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Abstract. Recently, Allmohammady et al. [1-3], Darzi et al. [5], and Delavar et al. [6] dealt

with some results in the KKM theory on generalized convex minimal spaces. By establishing

a kind of the KKM principle in these spaces, they obtained some results on coincidence or

fixed point theorems and others. Our aim in the present paper is to show that their results

are consequences of corresponding ones for abstract convex minimal spaces in our previous

paper [12] and hence, can be extended to more general setting.

1. Introduction

Many problems in nonlinear analysis can be solved by showing the nonempti-
ness of the intersection of certain family of subsets of an underlying set. One of
the remarkable results on the nonempty intersection is the celebrated Knaster-
Kuratowski-Mazurkiewicz theorem (simply, the KKM principle) in 1929 [7],
which was concerned with certain types of multimaps called the KKM maps
later.

The KKM theory, first named by the author in 1992, is nowadays the study
of applications of various equivalent formulations of the KKM principle and
their generalizations. In the last two decades, the KKM theory is extended
to generalized convex (G-convex) spaces in a sequence of papers of the author
and his followers. Moreover, in 2006 [10], we introduced a new concept of
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abstract convex spaces which is adequate to establish the KKM theory. With
this new concept, we generalized and simplified known results of the theory on
convex spaces, H-spaces, G-convex spaces, and others. For details, see [13-16]
and the references therein.

Apparently motivated by the present author’s works on G-convex spaces,
in 2008, Alimohammady et al. [1] introduced the notion of G-convex minimal
spaces and obtained the open and closed versions of the KKM principle in this
new setting. Their method is just replacing the topological structure in the
relevant results by the more general minimal structure as in [2].

In the same year [12], we introduced a new concept of abstract convex
minimal spaces and established typical results in the KKM theory of such
spaces. Since any minimal space can be made into a topological space, results
on abstract convex minimal spaces can be deduced from the theory on abstract
convex spaces. In this way, the KKM type theorems were used there to obtain
coincidence theorems, the Fan-Browder type fixed point theorems, the Fan
intersection theorem, and the Nash equilibrium theorem on abstract convex
minimal spaces.

Recently, Allmohammady et al. [3], Darzi et al. [5], and Delavar et al. [6]
dealt with some results in the KKM theory on generalized convex minimal
spaces. By establishing a kind of the KKM principle in these spaces, they
obtained some results on coincidence or fixed point theorems and others. Our
aim in the present paper is to show that their results are consequences of
corresponding ones for abstract convex minimal spaces in our previous work
[12] and hence, can be extended to more general setting.

The authors of [5] claimed that generalized versions of Ky Fan’s lemma,
Fan-Browder fixed point theorem, Nash equilibrium theorem and some Urai
type fixed point theorems in G-convex minimal spaces were given. In fact,
most of their results are formal extensions of corresponding ones for G-convex
spaces due to the present author. These are already extended to more general
abstract convex minimal spaces in [12].

Our aim in the present paper is to show that all of the results in [5, 6]
are consequences of corresponding ones in our previous paper [12] and hence,
can be extended to abstract convex minimal spaces. After two preliminary
sections, the main results extending Theorems 2-8 of [5] will be given. We
indicate that other consequences of them in [3, 5, 6] can be also extended and
improved.

2. Abstract convex spaces

In this section, we recall definitions and some basic results on abstract
convex spaces given in [10, 12-15] and some of their new consequences.
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A multimap or simply a map F : X ( Y is a function from a set X into
the power set P(Y ) of a set Y ; that is, a function with the values F (x) ⊂ Y
for x ∈ X and the fibers F−(y) := {x ∈ X | y ∈ F (x)} for y ∈ Y . For A ⊂ X,
let F (A) :=

⋃
{F (x) |x ∈ A}. For any B ⊂ Y , the (lower) inverse of B under

F is defined by

F−(B) := {x ∈ X | F (x) ∩B 6= ∅}.
Let 〈D〉 denote the set of all nonempty finite subsets of a set D.

Definition 2.1. An abstract convex space (E,D; Γ) consists of a nonempty
set E, a nonempty set D, and a map Γ : 〈D〉( E with nonempty values. We
may denote ΓA := Γ(A) for A ∈ 〈D〉.

For any D′ ⊂ D, the Γ-convex hull of D′ is denoted and defined by

coΓD
′ :=

⋃
{ΓA | A ∈ 〈D′〉} ⊂ E.

