m1(t

∗, s)ψ1(µ(s))ds+
∣∣E−1∣∣ c3 +

∣∣E−1∣∣ c1∫ t∗

0
µ(s)ds

+
∣∣E−1∣∣ c1 ∫ t∗

0

(∫ s

0
m1(s, τ)ψ1(µ(τ))dτ

)
ds+

∣∣E−1∣∣ c∗3b
+
∣∣E−1∣∣M1

∫ t∗

0
p0(s)Ω0(µ(s))ds+

∣∣E−1∣∣M1

∫ t∗

0
p1(s)Ω1(µ(s))ds

+
∣∣E−1∣∣M1

∫ t∗

0
p2(s)Ω2

(∫ s

0
m2(s, τ)ψ2(µ(τ))dτ

)
ds.
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Therefore,

µ(t) ≤
∣∣E−1∣∣M1 [‖Eφ(0)‖+ c1 ‖φ‖+ c3] +

∣∣E−1∣∣ c2µ(t)

+
∣∣E−1∣∣ c2 ∫ t

0
m1(t, s)ψ1(µ(s))ds+

∣∣E−1∣∣ c3 +
∣∣E−1∣∣ c1∫ t

0
µ(s)ds

+
∣∣E−1∣∣ c1 ∫ t

0

(∫ s

0
m1(s, τ)ψ1(µ(τ))dτ

)
ds+

∣∣E−1∣∣ c∗3b
+
∣∣E−1∣∣M1

∫ t

0
p0(s)Ω0(µ(s))ds+

∣∣E−1∣∣M1

∫ t

0
p1(s)Ω1(µ(s))ds

+
∣∣E−1∣∣M1

∫ t

0
p2(s)Ω2

(∫ s

0
m2(s, τ)ψ2(µ(τ))dτ

)
ds.

The above estimate is still valid, if t∗ ∈ [−r, 0], since µ(t) = ‖φ‖ and M1≥ 1.
Hence,

µ(t) ≤ 1

1− |E−1| c2
{∣∣E−1∣∣M1 [‖Eφ(0)‖+ c1 ‖φ‖+ c3] +

∣∣E−1∣∣ c3
+
∣∣E−1∣∣ c2 ∫ t

0
m1(t, s)ψ1(µ(s))ds+

∣∣E−1∣∣ c1∫ t

0
µ(s)ds

+
∣∣E−1∣∣ c1 ∫ t

0

(∫ s

0
m1(s, τ)ψ1(µ(τ))dτ

)
ds+

∣∣E−1∣∣ c∗3b
+
∣∣E−1∣∣M1

∫ t

0
p0(s)Ω0(µ(s))ds+

∣∣E−1∣∣M1

∫ t

0
p1(s)Ω1(µ(s))ds

+
∣∣E−1∣∣M1

∫ t

0
p2(s)Ω2

(∫ s

0
m2(s, τ)ψ2(µ(τ))dτ

)
ds

}
. (3.3)

Let us denote the right-hand side of (3.3) as v(t). Then, clearly,

v(0) =
1

(1− |E−1| c2)
{

(‖Eφ(0)‖+ c1 ‖φ‖)
∣∣E−1∣∣M1 +

∣∣E−1∣∣ c3(1 +M1)

+
∣∣E−1∣∣ c∗3b} ≡ α0

and µ(t) ≤ v(t), t ∈ J. In addition, we have

v′(t) =
1

1− |E−1| c2
{∣∣E−1∣∣ c2m1(t, t)ψ1(µ) +

∣∣E−1∣∣ c1µ(t)

+
∣∣E−1∣∣ c2 ∫ t

0

∂m1

∂t
(t, s)ψ1(µ(s))ds+

∣∣E−1∣∣ c1 ∫ t

0
m1(t, s)ψ1(µ)ds

+
∣∣E−1∣∣M1p0(t)Ω0(µ(t)) +

∣∣E−1∣∣M1p1(t)Ω1(µ(t))

+
∣∣E−1∣∣M1p2(t)Ω2

(∫ t

0
m2(t, s)ψ2(µ(s))ds

)}
≥ 0, t ∈ J.
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Next, let ω(t) be, such that

Ω0(ω) = Ω0(v) + Ω1(v) + Ω2

(∫ t

0
m2(t, s)ψ2(v)ds

)
.

