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Abstract. Let Rn be the space of rational functions with prescribed poles. If r ∈ Rn, does
not vanish in |z| < k, then for k = 1

|r′(z)| ≤ |B
′(z)|
2

sup
z∈T
|r(z)|,

where B(z) is the Blaschke product.
In this paper, we consider a more general class of rational functions rof ∈ Rm?n, defined

by

(rof)(z) = r(f(z)),

where f(z) is a polynomial of degree m? and prove a more general result of the above
inequality for k > 1.

We also prove that

sup
z∈T

[∣∣∣∣r∗′(f(z))

B′(z)

∣∣∣∣ +

∣∣∣∣r′(f(z))

B′(z)

∣∣∣∣] = sup
z∈T

∣∣∣∣ (rof)(z)

f ′(z)

∣∣∣∣,
and as a consequence of this result, we present a generalization of a theorem of O’Hara and

Rodriguez for self-inverse polynomials. Finally, we establish a similar result when supremum

is replaced by infimum for a rational function which has all its zeros in the unit circle.

0Received February 6, 2023. Revised July 7, 2023. Accepted October 3, 2023.
02020 Mathematics Subject Classification: 30A10, 30C15, 30D15.
0Keywords: Rational functions, polynomials, inequalities, poles, zeros.
0Corresponding author: R. Mohammad(shafatruqia@gmail.com).



622 Ruqia Mohammad, Mridula Purohit and Ab. Liman

1. Introduction

Let Pn be the space of complex polynomials of degree at most n and C be
the complex plane. Let T = {z ∈ C : |z| = 1} and D− denotes the region
inside of T and D+ denotes the region outside of T.

Let p ∈ Pn. Then concerning the estimate of p′ on T, we have by a famous
result due to Bernstein [4]:

sup
z∈T
|p′(z)| ≤ n sup

z∈T
|p(z)|. (1.1)

This result is sharp and equality holds for the polynomials having all zeros
at origin.

As a refinement of result of Bernstein [4], we mention the following result
due to Aziz [2];

Theorem 1.1. ([2]) If p ∈ Pn and p∗(z) = znp(1
z̄ ), then

sup
z∈T

[|(p∗(z))′|+ |p(z)|] = n sup
z∈T
|p(z)|. (1.2)

The next result was conjuctured by Erdös and later verified by Lax [6]:
If p ∈ Pn, and all the zeros of p(z) lie in TUD+, then for z ∈ T , we have

sup
z∈T
|p′(z)| ≤ n

2
sup
z∈T
|p(z)|.

Equality holds for p(z) = λzn + µ, |λ| = |µ| = 1.

Let a1, a2, ..., an be n given points in D+. We consider the following space
of rational functions Rn with prescribed poles:

Rn := Rn(a1, a2, ..., an) =

[
p(z)

w(z)
: p ∈ Pn

]
,

where
w(z) = (z − a1)(z − a2)...(z − an).

Let

B(z) :=
znw(1/z̄)

w(z)
=

n∏
k=1

1− ākz
z − ak

,

where B(z) ∈ Rn is called Blaschke product. Note that |B(z)| = 1, when
z ∈ T.

Li, Mohapatra and Rodriguez [8] extended Bernstein inequality to ratio-
nal functions r ∈ Rn with prescribed poles a1, a2, ..., an and replaced zn by
Blaschke product B(z) and proved:
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Theorem 1.2. ([8]) If z ∈ T, then for any r ∈ Rn,

|r′(z)| ≤ |B′(z)| sup
z∈T
|r(z)|.

Further more, the inequality is sharp and equality holds for r(z) = αB(z) with
|α| = 1.

The next result is due to Borwein and Erdelyi [4]:

Theorem 1.3. ([4]) If r ∈ Rn and all the zeros of r(z) lie in TUD+, then for
z ∈ T

|r′(z)| ≤ |B
′(z)|
2

sup
z∈T
|r(z)|.

Equality holds for r(z) = λB(z) + µ, |λ| = |µ| = 1.

Now, we consider a class of rational functions r(f(z)) defined by

(rof)(z) = r(f(z)) =
p(f(z))

w(f(z))
,

where f(z) is a polynomial of degree m? and r(z) is a rational function of
degree n, so that rof ∈ Rm?n, and

w(f(z)) =
m?n∏
j=1

(z − aj).