A subset X of E is called a Γ-convex subset of (E,D; Γ) relative to D′ if for
any N ∈ 〈D′〉, we have ΓN ⊂ X, that is, coΓD

′ ⊂ X. Then (X,D′; Γ|〈D′〉) is
called a Γ-convex subspace of (E,D; Γ).

When D ⊂ E, the space is denoted by (E ⊃ D; Γ). In such case, a subset X
of E is said to be Γ-convex if coΓ(X ∩D) ⊂ X; in other words, X is Γ-convex
relative to D′ := X ∩D. In case E = D, let (E; Γ) := (E,E; Γ).

An abstract convex space with a topology on E is sometimes called an
abstract convex topological space.

Example 2.1. Examples of abstract convex spaces were given in [10, 13-15].

For abstract convex spaces, we can define KKM maps as in [10]:

Definition 2.2. Let (E,D; Γ) be an abstract convex space and Z a set. For
a map F : E ( Z with nonempty values, if a map G : D( Z satisfies

F (ΓA) ⊂ G(A) :=
⋃
y∈A

G(y) for all A ∈ 〈D〉,

then G is called a KKM map with respect to F . A KKM map G : D( E is
a KKM map with respect to the identity function 1E .

A map F : E ( Z is said to have the KKM property and called a K-map if,
for any KKM map G : D ( Z with respect to F , the family {G(y)}y∈D has
the finite intersection property. We denote

K(E,Z) := {F : E ( Z | F is a K-map}.

Similarly, when Z is a topological space, a KC-map is defined for closed-
valued maps G, and a KO-map for open-valued maps G. In this case, we
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have

K(E,Z) ⊂ KC(E,Z) ∩ KO(E,Z).

Note that if Z is discrete then three classes K, KC, and KO are identical.

Example 2.2. (1) Every abstract convex space in our sense has a map F ∈
K(E,Z) for any nonempty set Z and for any class of KKM maps G : D( Z
with respect to F . In fact, for each x ∈ E, choose F (x) := Z or let F (x)
contain some z0 ∈ Z.
(2) Further examples were given in Section 5 of [10].

Definition 2.3. The partial KKM principle for an abstract convex topological
space (E,D; Γ) is the statement 1E ∈ KC(E,E); that is, for any closed-valued
KKM map G : D ( E, the family {G(y)}y∈D has the finite intersection
property. The KKM principle is the statement 1E ∈ KC(E,E) ∩ KO(E,E);
that is, the same property also holds for any open-valued KKM map.

An abstract convex space is called a (partial) KKM space if it satisfies the
(partial) KKM principle, respectively.

Example 2.3. The following are typical examples of KKM spaces. Others
can be seen in [13] and the references therein.

(1) A convexity space (E, C) in the classical sense consists of a topological
space E and a family C of subsets of E such that E itself is an element of C
and C is closed under arbitrary intersection.

(2) A convex space (X,D) = (X,D; Γ) is a triple where X is a subset of a
vector space, D ⊂ X such that coD ⊂ X, and each ΓA is the convex hull of
A ∈ 〈D〉 equipped with the Euclidean topology. This concept generalizes the
convex space due to Lassonde for X = D.

(3) An abstract convex topological space (X,D; Γ) is called an H-space if
Γ = {ΓA} is a family of contractible (or, more generally, ω-connected) subsets
of X indexed by A ∈ 〈D〉 such that ΓA ⊂ ΓB whenever A ⊂ B ∈ 〈D〉. If
D = X, (X; Γ) is called a c-space by Horvath.

(4) A generalized convex space or a G-convex space (X,D; Γ) is an abstract
convex topological space such that for each A ∈ 〈D〉 with the cardinality
|A| = n + 1, there exists a continuous function φA : ∆n → Γ(A) such that
J ∈ 〈A〉 implies φA(∆J) ⊂ Γ(J).

Here, ∆n is the standard n-simplex with vertices {ei}ni=0, and ∆J the face
of ∆n corresponding to J ∈ 〈A〉.

(5) A space having a family {φA}A∈〈D〉 or simply a φA-space

(X,D; {φA}A∈〈D〉)
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consists of a topological space X, a nonempty set D, and a family of continuous
functions φA : ∆n → X (that is, singular n-simplexes) for A ∈ 〈D〉 with the
cardinality |A| = n+ 1.

Every φA-space (X,D; Γ) with ΓA := φA(∆n) for A ∈ 〈D〉 with |A| = n+ 1
is a KKM space which is not G-convex; see [16].