We have ω ≥ v, and by differentiation, taking into account (C12), we get,

Ω′0(ω)ω′(t) = (Ω′0(v) + Ω′1(v))v′ + Ω′2

(∫ t

0
m2(t, s)ψ2(v)ds

)
×
{
m2(t, t)ψ2(v) +

∫ t

0

∂m2

∂t
(t, s)ψ2(v)ds

}

≤ Ω′0(ω) + Ω′1(ω)

1− |E−1| c2

{ ∣∣E−1∣∣ c2m1(t, t)ψ1(ω)

+
∣∣E−1∣∣ c1ω +

∣∣E−1∣∣ c2 ∫ t

0

∂m1

∂t
(t, s)ψ1(ω)ds

+
∣∣E−1∣∣ c1 ∫ t

0
m1(t, s)ψ1(ω)ds+

∣∣E−1∣∣M1q(t) (Ω0(ω)

+Ω1(ω) + Ω2

(∫ t

0
m2(t, s)ψ2(ω)ds

))}
+

{
m2(t, t)+

∫ t

0

∣∣∣∣∂m2

∂t
(t, s)

∣∣∣∣ ds}ψ2(ω)

×Ω′2

(
ψ2(ω)

∫ t

0
m2(t, s)ds

)
. (3.4)

Moreover, by our assumptions on Ω′0, we have

Ω′0(ω) ≥ Ω′0(v) ≥ Ω′0(α0) ≥ Ω′0(‖Eφ(0)‖
∣∣E−1∣∣M1) > 0.

Therefore, inequality (3.4) implies that

ω′(t) ≤
[∣∣E−1∣∣ψ1(ω)

1− |E−1| c2

{
c2m1(t, t) +

∫ t

0

(
c2
∂m1

∂t
(t, s) + c1m1(t, s)

)
ds

}
+

∣∣E−1∣∣M1q(t)

1− |E−1| c2

(
Ω0(ω) + Ω1(ω) + Ω2

(∫ t

0
m2(t, s)ψ2(ω)ds

))
+

∣∣E−1∣∣ c1ω
1− |E−1| c2

]
×
(

1 +
Ω′1(ω)

Ω′0(ω)

)
+
ψ2(ω)

Ω′0(ω)

(
m2(t, t) +

∫ t

0

∣∣∣∣∂m2

∂t
(t, s)

∣∣∣∣ ds)Ω′2

(
ψ2(ω)

∫ t

0
m2(t, s)ds

)
or, using the notation in (C13), one finds that
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ω′(t) ≤
{
M1

∣∣E−1∣∣ q(t)
1− |E−1| c2

(
Ω0(ω) + Ω1(ω) + Ω2

(∫ t

0
m2(t, s)ψ2(ω)ds

))
+a(t)ψ1(ω) +

∣∣E−1∣∣ c1ω
1− |E−1| c2

}(
1 +

Ω′1(ω)

Ω′0(ω)

)
+
ψ2(ω)

Ω′0(ω)
b(t)Ω′2 (L0ψ2(ω))

≤ p(t)

{
[ω + ψ1(ω) + Ω0(ω) + Ω1(ω) + Ω2(L0ψ2(ω))]

[
1 +

Ω′1(ω)

Ω′0(ω)

]
+
ψ2(ω)

Ω′0(ω)
Ω′2(L0ψ2(ω))

}
.

Thus, by (C13), for 0 ≤ t ≤ b,
ω(t)∫
ω(0)

{
[s+ψ1(s)+Ω0(s)+Ω1(s)+Ω2(L0ψ2(s))]

[
1+

Ω′1(s)

Ω′0(s)

]
+
ψ2(s)

Ω′0(s)
Ω′2(L0ψ2(s))

}−1
ds

≤
∫ b

0
p(s)ds

<

∞∫
a

{
[s+ψ1(s)+Ω0(s)+Ω1(s)+Ω2(L0ψ2(s))]

[
1+

Ω′1(s)

Ω′0(s)

]
+
ψ2(s)

Ω′0(s)
Ω′2(L0ψ2(s))

}−1
ds.

This implies that ω(t) must be bounded by some positive constant L on [0, b].
Consequently, ‖x‖1 ≤ L.
We shall now prove that the operator F : Cb → Cb defined by

(Fx)(t) = φ(t), t ∈ [−r, 0],

(Fx)(t) = E−1T (t)[Eφ(0)− g(0, φ, 0)] + E−1g
(
t, xt,

∫ t

0
e1(t, s, xs)ds

)
+

∫ t

0
E−1AE−1T (t− s)g

(
s, xs,

∫ s

0
e1(s, τ, xτ )dτ

)
ds

+

∫ t

0
E−1T (t− s)h(s, xs)ds

+

∫ t

0
E−1T (t− s)f

(
s, xs,

∫ s

0
e2(s, τ, xτ )dτ

)
ds,

is a completely continuous operator for all t ∈ J . Let Bq = {x ∈ Cb : ‖x‖1 ≤ q}
for some q ≥ 1. We first show that F maps Bq into an equicontinuous family.
Let x ∈ Bq and t1, t2 ∈ [0, b]. Then, if 0 ≤ t1 < t2 ≤ b, (the other cases
t1 < t2 < 0 and t1 < 0 < t2 may be treated similarly), we have
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‖(Fx)(t1)− (Fx)(t2)‖
≤
∣∣E−1∣∣ ‖[T (t1)− T (t2)][Eφ(0)− g(0, φ, 0)]‖

