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Abstract. If P(z) is a polynomial of degree n, having all the zeros in |z| < k < 1 and
m = min|, = |P(z)|, Liman [5] proved that, for every 8 € C' with |3| < 1 and for each ¢ > 0,
mpBz"

kn

P'(2) — T]'Z—nnznf1

’
q

P(z) -

< Hl + 28 (u, k)

q

o _ [nlanlk® + plan_ulk
) nlanlkt =1+ plan—u| S

In this paper, we improve and extend the above inequality and related result for polar

q

where

derivatives of a polynomial. Our results generalizes certain well known polynomial inequal-

ities.

1. INTRODUCTION AND PRELIMINARIES

Let P, be a space of polynomials of degree at most n and P € P,. Let
polynomial P(z) has all its zeros in |z| < 1. Then

max |P'(2)] > = max | P(2)]. (1.1)
|z|=1 2 |z=1
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The result is sharp and equality holds for P(z) = az™ + b, |a| = |b|, which is
an inequality of Turan [10].

As an extension of (1.1), Malik [6] proved that, if polynomial P(z) has all
its zeros in |z| < k, k <1, then

—— max |P(z)| < max|P'(z)]. 1.2
T 5 D | P(2)] < max | P(2)] (1.2)

Later on Govil [4] improved the result and proved that, if polynomial P(z)
has all its zeros in |z| < k, k > 1, then

max |P'(z)| > ma
|z\:)1{‘ (2)] = 1+ kn |z\:)1{

[P(2)]. (1.3)

Let D, P(z) denote polar differentiation of the polynomial P(z) of degree
n with respect to a. Then

/

DyP(z) :=nP(a)+ (a — 2)P (2).

The polynomial D,P(z) is of degree at most n — 1 and it generalizes the
ordinary derivative in the sense that
D,P
lim —= (2)

a—00 0%

Recently Shah [10] extended (1.3) to the polar derivative of P(z) and proved
that, if all the zeros of P(z) lie in |z| < 1, then

= P'(2).

5 o = Dmax|P(2)] < max|DaP(2)]. (1.4)

The result is sharp and equality holds for P(z) = (321)".

z

Inequality (1.4) was later generalized and proved that, if all the zeros of
P(z) lie in |z] < k,k > 1, then for any complex number « with |a| > k

la| — k
max | Do P(2)| > max | P(2)|. 1.

The result is sharp and equality holds for P(z) = (z — k)™.

Malik [7] extended (1) to L, norm by proving the following more general
result. If P(z) has all its zeros in closed convex unit disc |z| < 1, then for each
q>0

n||Plly < ||1+Z|\qg1|i>§\P'(Z)\7 (1.6)
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2 1
1Pl = { / r%iﬂq} .
0

Further, Aziz [1] improved (1.6) and generalized (1.2) by proving if P(z) has
all its zeros in |z| < k < 1, then for each ¢ > 0

n||Pllg < (It + kzlly gl‘glp'(Z)L (1.7)

where

Letting ¢ — oo in (1.6) and in (1.7) and making use of facts of analysis (see
[9, p.91]) that

Pl, < P(et
n| IIq_Ogg)gﬂl (e,

as ¢ — oo, we get inequality (1.1) and (1.2) respectively.

Dewan et all [3] generalizes (1.5) and (1.7) and proved the following result
for polar derivative of a polynomial and proved that if P(z) has all its zeros
in |z| <k <1, then for |a| > k and for each ¢ > 0

nllla]  klly < 1+ k2]l max | Do P(2)] (L8)

Dividing both sides of (1.8) by || and letting |a] — oo we get (1.7). If we
let ¢ — oo in (1.8) we get (1.5).
Liman [5] considered a class of polynomials

n
Py = an2" + Zan_jz”_j7 1<u<k
m
and proved the following four results:
Theorem 1.1. If P € P, ) and P(z) has all its zeros in |z| < k where k < 1

and m = miny, |, |P(z)], then for any real or complex number 8 with |B] < 1
and each g > 0,

P(et) - 1"
H 1 ( 10 mnBzn—1 = 1_‘_S(u,k)z ) (1.9)
Pr(e?) - kg q
where
k2H _ ku—l
S(# o= {n|an| ;l_l,u’an /L‘ } (110)
’ nlan kP + plag—|

Using Holder’s inequality, Liman [5] proved that:
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Theorem 1.2. If P € P, ) and P(z) has all its zeros in [z| < k where k < 1.