Note that each of the above examples has a large number of concrete ex-
amples. Note also that [13] contains some incorrectly stated statements such
as (VI), Theorem 4, (XVI), and (XVII). These can be corrected easily.

Recently, Kulpa and Szymanski [8] found some partial KKM spaces which
are not KKM spaces.

Now we have the following diagram for triples (E,D; Γ):

Simplex =⇒ Convex subset of a t.v.s. =⇒ Convex space =⇒ H-space
=⇒ G-convex space =⇒ φA-space =⇒ KKM space
=⇒ Partial KKM space =⇒ Abstract convex space.

3. Abstract convex minimal spaces

Definition 3.1. ([1,2]) A family M⊂ P(X) is called a minimal structure on
a set X if ∅, X ∈ M. In this case, (X,M) is called a minimal space. Any
element of M is called an m-open set of X and a complement of an m-open
set is called an m-closed set of X. For minimal spaces (X,M) and (Y,N ), a
function f : X → Y is said to be continuous (more precisely, m-continuous
or (M,N )-continuous) if f−1(V ) ∈M for each V ∈ N .

From now on, an abstract convex space (E,D; Γ) with a minimal structure
on E will be called an abstract convex minimal space.

Example 3.1. (1) Any topological space is a minimal space and not con-
versely. However, any minimal space can be made into a topological space;
see Proposition 1 below.

(2) Any t.v.s. is a minimal vector space. There is some linear minimal space
which is not a t.v.s. [1].

(3) A generalized convex minimal space or a G-convex minimal space (X,D;
Γ) consists of a minimal space X, a nonempty set D, and a map Γ : 〈D〉( X
such that for each A ∈ 〈D〉 with the cardinality |A| = n + 1, there exists a
continuous function φA : ∆n → Γ(A) such that J ∈ 〈A〉 implies φA(∆J) ⊂
Γ(J). See [1].

(4) A G-convex space is a G-convex minimal space, and the converse does
not hold; for an example, see [1].
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(5) A minimal φA-space (X,D; {φA}A∈〈D〉) consisting of a minimal space
X, a nonempty set D, and a family of continuous functions φA : ∆n → X for
A ∈ 〈D〉 with |A| = n + 1 is an abstract convex minimal space by putting
ΓA := φA(∆n); see [11].

It is obvious that basic facts on G-convex spaces (e.g. in [9]) can be extended
to corresponding ones on G-convex minimal spaces. However, we have the
following:

Proposition 3.1. ([12]) (i) A minimal space (X,M) can be made into a
topological space (X, T ).
(ii) A continuous map f : (X,M) → (Y,N ) between minimal spaces can be
regarded as a continuous map between the corresponding topological spaces.

Proposition 3.2. ([12]) A minimal φA-space (X,D; {φA}A∈〈D〉) with a min-
imal space (X,M) can be regarded as the one with a topological space (X, T ).

Consequently, a G-convex minimal space can be made into a G-convex
space. This implies that the study of G-convex minimal spaces is not essential.

Definition 3.2. Let (E,D; Γ) be an abstract convex space and (Z,M) a
minimal space. Then an mKC-map is defined for m-closed-valued maps G,
and an mKO-map for m-open-valued maps G. In this case, we have

K(E,Z) ⊂ mKC(E,Z) ∩mKO(E,Z).

For a KKM map on a G-convex minimal space, the following is known:

Proposition 3.3. ([1, Theorems 3.2 and 3.5]) Let (E,D; Γ) be a G-convex
minimal space and F : D ( E a KKM map with m-closed [resp., m-open ]
values. Then {F (z)}z∈D has the finite intersection property.

Usually, a KKM type theorem is a claim 1E ∈ K(E,E) for an abstract
convex space (E,D; Γ). There are a large number of works on various forms
of the KKM type theorems for convex spaces, H-spaces, or G-convex spaces
and their applications. See Section 5 of [10] and the references at the end.

Definition 3.3. For an abstract convex minimal space (E,D; Γ), the mKKM
principle is the statement 1E ∈ mKC(E,E) ∩ mKO(E,E), and the partial
mKKM principle the statement 1E ∈ mKC(E,E).

A minimal KKM space (or simply, mKKM space) is an abstract convex min-
imal space satisfying the mKKM principle. A minimal partial KKM space (or
simply, partial mKKM space) is an abstract convex minimal space satisfying
the partial mKKM principle.
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Example 3.2. In view of Proposition 3.3, a G-convex minimal space is an
mKKM-space. The converse does not hold; see [11].