+
∣∣E−1∣∣ ∥∥∥∥g(t1, xt1 , ∫ t1

0
e1(t1, s, xs)ds

)
− g
(
t2, xt2 ,

∫ t2

0
e1 (t2, s, xs) ds

)∥∥∥∥
+

∫ t1

0

∣∣E−1∣∣ ∥∥∥∥AE−1T (t1 − s)g
(
s, xs,

∫ s

0
e1(s, τ, xτ )dτ

)
−AE−1T (t2 − s)g

(
s, xs,

∫ s

0
e1(s, τ, xτ )dτ

)∥∥∥∥ ds
+

∫ t2

t1

∣∣E−1∣∣ ∥∥∥∥AE−1T (t2 − s)g
(
s, xs,

∫ s

0
e1(s, τ, xτ )dτ

)∥∥∥∥ ds
+

∫ t1

0

∣∣E−1∣∣ ‖T (t1 − s)− T (t2 − s)‖ ‖h(s, xs)‖ ds

+

∫ t2

t1

∣∣E−1∣∣ ‖T (t2 − s)‖ ‖h(s, xs)‖ ds

+

∫ t1

0

∣∣E−1∣∣ ‖[T (t1 − s)− T (t2 − s)]‖
∥∥∥∥f (s, xs,∫ s

0
e2(s, τ, xτ )dτ

)∥∥∥∥ ds
+

∫ t2

t1

∣∣E−1∣∣ ‖T (t2 − s)‖
∥∥∥∥f (s, xs, ∫ s

0
e2(s, τ, xτ )dτ

)∥∥∥∥ ds
≤
∣∣E−1∣∣ ‖[T (t1)− T (t2)][Eφ(0)− g(0, φ, 0)]‖

+
∣∣E−1∣∣ ∥∥∥∥g(t1, xt1 ,∫ t1

0
e1 (t1, s, xs) ds

)
− g

(
t2, xt2 ,

∫ t2

0
e1 (t2, s, xs) ds

)∥∥∥∥
+
∣∣E−1∣∣ c3∫ t1

0
|t1 − t2| ds+

∣∣E−1∣∣ ∫ t2

t1

ρ1(s)ds

+
∣∣E−1∣∣ ∫ t1

0
‖T (t1−s)−T (t2−s)‖β(s)ds+

∣∣E−1∣∣∫ t2

t1

‖T (t2−s)‖β(s)ds

+
∣∣E−1∣∣ ∫ t1

0
‖T (t1 − s)− T (t2 − s)‖ γ(s)ds

+
∣∣E−1∣∣ ∫ t2

t1

‖T (t2 − s)‖ γ(s)ds,

where ρ1(s) = c∗1 ‖xs‖+ c∗2

∫ s

0
m1(s, τ)ψ1(‖xτ‖)dτ + c∗3,

β(s) = p0(s)Ω0(‖xs‖),

γ(s) = p1(s)Ω1(‖xs‖) + p2(s)Ω2

(∫ s

0
m2(s, τ)ψ2(‖xτ‖)dτ

)
.
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Since T (t), t > 0, is compact and continuous in the uniform operator topology
and by the assumptions on mi, ψi, pi,Ωi and the complete continuity of g imply
that the right-hand side of the above inequality goes to zero as t2 − t1 →
0 independent of x in Bq. Therefore, the family {FBq} is equicontinuous.
Moreover, for x in Bq,

‖(Fx)(t)‖ ≤
∣∣E−1∣∣ ‖T (t)‖ ‖Eφ(0)− g(0, φ, 0)‖+

∣∣E−1∣∣ ρ2(t)+

∫ t

0

∣∣E−1∣∣ ρ1(s)ds
+

∫ t

0

∣∣E−1∣∣ ‖T (t− s)‖β(s)ds+

∫ t

0

∣∣E−1∣∣ ‖T (t− s)‖ γ(s)ds

≤
∣∣E−1∣∣M1[‖Eφ(0)‖+ c1 ‖φ‖+ c3] +

∣∣E−1∣∣ ρ2(t)
+
∣∣E−1∣∣ ∫ t

0
ρ1(s)ds+

∣∣E−1∣∣M1

∫ t

0
β(s)ds+

∣∣E−1∣∣M1

∫ t

0
γ(s)ds

where ρ2(t) = c1 ‖xt‖+ c2
∫ t
0 m1(t, s)ψ1(‖xs‖)ds+ c3. Hence, FBq is uniformly

bounded, and consequently, according to Arzela-Ascoli’s Theorem, it suffices
to show that FBq is precompact in X. Next, for a fixed t ∈ (0, b] and ε, such
that 0 < ε < t, we define, for x ∈ Bq,