Hence, in case of Balaschke product B(z) is given by

B(z) :=
w∗(f(z))

w(f(z))
=
zm

?nw(f(1
z̄ ))

w(f(z))
=

m?n∏
j=1

(
1− ājz
z − aj

)
.

Now onwards, we shall always assume that all poles a1, a2, ..., am?n of r(f(z))
lie in D+. For the case when all poles are in D−, we can obtain analogous
results with suitable transformations.

2. Lemmas

The first two lemmas are due to Li, Mohapatra and Rodriguez [8].

Lemma 2.1. ([8]) Suppose λ ∈ T . Then the equation B(z) = λ has exactly n
simple roots, say t1, t2, ..., tn and all lie on the unit circle T . Moreover

tkB
′(tk)

λ
=

n∑
j=1

|aj |2 − 1

|tk − aj |2
for k = 1, 2, 3, ..., n. (2.1)
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Lemma 2.2. ([8]) If |x| = |y| = 1, then

(x− y)2 = −xy|x− y|2. (2.2)

Qasim [5] have proved:

Lemma 2.3. ([5]) If rof ∈ Rm?n and z ∈ T , then

B′(z)r(f(z))−f ′(z)r′(f(z))[B(z)−λ] =
B(z)

z

m?n∑
k=1

ckr(f(tk))

∣∣∣∣B(z)− λ
z − tk

∣∣∣∣2, (2.3)

where ck = ck(λ) is defined for k = 1, 2, 3, ...,m?n by

c−1
k =

m?n∑
j=1

|aj |2 − 1

|tk − aj |2
. (2.4)

Furthermore, for z ∈ T

zB′(z)

B(z)
=

m?n∑
k=1

ck

∣∣∣∣B(z)− λ
z − tk

∣∣∣∣2 (2.5)

and also

|B′(z)| = zB′(z)

B(z)
=

m?n∑
k=1

|ak|2 − 1

|z − ak|2
, (2.6)

where tk, k = 1, 2, 3, ...,m?n are defined in Lemma 2.1.

Aziz and Dawood [1] proved the following lemma :

Lemma 2.4. ([1]) Let p(z) be a polynomial of degree n, having all zeros in
T ∪D−. Then

inf
z∈T

p′(z) ≥ n inf
z∈T

p(z).

Next Lemma has been proved by Idrees Qasim [5]:

Lemma 2.5. ([5]) Let r(f(z)) ∈ Rm?n. Then for z ∈ T,

|r′(f(z))|+ |r∗′(f(z))| ≤ |B
′(z)|

m?m
sup
z∈T
|r(f(z))|, (2.7)

where r∗(f(z)) = B(z)r(f(1
z̄ )). The result is sharp and equality holds for

r(f(z)) = aB(z) with a ∈ T, where f(z) = zm
?
.

Now, we shall prove the following lemma:
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Lemma 2.6. Let r(f(z)) ∈ Rm?n. Then for z ∈ T,

Re
z((wof)(z))

′

(wof)(z)
=
n− |B′(z)|

2

and

Re
z((wof)∗(z))

′

(wof)∗(z)
=
n+ |B′(z)|

2
.

Proof. We have

(wof)∗(z) = zn(wof)(1/z̄).

Also

z(wof)∗(z))
′

= nzn(wof)(1/z̄)− zn−1f
′
(1/z̄)(w′(f(1/z̄).

Now for z ∈ T, we have

z((wof)∗(z))
′

(wof)∗(z)
= n− w′(f(z))f ′(z)

(wof)(z)
.

This gives

Re
z((wof)∗(z))

′

(wof)∗(z)
+Re

w′(f(z))f ′(z)

(wof)(z)
= n. (2.8)

Also we know that

B(z) :=
w∗(f(z))

w(f(z))
=
zm

?nw(f(1
z̄ ))

w(f(z))
=

m∗n∏
j=1

(
1− ājz
z − aj

)
.

Since zlB′(z)
B(z) is a positive real number, this gives

zB′(z)

B(z)
=

m∗n∑
k=1

z[
−āj

1− ājz
− 1

z − aj
] =

m∗n∑
k=1

(|aj |2 − 1)

(z̄ − āj)(z − aj)

and

|B′(z)| = zB′(z)

B(z)
=

m?n∑
k=1

|ak|2 − 1

|z − ak|2
.

Again

zB′(z)

B(z)
:=

z( (wof)∗(z)
(wof)(z) )

′

( (wof)∗(z)
(wof)(z) )

= z
((wof)∗(z))

′

(wof)∗(z)
− ((wof)(z))

′

(wof)(z)
.