If m = miny,_, |P(z)|, then for each ¢ >0, s > 1, r > 1 withr ' +s71 =1

and for any B with |f| < 1

mBz"
kn

where S(1 1) is defined in (1.10) by choosing pn = 1.

mnBz" 1
iy

nl|P(e’) ~ lg < I+ S zllarllP' () = (1.11)

Theorem 1.3. If P € P, ,) and P(z) has all its zeros in |z| < k where k < 1.
If m = miny,_, |P(2)|, then for each ¢ > 0 and for any B with [3| <1,

H P(z) — M8 n

n -
P'(z) — k—nnz”—l

< Hl + ktz

(1.12)

q q

Theorem 1.4. If P € P, ,) and P(z) has all its zeros in |z| < k, where k < 1
and m = min,— |P(2)|, then for every complex number § with |5| < 1 and
eachq>0,s>1,r>1withr 1 +s =1

_ mpBz"
kn

n

P(z)

< Hl—l—k“z

(1.13)

q qar as

2. LEMMAS

For the proofs of our main results, we need the following lemmas. The first
lemma is due to Aziz and Rather [2].

n .
Lemma 2.1. If P(z) = ap2" + > an—j2" 7, 1 < p < n is a polynomial of

]_
degree m having all the zeros in the closed disc |z| < k < 1, then for |z| =1,
I<p<n

Q' ()] < K*IP'(2)]. (2.1)

Lemma 2.2. If P € P, ,,, and P(z) has all its zeros in |z| < k where k <1
and Q(z) = z"P(L) then for |z| =1

Q' (2)] < S(p, k)| P'(2)],

where

nank2“—|—uan_ kr—1
S(u ) = { Mt e,

nlan|kH=1 + plan—,
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n .
Lemma 2.3. If P(z) = a,2" + ) an—jz2"7, 1 < p < n is a polynomial of

]7
degree n having all the zeros in the colsed and convex disk |z| < k < 1, then
for every real or complex number a with |o] > S, and |z| =1

|DaP(2)| = (o] = 8,)| P'(2)].
Proof. Let Q(z) = 2"P(2), then
Q (2)| = [nP(z) — 2P (2)]
for |z] = 1. Thus for |z| = 1, we have
|DaP(2)| = [nP(2) + (o = 2) P'(2)].
This implies
|DaP(2)| 2 |al|P'(2)| = [nP(2) = 2P'(2)]. (2.2)
(2.1) in conjuction with (2.2) gives
|DaP(2)| = (laf = 8,)|P'(2)].
U
n .
Lemma 2.4. If P(z) = ap2" + ) an—jz2"7, 1 < p < n is a polynomial of
J=n
degree nhaving all the zeros in the colsed and convex disk |z| < k < n, then
for every real or complex number o with || > k* and |z| = 1,

[DaP(2)] = (laf = k*)[P'(2)].
n .
Proof. If P(2) = ap2" + > an—j2"77, 1 < p < nis a polynomial of degree n

J=H
having all the zeros in |2| < k < 1 and ¢(z) = z2"P(2) then on |2 =1

4" (2)] < S(p, k) [P'(2)].

But
S(p, k) < k-,
this implies
q'(2)] < K| P'(2)].
Now, let
d'(2)| = InP(2) —zP'(2)| on |z = 1.

Thus on |z| =1,
|DaP(2)| = [nP(2) + (o — 2) P'(2)],
|DaP(2)] = |al|P'(2)] = [nP(2) — 2P'(2)].
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Using (2.1), we get,
|DaP(2)] = |al|[P'(2)| — k" |P'(2)],

therefore,
[DaP(2)] = (la] = k*)[P'(2)].

3. MAIN RESULTS

In this section, we prove some results which improve and extent the above
results.

Theorem 3.1. If P € P, ) and P(z) has all its zeros in |z| < k where k < 1
and m = min|,— |P(z)|, then for each ¢ > 0,

i0 B

P(e") — M5

Dy P(e) mp

T knet(n—1)8

in

n

(‘a| _S(u,k)) ) (31)

q

< Hl + S(upe”

q
where

g . nlan |k + plan—, |k~
(k) =

AlanlF5 + ilan ]
n .
Proof. Let P(z) = anz" + Y an—j2""7 and m = minp, | |P(z)|. Suppose

J=p

P(z) has all the zeros in |z| < k. If P(z) has a zero on |z| = k, then m = 0
and there is nothing to prove. Now suppose that P(z) vanishs in |z| < k,
so that m > 0 and we have m < |P(z)| for |z| = k. Therefore for every real
or complex number 8 with |3| < 1, we have |™22%| < |P(z)| for |z| = k. By

kn
Rouches theorem, it follows that all the zeros of
mpBz"
F(z)=P(z2) — o
also lie in |z] < k. By Gauss Lucas theorem, the polynomial
mnfBz" 1
Fl() = P/(z) - "
has all its zeros in |z] < k.
Again F(z) = P(z) — ™" therefore
1 1 mp mp
@ ==r)={P) - mo = -

and it can be easily verified that for |z| =1,
|F'(2)] = [nG(2) — 2G'(2)]. (3.2)
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Since F'(z) has all its zeros in |z| < k < 1, therefore using inequality (3.2) and
Lemma 2.2, we get

|G'(2)] < S(u, k)InG(2) — 2G'(2)], (3.3)
where
nlan |k + plan—,|k*!