(Fεx)(t) = E−1T (t)[Eφ(0)− g(0, φ, 0)] + E−1g
(
t, xt,

∫ t

0
e1(t, s, xs)ds

)
+

∫ t−ε

0
E−1AE−1T (t− s)g

(
s, xs,

∫ s

0
e1(s, τ, xτ )dτ

)
ds

+

∫ t−ε

0
E−1T (t− s)h(s, xs)ds

+

∫ t−ε

0
E−1T (t− s)f

(
s, xs,

∫ s

0
e2(s, τ, xτ )dτ

)
ds.

As T (t) is a compact operator, we see that FεBq is precompact in X, for every
ε, such that 0 < ε < t. On the other hand, we have

‖(Fx)(t)− (Fεx)(t)‖ ≤
∫ t

t−ε

∣∣E−1∣∣ ∥∥∥∥AE−1T (t−s)g
(
s, xs,

∫ s

0
e1(s, τ, xτ )dτ

)∥∥∥∥ ds
+

∫ t

t−ε

∣∣E−1∣∣ ‖T (t− s)‖ ‖h(s, xs)‖ ds

+

∫ t

t−ε

∣∣E−1∣∣ ‖T (t−s)‖
∥∥∥∥f(s, xs,∫ s

0
e2(s, τ,xτ )dτ

)∥∥∥∥ ds
≤

∣∣E−1∣∣ ∫ t

t−ε
ρ1(s)ds+

∣∣E−1∣∣M1

∫ t

t−ε
β(s)ds

+
∣∣E−1∣∣M1

∫ t

t−ε
γ(s)ds.
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This shows that FBq may be arbitrarily approached by precompact sets and
therefore, it is a precompact subset of X.

Finally, we want to prove that F : Cb → Cb is continuous. Let {xn}∞n=0 ⊆ Cb
with xn → x in Cb. Then, there is an integer r such that ‖xn(t)‖ ≤ r for all n
and t ∈ J . So, xn ∈ Br and x ∈ Br. Moreover, by virtue of (C6), (C11) and
(C12), we obtain,∥∥∥∥g(t, xnt ,∫ t

0
e1(t, s, xns)ds

)
− g

(
t, xt,

∫ t

0
e1(t, s, xs)ds

)∥∥∥∥
≤ 2

{
c1r + c2

(∫ t

0
m1(t, s)ψ1(r)ds

)
+ c3

}
,

‖h(t, xnt)− h(t, xt)‖ ≤ 2p0(t)Ω0 (r) ,

∥∥∥∥f (t, xnt , ∫ t

0
e2(t, s, xns)ds

)
− f

(
t, xt,

∫ t

0
e2(t, s, xs)ds

)∥∥∥∥
≤ 2 {p1(t)Ω1(r) + p2(t)Ω2 (L0ψ2(r))} ,∥∥∥∥AE−1T (t− s)g

(
t, xnt ,

∫ t

0
e1(t, s, xns)ds

)
−AE−1T (t− s)g

(
t, xt,

∫ t

0
e1(t, s, xs)ds

)∥∥∥∥
≤ 2

{
c∗1r + c∗2

(∫ t

0
m1(t, s)ψ1(r)ds

)
+ c∗3

}
.

As we know by assumptions (C6)-(C10) and (C12) that

g

(
t, xnt ,

∫ t

0
e1(t, s, xns)ds

)
→ g

(
t, xt,

∫ t

0
e1(t, s, xs)ds

)
,

h(t, xnt) → h(t, xt),

f

(
t, xnt ,

∫ t

0
e2(t, s, xns)ds

)
→ f

(
t, xt,

∫ t

0
e2(t, s, xs)ds

)
,

AE−1T (t−s)g
(
t, xnt ,

∫ t

0
e1(t, s, xns)ds

)
→ AE−1T (t−s)g

(
t, xt,

∫ t

0
e1(t, s, xs)ds

)
,

as n→∞, for each t ∈ J . Also, we have
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‖Fxn − Fx‖