Equivalently

zB′(z)

B(z)
= z

((wof)∗(z))
′

(wof)∗(z)
− (w

′
(f(z)))f

′
(z)

(wof)(z)
.
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Therefore, for z ∈ T, we get

|B′(z)| = Re

[
z

((wof)∗(z))′

(wof)∗(z)

]
−Re

[
(w′(f(z)))f ′(z)

(wof)(z)

]
. (2.9)

From (2.8) and (2.9), we obtain for z ∈ T,

Re
z((wof)(z))

′

(wof)(z)
=
n− |B′(z)|

2

and

Re
z((wof)∗(z))

′

(wof)∗(z)
=
n+ |B′(z)|

2
.

This completes the proof. �

3. Main results

We first prove the following generalization of Theorem 1.3:

Theorem 3.1. Let rof ∈ Rm∗n and all zeros of r(f(z)) lie in Tk ∪D+
k , where

k ≥ 1, Tk is circle of radius k (centre origin) and D+
k represents exterior of

Tk. Then for z ∈ T,

|r′(f(z))| ≤ 1

2

[
|B′(z)|
mm∗

+
n|rof |2

(supz∈T |r(f(z))|)2|(f ′(z))2|

(
2m∗

k + 1
− 1

)
mm∗

]
× sup

z∈T
|r(f(z))|,

where m = infz∈T |f(z)|.

Proof. Let (rof)(z) = (pof)(z)
(wof)(z) ∈ Rm∗n. If b1, b2, ..., bm∗n∗ are all zeros of

(pof)(z), then m∗n∗ ≤ m∗n, |bj | ≥ k > 1, j = 1, 2, 3, ...,m∗n∗ and we have

z(
((rof)(z))

′

(rof)(z)
= z

( (pof)(z))
(wof)(z) )

′

(pof)(z)
(wof)(z)

= z

[
p′(f(z))f ′(z)

(pof)(z)
− zw′(f(z))f ′(z)

(wof)(z)

]
=

m∗n∗∑
k=1

z

z − bj
− zw′(f(z))f ′(z)

(wof)(z)
.

For z ∈ T, this gives, with the help of Lemma 2.6, that

Re

[
z(

((rof)(z))
′

(rof)(z)

]
= Re

m∗n∗∑
k=1

z

z − bj
−Rezw

′(f(z))f ′(z)

(wof)(z)
.
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Re

[
z

((rof)(z))
′

(rof)(z)

]
= Re

m∗n∗∑
k=1

z

z − bj
−
[
n− |B′(z)|

2

]
. (3.1)

Now it can be easily verified that for z ∈ T, |b| ≥ k > 1, since Re(z) ≤ |z|

Re

(
z

z − b

)
≤ 1

k + 1
.

Using this in (3.1), we get for z ∈ T ,

Re

[
z

((rof)(z))
′

(rof)(z)

]
≤

m∗n∗∑
k=1

1

k + 1
−
[
n− |B′(z)|

2

]

and

Re

[
z

((rof)(z))
′

(rof)(z)

]
≤ m∗n∗

k + 1
−
[
n− |B′(z)|

2

]
.

Since m∗n∗ ≤ m∗n), this gives

Re

[
z

((rof)(z))
′

(rof)(z)

]
≤ |B

′(z)|
2

+
m∗n

k + 1
− n

2

or

Re

[
z

((rof)(z))
′

(rof)(z)

]
≤ |B

′(z)|
2

+ n

[
m∗

k + 1
− 1

2

]
.

Since (
(rof)∗(z)

)′
=

[
B′(z)

(
(rof)(

1

z̄
)

)]
and

z

(
(rof)∗(z)

)′
(rof)(z)

=

[
|B′(z)| − r′(f(z))f ′(z)

(rof)(z)

]
B(z),
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we have

∣∣∣∣z
(

(rof)∗(z)

)′
(rof)(z)

∣∣∣∣2 =

∣∣∣∣|B′(z)| − r′(f(z))f ′(z)

(rof)(z)

∣∣∣∣2
= |B′(z)|2 +

∣∣∣∣r′(f(z))f ′(z)

(rof)(z)

∣∣∣∣2
− 2|B′(z)|Re

[
zr′(f(z))f ′(z)

(rof)(z)

]
≥ |B′(z)|2 +

∣∣∣∣r′(f(z))f ′(z)

(rof)(z)

∣∣∣∣2
− |B′(z)|

[
|B′(z)|+ n

(
2m∗

k + 1
− 1

)]
≥
∣∣∣∣r′(f(z))f ′(z)

(rof)(z)

∣∣∣∣2 − n( 2m∗

k + 1
− 1

)
|B′(z)|.