Proposition 3.3 can be extended as follows:

Proposition 3.4. A minimal φA-space (X,D; {φA}A∈〈D〉) is an mKKM space.

Proof. By Proposition 3.2, any φA-space with a minimal space (X,M) can be
regarded as the one with a topological space (X, T ). Let Γ : 〈D〉 ( X be
defined by ΓA := φA(∆|A|−1) for each A ∈ 〈D〉. Then (X,D; Γ) is a KKM
space as in [16]. Hence the proposition holds. �

4. The KKM type theorems in abstract convex spaces

We begin with the following in [12, Theorem 1]:

Theorem 4.1. Let (E,D; Γ) be an abstract convex space, Z a set, and F :
E ( Z a map. Then F ∈ K(E,Z) iff for any map G : D( Z satisfying

F (ΓN ) ⊂ G(N) for any N ∈ 〈D〉,

we have F (E) ∩
⋂
{G(y) | y ∈ N} 6= ∅ for each N ∈ 〈D〉.

Remark 4.1. If Z has any minimal structure and if F ∈ mKO(E,Z) [resp.,
F ∈ mKC(E,Z)], then we have to assume G is m-open-valued [resp., m-closed-
valued].

Definition 4.1. ([1]) A subset K of a minimal space (Z,M) is said to be
m-compact if any family {Aα} of m-open sets such that K ⊂

⋃
αAα has a

finite subfamily {Aαi} such that K ⊂
⋃
iAαi .

For a subset A of a minimal space (Z,M), let IntA =m-IntA :=
⋃
{U ∈

M | U ⊂ A} and A = m-ClA :=
⋂
{V | A ⊂ V, V c ∈ M}. Note that A is

m-closed if and only if arbitrary union of m-open sets is m-open [17].

Under an additional requirement, we have the whole intersection property
for the map-values of a KKM map as in [12, Corollary 1.2]:

Theorem 4.2. Let (E,D; Γ) be a partial mKKM space and G : D ( E a
map satisfying

(1) G has m-closed values, and
(2) G is a KKM map.

Then {G(y)}y∈D has the finite intersection property.
Further if
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(3)
⋂
z∈M G(z) is m-compact for some M ∈ 〈D〉,

then we have ⋂
y∈D

G(y) 6= ∅.

Note that, if (E,D; Γ) is a G-convex minimal space, then Theorem 4.2
reduces to [5, Theorem 2].

Modifying the definition in [3], for an abstract convex minimal space (E,D; Γ),
we define as follows:

Definition 4.2. A map G : D( E has intersectionally m-closed values if⋂
y∈D

G(y) =
⋂
y∈D

G(y)

and transfer m-closed values if⋂
y∈D

G(y) =
⋂
y∈D

G(y).

Corollary 4.1. Let (E,D; Γ) be a partial mKKM space, and G : D ( E a
map satisfying

(1) G has intersectionally m-closed values,
(2) G has m-closed values,
(3) G is a KKM map, and

(4)
⋂
z∈M G(z) is m-compact for some M ∈ 〈D〉.

Then we have ⋂
y∈D

G(y) 6= ∅.

Proof. Since G satisfies requirements of G in Theorem 4.2, we have ∅ 6=⋂
y∈DG(y). This implies

⋂
y∈DG(y) 6= ∅ by (1). Hence the conclusion

holds. �

Corollary 4.1 reduces to [12, Corollary 1.3] whenever G is a transfer m-
closed map. Consequently, it contains results in [9] for G-convex spaces, [10,
Proposition 5] for abstract convex spaces, and [1, Theorem 3.3] for G-convex
minimal spaces.

The following is [12, Corollary 1.4]:

Theorem 4.3. Let (E,D; Γ) be an abstract convex minimal space with the
identity map 1E ∈ mKO(E,E), and G : D( E a map satisfying

(1) G has m-open values, and
(2) G is a KKM map.
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Then {G(y)}y∈D has the finite intersection property.
Further if
(3)

⋂
z∈M G(z) is m-compact for some M ∈ 〈D〉, and

(4) G has m-closed values,
then we have ⋂

y∈D
G(y) 6= ∅.

Note that Theorems 4.2 and 4.3 hold for an mKKM space (E,D; Γ) and
hence for any G-convex minimal space. Therefore, Theorem 4.3 reduces to
[5, Theorem 3]. Moreover, note that [5, Corollary 1] simply tells that any
G-convex minimal space is an mKKM space.