≤ sup
t∈J

{∥∥∥∥E−1 [g(t, xnt ,∫ t

0
e1(t, s, xns)ds

)
− g

(
t, xt,

∫ t

0
e1(t, s, xs)ds

)]∥∥∥∥
+

∥∥∥∥∫ t

0
E−1

[
AE−1T (t− s)g

(
s, xns ,

∫ s

0
e1(s, τ, xnτ )dτ

)
−AE−1T (t− s)g

(
s, xs,

∫ s

0
e1(s, τ, xτ )dτ

)]
ds

∥∥∥∥
+

∥∥∥∥∫ t

0
E−1T (t− s)[h(s, xns)− h(s, xs)]ds

∥∥∥∥
+

∥∥∥∥∫ t

0
E−1T (t− s)

[
f

(
s, xns ,

∫ s

0
e2(s, τ, xnτ )dτ

)
−f
(
s, xs,

∫ s

0
e2(s, τ, xτ )dτ

)]
ds

∥∥∥∥}
≤
∣∣E−1∣∣ ∥∥∥∥g(t, xnt ,∫ t

0
e1(t, s, xns)ds

)
− g

(
t, xt,

∫ t

0
e1(t, s, xs)ds

)∥∥∥∥
+

∫ b

0

∣∣E−1∣∣ ∥∥∥∥AE−1T (t− s)g
(
s, xns ,

∫ s

0
e1(s, τ, xnτ )dτ

)
−AE−1T (t−s)g

(
s, xs,

∫ s

0
e1(s, τ, xτ )dτ

)∥∥∥∥ ds
+

∫ b

0

∣∣E−1∣∣ ‖T (t−s)‖ ‖h(s, xns)− h(s, xs)‖ ds

+

∫ b

0

∣∣E−1∣∣ ‖T (t− s)‖
∥∥∥∥f (s, xns ,∫ s

0
e2(s, τ, xnτ )dτ

)
−f
(
s, xs,

∫ s

0
e2(s, τ, xτ )dτ

)∥∥∥∥ ds.
Taking limit as n→∞, we get from the dominated convergence theorem that
the right-hand side of the above inequality tends to zero. Therefore, F is
continuous, and consequently, F is a completely continuous operator.

Finally the set ζ (F ) = {x ∈ Cb : x = λFx, λ ∈ (0, 1)} is bounded. Conse-
quently, by Schaefer’s theorem the operator F has a fixed point in Cb. Thus,
the problem (2.1) has at least one mild solution on [−r, b]. �
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4. Neutral Evolution Integrodifferential Equation

Consider the neutral evolution integrodifferential equation of the form

d

dt

[
x(t)− g

(
t, xt,

∫ t

0
e1(t, s, xs)ds

)]
= A(t)x(t) + h(t, xt) + f

(
t, xt,

∫ t

0
e2(t, s, xs)ds

)
, t ∈ J = [0, b], (4.1)

x0 = φ on [−r, 0],

where A(t) is a closed, densely defined linear operator in a Banach space X
with norm ‖.‖, the functions g, f : J × C × X → X, e1, e2 : J × J × C →
X and h : J×C → X are known continuous functions. Here C = C([−r, 0], X)
is the Banach space of all continuous functions φ : [−r, 0]→ X endowed with
the norm ‖φ‖ = sup{|φ(θ)| : −r ≤ θ ≤ 0}. Also, for x ∈ C([−r, b], X), we have
xt ∈ C for t ∈ [0, b], xt(θ) = x(t + θ) for θ ∈ [−r, 0] and A(t) : D(A(t)) → X
is the infinitesimal generator of an analytic semigroup.

We need the following hypotheses:

(H1) The operator U(t, s) is compact such that for 0 ≤ s ≤ t ≤ b, ‖U(t, s)‖ ≤
M1, for some constant M1 ≥ 1.

(H2) There exists a constant M2 > 0 such that ‖A(t)g(t, x, y)‖ ≤ M2 for
t ∈ J, x ∈ C, y ∈ X.

(H3) The function g : J × C × X → X is completely continuous and, for
any bounded set D in C([−r, b], X), the set{

t→ g

(
t, xt,

∫ t

0
e1(t, s, xs)ds

)
: x ∈ D

}
is equicontinuous in C([0, b], X). There exist c1 ∈ (0, 1), c2 > 0 and
c3 ≥ 0 such that ‖g(t, φ, y)‖ ≤ c1 ‖φ‖ + c2 |y| + c3, for all t ∈ J,
φ ∈ C, y ∈ X.

(H4) For each s ∈ J, x ∈ C, the function e1(., s, x) : J → X is completely
continuous, the function e1(., ., x) : J × J → X is strongly measurable
and {t→ e1(t, s, xs)} is equicontinuous in C([0, b], X).

(H5) For each (t, s) ∈ J × J , the function e2(t, s, .) : C → X is continuous
and, for each x ∈ C, e2(., ., x) : J × J → X is strongly measurable.

(H6) For each t ∈ J , h(t, .) : C → X is continuous and, for each x ∈ C, the
function h(., x) : J → X is strongly measurable.