nlan kPt + plan—,|
for |z] =1, 1 < p < n. From (3.3), we conclude that the function
2G'(2)
Wi(z) =
)= S nGe) — 6 )

is analytic in |z| < 1, [W(2)| <1, |z| =1 and W(0) = 0. Thus the function
14S(p, k)W (z) is subordinate to 1+ zS(u, k) for |z| < k. Hence by well known
property of subordinate, [4, P. 422] for each ¢ > 0 and |z| =1

S(u, k) =

2m 2m
/\1 + S(u, k)W (e?)]7do < / 114 S(u, k)e®|2d6. (3.4)
0 0
Now o
n|P(z) — 57
L+ S )W ()] = et (35)
[P(2) — 25—
That is,
n|F(2)] = 14+ S(u, )W (2)||F'(2)]. (3.6)
Inequality (3.6) in conjuction with Lemma 2.3 gives
D,F(z)
n|F(z)| < |1+ S, k)W (2)|——————. 3.7
FE) < 1+ S0 Wl (37)
Therefore
nlF(2)|(la] = S(u, k) < 1+ S, k)W (2)[[DaF(2)]
or

nlF(2)|(laf = S(p, k)
| Do F(2)|
Integrating both sides from 0 to 27 and using (3.4), we get

<1+ S(u kYW (2)].

2
allal = 8 [ | 5
0

This implies

2

q .

do < / 114 S(p, k)e?|d6.
0

2T
q .
8 < [ |1+ S0 k), Ry,

Bn
P(z) — mknz

Do(P(z) — ™82y

n(la] - sw,k))?'
0
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Equivalently
2 P(eif) — mBe™? q
o] =5k k) / ‘DQP(e(ie) )_ ’;;,?ga(em@))
. 0 (3.8)
< [ 1L+ (ke edo.
0
O

Choosing 8 = 0 in Theorem 3.1, we get the following:

Corollary 3.2. If P € P, ,) and P(z) has all its zeros in |z| < k, where
k <1 and m = min,_, |P(z)|, then for each ¢ > 0,

P(eie)

" Do P(ei)

(laf = Sgum))

)

q

< Hl + Supe”
q

where S, 1y is already defined in (1.10).

Taking p =1, (3.1) reduces to

Corollary 3.3. If P € P, ,) and P(z) has all its zeros in |z| < k, where
k <1 and m = min,_, |P(z)|, then for each ¢ >0,

in6

P(e?) — mbe

Dap(ez'é)) mp3

- knet(n—1)0

n

)

q

(laf = S(1,r))

S Hl + S(l’k)ew

q

where

g _ n\an]kQ + |an—1]
R = "nlan] + plan—i|

Remark 3.4. Dividing numerator and denominator on left hand side by |«
and letting || — oo in Theorem 3.1, we get Theorem 1.1.

n .
Theorem 3.5. If P(z) = apz™ + > an—;2"7, 1 < p < n, is a polynomial of
J=p
degree nhaving all its zeros in |z| < k <1 and m = min|,;— |P(z)], then for
every real or complex number § with |5| <1 and ¢ >0, r > 1 and s > 1 with
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Fts=1,
w0y mpBe™
nlaf = Sgum)|[P(e”) = —3
! (3.2)
§W+&Mﬁ9 Qf@)f@%)m
7 qr kn qs

Proof. Proceeding similarly as in the proof of above theorem, we have from
(3.5) for each ¢ > 0
21
(lal = S )" [ |P”) -

0

inf

MPCJagp

mﬁe

2
mf3

< [+ smwepare - 22D, o
0

This gives with the help of Holders inequality for s > 1, r > 1 with % + % =1

2T ind
n(Ja] = S(11. )" / P -

q
de

(3.10)
/1—|—S 1,k z6)|qrd0 /|D P( 19) 7;;‘6 (einﬁ)‘qsde}g.