This implies, for ∈ T ,

|((rof)∗(z))′| ≥
[
|r′(f(z))f ′(z)|2 − n|(rof)(z)|2

(
2m

k + 1
− 1

)
|B′(z)|

] 1
2

and[
|r′(f(z))f ′(z)|2 + n|(rof)(z)|2

(
2m∗

k + 1
− 1

)
|B′(z)|

] 1
2

+|r′(f(z))f ′(z)|

≤ |r∗′(f(z))f ′(z)|+ |r′(f(z))f ′(z)|.
Combining this with Lemma 2.5, we get[

|r′(f(z))f ′(z)|2 − n|(rof)(z)|2
(

2m∗

k + 1
− 1

)
|B′(z)|

] 1
2

+ |r′(f(z))f ′(z)|

≤ |f ′(z)| |B
′(z)|

mm∗
sup
z∈T
|r(f(z))|,

where m∗ is degree of the polynomial f(z) and m = infz∈T |f(z)|. This gives

|r′(f(z))f ′(z)|2 + n|(rof)(z)|2(
2m∗

k + 1
− 1)|B′(z)|

≤
[
|f ′(z)| |B

′(z)|
mm∗

sup
z∈T
|r(f(z))| − |r′(f(z))f

′
(z)|
]2

.

Equivalently

|r′(f(z))f ′(z)|2 − n|(rof)(z)|2(
2m∗

k + 1
− 1)|B′(z)|
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≤
(
| |f
′(z)||B′(z)|
mm∗

sup
z∈T
|r(f(z))|

)2

+ |r′(f(z))f
′
(z)|

2

−2|f ′(z)| |B
′(z)|

mm∗
sup
z∈T
|r(f(z))||r′(f(z))f

′
(z)|.

Which after simplification yields for z ∈ T,

|r′(f(z))f
′
(z)| ≤ 1

2

[
|B′(z)|
mm∗

+
n|rof |2

(supz∈T |r(f(z))|)2|(f ′(z))2|

(
2m∗

k + 1
− 1

)
mm∗

]
× sup

z∈T
|r(f)|.

�

For k = 1, we get the following:

Corollary 3.2. Let rof ∈ Rm∗n and all zeros of r(f(z)) lie in T ∪D+. Then
for z ∈ T,

|r′(f(z))| ≤ 1

2

[
|B′(z)|
mm∗

+
n|rof |2

(supz∈T |r(f(z))|)2|(f ′(z))2|
(m∗−1)mm∗

]
sup
z∈T
|r(f(z))|.

Set f(z) = z, Theorem 3.1 yields the following:

Corollary 3.3. Let r ∈ Rn and all zeros of r lie in Tk ∪ D+
k , where k ≥ 1.

Then for z ∈ T,

|r′(z)| ≤ 1

2

[
|B′(z)| − n(k − 1)

(k + 1)

|r(z)|2

(supz∈T |r(z)|)2

]
sup
z∈T
|r(z)|.

Equality holds for

r(z) =

[
(z + k)

(z − a)

]2

,

where a > 1, k ≥ 1 and B(z) =

[
(1−az)
(z−a)

]2

and z = 1.

Remark 3.4. For k = 1, Corollary 3.2 reduces to Theorem 1.3.

Next, we shall prove the following result:

Theorem 3.5. Let rof ∈ Rm∗n and r∗(f(z)) = B(z)r(f(1
z̄ )). Then

sup
z∈T

[∣∣∣∣r∗′(f(z))

B′(z)

∣∣∣∣+

∣∣∣∣r′(f(z))

B′(z)

∣∣∣∣] = sup
z∈T

∣∣∣∣(rof)(z)

f ′(z)

∣∣∣∣.
Furthermore, in above equation suprema on both sides is attained at the same
point z0 ∈ T.
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Proof. Let rof ∈ Rm∗n. Then we have

(rof)∗(z) = B(z)r(f(
1

z̄
)).

Therefore,

((rof)∗(z))′

(rof)∗(z)
=
zB′(z)

B(z)
−
r′(f(1

z̄ ))f ′(1
z̄ )

z(rof)(1
z̄ )

.