(H7) For each t ∈ J , f(t, ., .) : C × X → X is continuous and, for each
(x, y) ∈ C ×X, the function f(., x, y) : J → X is strongly measurable.
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(H8) There exist integrable functions pi : J → [0,∞), i = 0, 1, 2, such that

‖f(t, x, y)‖ ≤ p1(t)Ω1(‖x‖) + p2(t)Ω2(|y|), t ∈ J, x ∈ C, y ∈ X,
‖h(t, xt)‖ ≤ p0(t)Ω0(‖xt‖), 0 ≤ t ≤ b, xt ∈ C,

where Ωi : [0,∞) → (0,∞), i = 0, 1, 2 are continuously differentiable
nondecreasing functions, such that lim

s→∞
Ω0(s) =∞, Ω′i, i = 0, 1, 2 (the

first derivative of Ωi) are also nondecreasing and Ω′0(M1 ‖φ‖) > 0.
(H9) There exist mi : J × J → [0,∞), i = 1, 2, differentiable a.e., with

respect to the first variable, such that
∫ t
0 mi(t, s)ds,

∫ t
0
∂mi
∂t (t, s)ds are

bounded on J and ∂m1
∂t (t, s) ≥ 0, for a.e., 0 ≤ s < t ≤ b. Moreover

|e1(t, s, x)| ≤ m1(t, s)ψ1(‖x‖), 0 ≤ s < t ≤ b, x ∈ C,
|e2(t, s, x)| ≤ m2(t, s)ψ2(‖x‖), 0 ≤ s < t ≤ b, x ∈ C,

where ψi : [0,∞) → (0,∞), i = 1, 2 are continuous nondecreasing
functions.

(H10) Let p(t) = max
{
a(t), b(t), M1

1−c1 q(t)
}

be such that∫ b

0
p(s)ds <

∫ ∞
a

{
[ψ1(s) + Ω0(s) + Ω1(s) + Ω2(L0ψ2(s))]

×
[
1 +

Ω′1(s)

Ω′0(s)

]
+
ψ2(s)

Ω′0(s)
Ω′2(L0ψ2(s))

}−1
ds,

where

a(t) =
c2

1− c1

{
m1(t, t) +

∫ t

0

∂m1

∂t
(t, s)ds

}
,

b(t) = m2(t, t) +

∫ t

0

∣∣∣∣∂m2

∂t
(t, s)

∣∣∣∣ ds,
q(t) = max {p0(t), p1(t), p2(t)} .

L0 is a finite bound for
∫ t
0 m2(t, s)ds and a = Ω−10 (Ω0(α0) + Ω1(α0) + Ω2(0))

with α0 =
1

1− c1
[(1 + c1)M1 ‖φ‖+ c3(1 +M1) +M1M2b] .

Definition 4.1. By a mild solution of the Cauchy problem (4.1), we mean a
function x : (−r, b)→ X, b > 0, such that

(i) x0 = φ;
(ii) the restriction of x(·) to the interval [0, b) is continuous;

(iii) for each t ∈ [0, b), the function U(t, s)A(s)g

(
s, xs,

∫ s

0
e1(s, τ, xτ )dτ

)
,

s ∈ [0, t), is integrable and
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(iv) the integral equation

x(t) = U(t, 0)[φ(0)− g(0, φ, 0)] + g
(
t, xt,

∫ t

0
e1(t, s, xs)ds

)
+

∫ t

0
U(t, s)A(s)g

(
s, xs,

∫ s

0
e1(s, τ, xτ )dτ

)
ds+

∫ t

0
U(t, s)h(s, xs)ds

+

∫ t

0
U(t, s)f

(
s, xs,

∫ s

0
e2(s, τ, xτ )dτ

)
ds, t ∈ J (4.2)

is satisfied.

5. Existence Results

Theorem 5.1. Assume that the hypotheses (H1) − (H10) hold. Then, the
problem (4.1) admits a mild solution on [−r, b].

Proof. Let Cb = C([−r, b] : X) endowed with the norm,

‖x‖1 = sup {|x(t)| : −r ≤ t ≤ b} .

And consider the nonlinear operator equation,

x(t) = λFx(t), 0 < λ < 1, (5.1)

where F : Cb → Cb is given by

Fx(t) = U(t, 0)[φ(0)− g(0, φ, 0)] + g

(
t, xt,

∫ t

0
e1(t, s, xs)ds

)
+

∫ t

0
U(t, s)A(s)g

(
s, xs,

∫ s

0
e1(s, τ, xτ )dτ

)
ds

+

∫ t

0
U(t, s)h(s, xs)ds

+

∫ t

0
U(t, s)f

(
s, xs,

∫ s

0
e2(s, τ, xτ )dτ

)
ds, t ∈ J.