Using inequality (3.4) with ¢ replaced by ¢r in (3.10), we obtain for each g > 0,
s>1,r>1withi+1=1

2
i inf

(o] = $s k)0 [ 1P() = "2 g
0
qs 1
{/|1+2S u,k qrde)} {/‘D P(if) ——D Cid de}s.
Equivalently
mpBe?

allal = 5 0) [Ple) - "
Dap(eie) %Da(einﬁ)

< Hl + ¢S, k)

qar qs
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Letting s — oo (so that 7 — 1) in Theorem 3.5, we get

n .
Corollary 3.6. If P(z) = apz"+ Y an—;2"7, 1 < p < n, is a polynomial of
J=p
degree nhaving all its zeros in |z| < k <1 and m = min|,— |P(z), then for
every real or complex number B with |5| <1 and q > 0,
mﬂeme

kn

DaP(e”’)—m—ﬁDaem(’

P(eif)—
(e) -

< “1+6i93(u7k)

n(lal=S)

oo

q q

Remark 3.7. If we divide by |a| in above inequality and making |a| — oo,
we obtain Theorem 1.2.

n .
Theorem 3.8. If P(z) = apz™ + > an—;2"7, 1 < p < n, is a polynomial of
J=p
degree nhaving all its zeros in |z| < k <1 and m = min|,— |P(z), then for
every real or complex number 8 with |3] <1 and g > 0,

P(eiG) - %feine

n(|a| — k* : : < |1+ kre® 3.11
(1o ) Da(P(eze)) - %Da(eme) ‘q H q ( :
Proof. Let F(z) = P(z) — m,f,fn, then
mp3
G(z) =Q(z) — e
It can be easily verified that for |z| =1,
|F'(2)| = |nG(2) — 2G'(2)]. (3.12)

Since F'(z) has all its zeros in |z| < k < 1, therefore using inequality (6) in
Lemma 2.2 we get
|G'(2)] < kK*|nG(z2) — 2G'(2)] (3.13)
for |z] =1, 1 < u < n. From (3.8), we conclude that the function
Gl
W(z) = C)
k:“{nG(z) - ZG/(Z)}
which is analytic in |z| < 1, [W(z)| < 1, |2|] = 1 and W(0) = 0. Thus the

function 1 + k#W (z) is subordinate to 1 + k#z for |z| < k. Hence by the well
known property of subordination [4], we have for each ¢ > 0,

9

27 27
/\1 + kR (e?)|9d0 < / 14 kMe|94d6. (3.14)
0 0
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Now

P(z) — M n
1+ kW (2)| = n|P(2) mnkﬁ i ‘1
[P'(2) = 52

this implies

1+ KW (2)|=n

(3.15)
Using Lemma 2.4, we get

(ez‘e) i %ﬁeme
n

2
P
TL(|OZ| - k’u) 0/ ‘DQ(P(eiG)) _ %ﬂﬁDa(einG)

2
q .
wg/u+wwwa
0

For 8 =0, in Theorem 3.3, we have

n .
Corollary 3.9. If P(z) = anz"+ ) an—;2" 7, 1 < pu <, is a polynomial of
J=n
degree n_having all its zeros in 2| < k <1 and m = min|,_ [P(2)|, then for
every q > 0,
P(eie)

el =Dt

< Hl + ke

q q

Choosing = 1 in Corollary 3.9, we obtain

n .
Corollary 3.10. If P(z) = an2" + > an—j2"7, 1 < p < n, is a polynomial
j=1
of degree n having all its zeros in |z| < k < 1 and m = min|,_, [P(z)], then
for every g > 0,

G ey

< Hl + ke

q q
Remark 3.11. Dividing numerator and denominator by |«| and letting |a| —
oo in Theorem 3.8, we get Theorem 1.3.

n -
Theorem 3.12. If P(z) = an2" + Y an—j2"7, 1 < p < mn, is a polynomial
J=p
of degree n having all its zeros in |z| < k < 1 and m = min|,_, [P(z)], then
for every real or complex number 8 with |B| <1 and ¢ >0, r > 1, s > 1 with
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Lilon,
) ind
(o] — k) P(e?) - 0
1 3 (3.16)
S Hl‘i‘kuee DaP(e 9)_FDO[(6 6)
qr qs

Proof. Proceeding on the similar lines as in the proof of Theorem 3.3 and using
Lemma 2.3

[DaP(2)| = (Jaf = k*)|P'(2)],

27
n(la| — k) / |Pei? — %fem‘ﬂqde
0

2 1 2m 1
< {/|1+k“em0\‘"d0}r{/|DaP(z) - Z“fpa(zn)me}s.
0 0

Equivalently,

nb
n(la| — k) mfe Do P(e?) — mﬁpa(em@)

Pl —
() -

< Hl + kHe?

q qr qs

Hence this completes proof of Theorem 3.12. U

Letting s — oo (so that » — 1), Theorem 3.12, yields

n .
Corollary 3.13. If P(z) = apz™ + Y an—j2"7, 1 < p < mn, is a polynomial
J=H
of degree n having all its zeros in |z| < k < 1 and m = min,_, [P(z2)], then
for every real or complex number B with f <1 and g > 0,

i mﬁeme i mp3 in
n(la] = k)| P(e”) - Zo— DoP(e") = 22 Da(e™)

< Hl + kHet?

Remark 3.14. Finally, If we divide by || in above inequality and making
|a] = 0o, we obtain Theorem 1.4.
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