5. Coincidence and fixed point theorems

In the KKM theory, there exist some basic results from which we can deduce
several equivalent formulations that can be used to applications; see [9, 13-15].
In this section, we introduce some of such basic results.

For abstract convex spaces, we have the following coincidence theorem [12,
Theorem 3]:

Lemma 5.1. Let (E,D; Γ) be an abstract convex space, Z a set, S : D (
Z, T : E ( Z maps, and F ∈ K(E,Z). Suppose that

(1) for each z ∈ F (E), coΓS
−(z) ⊂ T−(z) [that is, T−(z) is Γ-convex

relative to S−(z)]; and
(2) F (E) ⊂ S(N) for some N ∈ 〈D〉.

Then there exists an x̄ ∈ E such that F (x̄) ∩ T (x̄) 6= ∅.

Remark 5.1. If Z has a minimal structure and S has m-open [resp., m-closed]
values, then S has relatively m-open [resp., m-closed] values in F (E). Then
we can assume F ∈ mKC(E,Z) [resp., F ∈ mKO(E,Z)].

The following is an immediate consequence of Lemma 5.1:

Theorem 5.1. Suppose that (E,D; Γ) is an abstract convex minimal space,
(Z,M) is a minimal space, S : D( Z, T : E ( Z and F ∈ mKC(E,Z) are
multimaps satisfying

(a) S has m-open values;
(b) for each z ∈ F (E), coΓS

−(z) ⊂ T−(z);
(c) Z = S(N) for some N ∈ 〈D〉.

Then F and T have a coincidence point, that is, the conclusion of Lemma 5.1
holds.
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Note that, if (E,D; Γ) is a G-convex minimal space, then Theorem 5.1
reduces to [5, Theorem 4].

From Lemma 5.1, we also have the following:

Theorem 5.2. Suppose that (E,D; Γ) is an abstract convex minimal space,
(Z,M) is a minimal space, S : D( Z, T : E ( Z and F ∈ mKO(E,Z) are
multimaps satisfying

(a) S has m-closed value;
(b) for each z ∈ F (E), coΓS

−(z) ⊂ T−(z);
(c) Z = S(N) for some N ∈ 〈D〉.

Then F and T have a coincidence point.

Note that, if (E,D; Γ) is a G-convex minimal space, then Theorem 5.2
reduces to [5, Theorem 5]. Moreover, [5, Corollary 6] can be improved as for
Theorem 5.2.

From Theorems 5.1 and 5.2 with E = Z and F = 1E , we have the following
prototype [12, Corollary 3.1] of the Fan-Browder fixed point theorem [4]:

Corollary 5.1. Let (E,D; Γ) be an mKKM space, and G : E ( D, H : E (
E maps satisfying

(1) for each x ∈ E, coΓG(x) ⊂ H(x); and
(2) E = G−(N) for some N ∈ 〈D〉.
(3) G− has m-open [resp., m-closed ] values.

Then H has a fixed point x̄ ∈ E, that is, x̄ ∈ H(x̄).

All of [5, Corollaries 2-5], which were claimed in [5] to be generalizations
of our previous results, are simple consequences of Corollary 5.1 whenever
(E,D; Γ) is a G-convex minimal space.

From Lemma 5.1 with Z = E, F = 1E , we have the following:

Theorem 5.3. Suppose that (E,D; Γ) is an mKKM space and S : D ( E
and T : E ( E are two multimaps satisfying

(a) S has m-open [resp., m-closed ] values;
(b) for each y ∈ E, coΓS

−(y) ⊂ T−(y);
(c) T (E) ⊂ S(N) for N ∈ 〈D〉;
(d) T− has nonempty values.

Then T has a fixed point.

Proof. For each x ∈ E, by (d), there exists y ∈ T−(x) or x ∈ T (y). Therefore
E = T (E) and hence E ⊂ S(N) by (c). This shows that condition (2) of
Lemma 5.1 holds. Since other requirements of Lemma 5.1 holds, the conclusion
follows. �
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Note that [5, Theorem 6] is a particular form of Theorem 5.3 for a G-convex
minimal space (E,D; Γ).

From Corollary 5.1, we deduced some new forms of the Fan-Browder type
fixed point theorems as follows [12, Corollary 3.3]:

Theorem 5.4. Let (E,D; Γ) be an mKKM space and S : E ( D, T : E ( E
maps such that

(1) for each x ∈ E, coΓS(x) ⊂ T (x); and
(2) there exist D′ := {y1, y2, . . . , yn} ∈ 〈D〉 and m-open [resp., m-closed ]

subsets {Gi}ni=1 of E such that

E =

n⋃
i=1

Gi and Gi ⊂ S−(yi) for each i.