As in Theorem 3.1, it is easy to prove that ‖x‖1 ≤ L. Next, let us define

φ̂(t) =

{
φ(t), −r ≤ t ≤ 0
U(t, 0)φ(0), 0 ≤ t ≤ b.
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Observe that, if φ ∈ C, then, φ̂ ∈ Cb = C([−r, b], X). Also, define

x(t) = y(t) + φ̂(t), −r ≤ t ≤ b where y(t) verifies

y(t) = 0, −r ≤ t ≤ 0,

y(t) = −U(t, 0)g(0, φ, 0) + ĝ(t) +

∫ t

0
U(t, s)A(s)ĝ(s)ds

+

∫ t

0
U(t, s)h(s, ys + φ̂s)ds

+

∫ t

0
U(t, s)f

(
s, ys + φ̂s,

∫ s

0
e2(s, τ, yτ + φ̂τ )dτ

)
ds, 0 ≤ t ≤ b,

where ĝ(t) = g

(
t, yt + φ̂t,

∫ t

0
e1(t, s, ys + φ̂s)ds

)
.

Let C0
b =

{
y ∈ Cb : y(t) = 0, for − r ≤ t ≤ 0

}
. We shall consider the

operator F : C0
b → C0

b by

(Fy)(t) = 0, −r ≤ t ≤ 0,

(Fy)(t) = −U(t, 0)g(0, φ, 0) + ĝ(t) +

∫ t

0
U(t, s)A(s)ĝ(s)ds

+

∫ t

0
U(t, s)h(s, ys + φ̂s)ds

+

∫ t

0
U(t, s)f

(
s, ys + φ̂s,

∫ s

0
e2(s, τ, yτ + φ̂τ )dτ

)
ds, 0 ≤ t ≤ b.

By similar argument as above, one can prove that F is completely continuous.
Hence, the set ζ(F ) =

{
y ∈ C0

b : y = λFy, λ ∈ (0, 1)
}

is bounded, since for

every solution y in ζ(F ), the function x = y+ φ̂ is a mild solution of (5.1), for
which we have proved that ‖x‖1 ≤ L and hence

‖y‖1 ≤ L+
∥∥∥φ̂∥∥∥ .

Consequently, by Schaefer’s theorem the operator F has a fixed point in C0
b .

This means that the problem (4.1) has a mild solution. �
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6. Examples

Example 6.1. Consider the following integrodifferential equation of the form

∂

∂t
[z(x, t)− zxx(x, t)− p (t, z(x, t− r))] (6.1)

=
∂2

∂x2
z(x, t) + q

(
t, z(x, t− r),

∫ t

0
k(t, s, z(x, s− r))ds

)
, 0 ≤ x ≤ π, t ∈ J,

z(0, t) = z(π, t) = 0, t ≥ 0,

z(x, t) = φ(x, t), −r ≤ t ≤ 0,

where φ is continuous and p, q and k are continuous functions and satisfy
certain smoothness conditions. Take X = Y = L2[0, π] and let g(t, ωt)x =
p (t, ω(t−x)) , e2(t, s, ws) = k(t, s, w(s−x)) and f(t, ωt, v)x = q(t, ω(t−x), v(x)),
0 ≤ x ≤ π.

Define the operators A : D(A) ⊂ X → Y and E : D(E) ⊂ X → Y by

Aω = ω
′′

and Eω = ω − ω′′ ,

where each domain D(A) and D(E) is given by{
ω ∈ X : ω, ω

′
are absolutely continuous, ω

′′ ∈ X, ω(0) = ω(π) = 0
}
.

Then A and E can be written respectively as

Aω =

∞∑
n=1

n2(ω, ωn)ωn, ω ∈ D(A),

Eω =
∞∑
n=1

(1 + n2)(ω, ωn)ωn, ω ∈ D(E),

where ωn(x) =
√

2
π sinnx, n = 1, 2, 3, ... is the orthogonal set of eigenvectors

of A. Furthermore, for ω ∈ X we have

E−1ω =
∞∑
n=1

1

1 + n2
(ω, ωn)ωn,

AE−1ω =

∞∑
n=1

−n2

1 + n2
(ω, ωn)ωn,

T (t)ω =
∞∑
n=1

exp

(
−n2t

1 + n2

)
(ω, ωn)ωn.
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It is easy to see that AE−1 generates a strongly continuous semigroup T (t) on
Y and T (t) is compact such that ‖T (t)‖ ≤ N and

∥∥AE−1T (t)g(t, ω)
∥∥ ≤ N1

for each t > 0.
The function p : J× [0, π]→ [0, π] is completely continuous and there exists

a constant n1 > 0 such that
‖p(t, ω(t− x))‖ ≤ n1.

Also, the functions k : J × J × [0, π]→ [0, π] and q : J × [0, π]× [0, π]→ [0, π]
are measurable and there exist integrable functions l1, l2 : J → [0,∞) and l3 :
J × J → [0,∞) such that

‖q(t, v, ω)‖ ≤ l1(t)Ω1(‖v‖) + l2(t)Ω2(‖ω‖),
|k(t, s, ω)| ≤ l3(t, s)ψ1(‖ω‖),

where Ωi : [0,∞) → (0,∞), i = 1, 2, are continuously differentiable nonde-
creasing functions, ψ1 : [0,∞) → (0,∞) are continuous nondecreasing func-
tions.