Since

|B′(z)| = zB′(z)

B(z)
,

for z ∈ T
((rof)∗(z))′

(rof)∗(z)
= |B′(z)| −

r′(f(1
z̄ ))f ′(1

z̄ )

z(rof)(1
z̄ )

.

This gives

|B′(z)| =
∣∣∣∣((rof)∗(z))′

(rof)∗(z)
+
r′(f(1

z̄ ))f ′(1
z̄ )

z(rof)(1
z̄ )

∣∣∣∣
≤
∣∣∣∣((rof)∗(z))′

(rof)∗(z)

∣∣∣∣+

∣∣∣∣zr′(f(1
z̄ ))f ′(1

z̄ )

(rof)(1
z̄ )

∣∣∣∣. (3.2)

Since for z ∈ T, |(rof)∗(z)| = |(rof)(z)|, it follows from (2.2) that

|B′(z)||(rof)(z)| ≤ |((rof)∗(z))′|+ |r′(f(z))f ′(z)|. (3.3)

Equivalently

sup
z∈T

[∣∣∣∣r∗′(f(z))

B′(z)

∣∣∣∣+

∣∣∣∣r′(f(z))

B′(z)

∣∣∣∣] ≥ sup
z∈T

∣∣∣∣(rof)(z)

f ′(z)

∣∣∣∣. (3.4)

From Lemma 2.5, we have

sup
z∈T

[∣∣∣∣r∗′(f(z))

B′(z)

∣∣∣∣+

∣∣∣∣r′(f(z))

B′(z)

∣∣∣∣] ≤ sup
z∈T

∣∣∣∣(rof)(z)

f ′(z)

∣∣∣∣. (3.5)

From (3.4) and (3.5), we get

sup
z∈T

[∣∣∣∣r∗′(f(z))

B′(z)

∣∣∣∣+

∣∣∣∣r′(f(z))

B′(z)

∣∣∣∣] = sup
z∈T

∣∣∣∣(rof)(z)

f ′(z)

∣∣∣∣.
This completes the proof. �

Set f(z) = z in Theorem 3.5, we get the following result:



Certain new results on rational functions with prescribed poles 631

Corollary 3.6. Let r ∈ Rn and r∗(z) = B(z)r(1
z̄ ). Then

sup
z∈T

[∣∣∣∣r∗′(z)B′(z)

∣∣∣∣+

∣∣∣∣ r′(z)B′(z)

∣∣∣∣] = sup
z∈T

∣∣∣∣ r(z)B(z)

∣∣∣∣.
Furthermore, in above equation suprema on both sides is attained at the same
point z0 ∈ T.

The rational function r ∈ Rn is self-inversive if r∗(z) = sr(1
z̄ ), for s ∈ T . The

following result, which is a generalization of Theorem 1 of [7] for self-inversive
polynomials, follows from Theorem 3.5.

Corollary 3.7. If r ∈ Rn is self-inversive function, then

2 sup
z∈T

∣∣∣∣ r′(z)B′(z)

∣∣∣∣ = sup
z∈T

∣∣∣∣ r(z)B(z)

∣∣∣∣.
Theorem 3.8. Suppose rof ∈ Rm∗n has m∗n zeros and all the zeros of rof
lie in TUD−. If

(rof)∗(z) = B(z)r(f(
1

z̄
)),

then for ∈ T ,

inf
z∈T

[∣∣∣∣r′(f(z))

B′(z)

∣∣∣∣− ∣∣∣∣r∗′(f(z))

B′(z)

∣∣∣∣] = inf
z∈T

∣∣∣∣(rof)(z)

f ′(z)

∣∣∣∣.
Moreover, in above equation infima on both sides is attained at the same point
z0 ∈ T.
Proof. Suppose all zeros m∗n of rof ∈ Rm∗n lie in TUD− and let m∗ =
infz∈T |(rof)(z)|, then we have m∗ ≤ |(rof)(z)|, for z ∈ T. We show for any
complex number α with |α| < 1, then rational function F (z) = c(z) + αm∗
has all its zeros in TUD−. This is obvious if m∗ = 0 i.e, if (rof)(z) has a zero
on T. So we suppose all the zeros of (rof)(z) lie in D− so that m∗ 6= 0 and we
have for z ∈ T

|αm∗| < |m∗| ≤ |(rof)(z)|.
Apply Rouche’s theorem, it follows that

F (z) = c(z) + αm∗

has all its zeros in D−. Hence in any case F (z) has all its zeros in TUD− for
every α, |α| < 1. Let