Then T has a fixed point x∗ ∈ E.

Note that [5, Theorem 7] is a particular form of Theorem 5.4 for a G-convex
minimal space (E,D; Γ) and S = T .

Modifying the definition in [3], for a minimal space X and a set Y , we define
as follows:

Definition 5.1. A map F : Y ( X has unionly m-open values if

Int
⋃
y∈Y

F (y) =
⋃
y∈Y

IntF (y);

and transfer m-open values if⋃
y∈Y

F (y) =
⋃
y∈Y

IntF (y).

Corollary 5.2. Suppose (X,D; Γ) is an m-compact mKKM space, Y is a
minimal space, S : X ( D, F : X ( Y and T : X ( X are multimaps such
that:

(a) x ∈ X and M ∈ 〈S(x)〉 imply that ΓM ⊂ T (x),
(b) F− : Y ( X has unionly m-open values and F (x) is nonempty for each

x ∈ X,
(c) for any y ∈ Y there exists z ∈ D such that F−(y) ⊂ S−(z).

Then T has a fixed point.

Proof. Note that (a) implies condition (1) of Theorem 5.4 with E = X. By
(b), for each x ∈ X, there exists a y ∈ Y such that x ∈ F−(y), and hence

X =
⋃
y∈Y

F−(y) = Int
⋃
y∈Y

F−(y) =
⋃
y∈Y

IntF−(y).
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Since X is m-compact, there exists {y1, . . . , yn} ⊂ Y such that X =
⋃n
i=1

IntF−(yi). By (c), there exists {z1, . . . , zn} such that F−(yi) ⊂ S−(zi). By
putting Gi := IntF−(yi) ⊂ S−(zi) for each i, condition (2) of Theorem 5.4
holds. Now the conclusion follows from Theorem 5.4. �

For a G-convex minimal space and a transfer m-open valued F , Corollary
5.2 reduces [3, 6, Theorem 2.1] which plays the key role in [3, 6]. Hence these
papers can be improved by applying Corollary 5.2. But we will not follow
them.

Lemma 5.2. Suppose that (X,D; Γ) with ΓA = φA(∆n) for A ∈ 〈D〉 with
|A| = n + 1 is a minimal φA-space and D′ is a nonempty subset of D. Then
its Γ-convex subspace (coΓD

′, D′; Γ|〈D′〉) is an mKKM space.

Proof. In the subspace, ΓA = φA(∆n) for A ∈ 〈D′〉 with |A| = n + 1. Hence,
by Proposition 3.4, the subspace is an mKKM space. �

In particular, if (X,D; Γ) is a G-convex minimal space, so is any Γ-convex
subspace by [5, Lemma 1], and hence, any subspace is an mKKM space.

Theorem 5.5. Suppose (E,D; Γ) is an abstract convex minimal space, S :
E ( D is a multimap and also suppose that there exist D′ = {y1, . . . , yn} ⊂ D
and nonempty m-open [resp., m-closed ] subsets Gi ⊂ S−(yi) for each i =
1, . . . , n. If (coΓD

′, D′; Γ|〈D′〉) is an mKKM space and coΓD
′ ⊂

⋃n
i=1Gi, then

the map coΓS has a fixed point.

Proof. Let (E,D; Γ) := (coΓD
′, D′; Γ|〈D′〉). Define G : E ( D by G−(yi) :=

Gi for each i and H : E ( E by H(x) := coΓS(x) for each x ∈ coΓD
′. Then

apply Corollary 5.1 of Theorems 5.1 and 5.2. �

When (E,D; Γ) is a G-convex minimal space, then any subspace is an
mKKM space, and hence Theorem 5.5 reduces to [5, Theorem 8]. In [5],
its authors claimed that [5, Theorem 8] and its Corollaries [5, Corollaries 7-
11] are all extended versions of our previous results. Now their results for
G-convex minimal spaces can be extended to mKKM spaces in view of our
new Theorem 5.5.

Moreover, in view of Proposition 3.4, all of Theorems 4.2, 4.3, 5.1–5.5 holds
for minimal φA-spaces. Finally, note that any results on minimal spaces can
be deduced from the corresponding ones on topological spaces. Hence such
study on minimal spaces is not essential.
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