Let p(t) = max
{
b(t),

∣∣E−1∣∣Nq(t)} be such that∫ b

0
p(s)ds<

∫ ∞
a

{
[Ω1(s)+Ω2(L0ψ1(s))]

Ω
′
1(s)

Ω
′
0(s)

+
ψ1(s)

Ω
′
0(s)

Ω
′
2(L0ψ1(s))

}−1
ds,

where

b(t) =

{
l3(t, t) +

∫ t

0

∣∣∣∣∂l3(t, s)∂t

∣∣∣∣ ds} ,
q(t) = max {l1(t), l2(t)} ,

L0 is a finite bound for
∫ t
0 l3(t, s)ds and a = Ω−10 (Ω1(α0) + Ω2(0)) with α0 =∣∣E−1∣∣N [‖Eφ(0)‖+ n1] +
∣∣E−1∣∣n1 +

∣∣E−1∣∣N1b.
Further, all the conditions stated in the Theorem 3.1 are satisfied. Hence

the equation (6.1) has a mild solution on [0, b].

Example 6.2. Consider the following partial neutral integrodifferential equa-
tion of the form

∂

∂t

[
z(t, x)+

∫ t

−h
a1 (t, x, s− t)P1 (z(s, x)) ds+

∫ t

0

∫ s

−h
k(s− τ)P2 (z(τ, x)) dτds

]
=

∂2

∂x2
z(t, x) + a(t, x)z(t, x) + k0(x)z(t, x) +

∫ t

−h
a2 (t, x, s− t)Q1 (z(s, x)) ds

+

∫ t

0

∫ s

−h
k(s− τ)Q2 (z(τ, x)) dτds, 0 ≤ x ≤ π, t ∈ J = [0, b], (6.2)

z(t, 0) = z(t, π) = 0, t ≥ 0,

z(t, x) = φ(t, x), −h ≤ t ≤ 0, 0 ≤ x ≤ π.
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where a(t, x) is continuous on 0 ≤ x ≤ π, 0 ≤ t ≤ b, h is a positive constant
and φ, a continuous function.

Let us take X = L2[0, π] with the norm |.|L2 . Put xt(s) = zt(s, x),

f (t, xt, B2(xt)) =

∫ t

−h
a2 (t, x, s− t)Q1 (z(s, x)) ds+B2(xt),

g (t, xt, B1(xt)) =

∫ t

−h
a1 (t, x, s− t)P1 (z(s, x)) ds+B1(xt)

and h(t, xt) = k0(x)z(t, x),
where

B2(xt) =

∫ t

0

∫ s

−h
k(s− τ)Q2 (z(τ, x)) dτds,

B1(xt) =

∫ t

0

∫ s

−h
k(s− τ)P2 (z(τ, x)) dτds.

Let A : D(A) ⊂ X → X be the operator defined by Az = z′′ with the
domain D(A) = {z ∈ X : z, z′ are absolutely continuous, z′′ ∈ X, z(0) =
z(π) = 0} . Then,

Az =
∞∑
n=1

n2(z, zn)zn, z ∈ D(A),

where zn(x) =
√

2
π sinnx, n = 1, 2, 3, ... is the orthogonal set of eigenvectors

of A. It is well known that A is the infinitesimal generator of an analytic
semigroup (T (t))t≥0 on X and is given by

T (t)z =

∞∑
n=1

e−n
2t(z, zn)zn, z ∈ X.

Now, we define the operator A(t)z = Az(x) + a(t, x)z, z ∈ D(A(t)), t ≥
0, x ∈ [0, π], where D(A(t)) = D(A), t ≥ 0. By assuming that x→ a(t, x) is
continuous in t and there exists ρ > 0 such that a(t, x) ≤ −ρ for all t ∈ J, x ∈
[0, π], it follows that the system

z′(t) = A(t)z(t), t ≥ s,
z(s) = x ∈ X

generates an evolution system U(t, s) as U(t, s)y = T (t−s) exp

(∫ t

s
a(τ, x)dτ

)
y,

for y ∈ X, where T (t) is the compact analytic semigroup generated by the op-

erator A(t) and ‖U(t, s)‖ ≤ e−(1+ρ)(t−s) for every t ≥ s.
With this choice of A(t), f, g and h, we see that the equation (6.2) can be

written in the abstract formulation of (4.1).
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Further, all the conditions of the Theorem 5.1 are satisfied. Hence, by
Theorem 5.1, the equation (6.2) has a mild solution on [0, b].
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