F ∗(z) = B(z)f(
1

z̄
)

= B(z)(rof)(
1

z̄
) + ᾱmB(z)

= (rof)∗(z) + ᾱmB(z).
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Then all the zeros of F ∗(z) lie in TUD+. Now, it follows from Theorem 3.1
with k = 1, z ∈ T and (rof)∗ replaced by F ∗,

|(F ∗(z))′| ≤ |(F (z))′|.
This implies

|((rof)∗(z))′ + ᾱmB′(z)| ≤ |((rof)(z))′|.
Choosing argument of α suitably, we get for z ∈ T

|((rof)∗(z))′|+m|α||B′(z)| ≤ |((rof)(z))′|.
Letting |α| → 1, we get

m|B′(z)| ≤ |((rof)∗(z))′| − |((rof)(z))′|.
This implies

inf
z∈T

[∣∣∣∣r′(f(z))

B′(z)

∣∣∣∣− ∣∣∣∣r∗′(f(z))

B′(z)

∣∣∣∣] ≥ inf
z∈T

∣∣∣∣(rof)(z)

f ′(z)

∣∣∣∣. (3.6)

Again

(rof)∗(z) = B(z)r

(
f(

1

z̄
)

)
.

Therefore,

|(r∗(f(z)))′| =

∣∣∣∣∣B′(z)r
(
f(

1

z̄
)

)
− 1

z2
B(z)r′

(
f(

1

z̄
)

)
f ′
(

1

z̄

)∣∣∣∣∣
≥
∣∣∣∣B′(z)r(f(

1

z̄
)

)∣∣∣∣− ∣∣∣∣B(z)r′
(
f(

1

z̄
)

)
f ′
(

1

z̄

)∣∣∣∣.
This implies

inf
z∈T

[∣∣∣∣r′(f(z))

B′(z)

∣∣∣∣− ∣∣∣∣r∗′(f(z))

B′(z)

∣∣∣∣] ≤ inf
z∈T

∣∣∣∣(rof)(z)

f ′(z)

∣∣∣∣. (3.7)

From (3.6) and (3.7), we get

inf
z∈T

[∣∣∣∣r′(f(z))

B′(z)

∣∣∣∣− ∣∣∣∣r∗′(f(z))

B′(z)

∣∣∣∣] = inf
z∈T

∣∣∣∣(rof)(z)

f ′(z)

∣∣∣∣.
We now show that the infimum of both sides are attained at the same point

z0 ∈ T . Let
inf
z∈T
|(rof)(z)| = |(rof)(z0)|.

Since
|(rof)(z)||B′(z)| ≥ |((rof)(z))′| − |((rof)∗(z))′|, (3.8)

we have

|(rof)(z0)| ≥
∣∣∣∣((rof)(z0))′

B′(z0)

∣∣∣∣− ∣∣∣∣((rof)∗(z0))′

B′(z0)

∣∣∣∣ . (3.9)
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From (3.8) and (3.9), we get

inf
z∈T

[∣∣∣∣r∗′(f(z0))

B′(z0)

∣∣∣∣+

∣∣∣∣r′(f(z0))

B′(z0)

∣∣∣∣] = inf
z∈T

∣∣∣∣(rof)(z0)

f ′(z0)

∣∣∣∣.
This completes the proof. �

From Theorem 3.3 we can deduce the following:

Corollary 3.9. Suppose rof ∈ Rm∗n has m∗n zeros and all the zeros of rof
lie in TUD−. If

(rof)∗(z) = B(z)r(f(
1

z̄
)),

then for ∈ T ,

inf
z∈T

[∣∣∣∣r′(f(z))

B′(z)

∣∣∣∣] ≥ inf
z∈T

∣∣∣∣(rof)(z)

f ′(z)

∣∣∣∣.
Set f(z) = z, we get the following result:

Corollary 3.10. If r ∈ Rn has n zeros and all the zeros of r lie in TUD−. If

(r)∗(z) = B(z)r(
1

z̄
),

hen for ∈ T ,

inf
z∈T

[∣∣∣∣ r′(z)B′(z)

∣∣∣∣] ≥ inf
z∈T

∣∣∣∣r(z)∣∣∣∣.
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