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Abstract. Let R, be the space of rational functions with prescribed poles. If » € R,,, does
not vanish in |z| < k, then for k =1

sup |7(2)|,
3 ZEITDI()I

where B(z) is the Blaschke product.
In this paper, we consider a more general class of rational functions rof € Ry,n, defined
by

(rof)(2) = r(f(2)),

where f(z) is a polynomial of degree m* and prove a more general result of the above
inequality for k > 1.
We also prove that

er { F(2)

and as a consequence of this result, we present a generalization of a theorem of O’Hara and

(£(2))
B'(2)

(rof)(z)

)

B'(2)

|+

o) H -

Rodriguez for self-inverse polynomials. Finally, we establish a similar result when supremum

is replaced by infimum for a rational function which has all its zeros in the unit circle.
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1. INTRODUCTION

Let P, be the space of complex polynomials of degree at most n and C be
the complex plane. Let 7' = {z € C : |2|] = 1} and D~ denotes the region
inside of T and D™ denotes the region outside of 7.

Let p € P,,. Then concerning the estimate of p’ on T, we have by a famous
result due to Bernstein [4]:

sup [p(2)| < nsup |p(2)]. (1.1)
zeT zeT

This result is sharp and equality holds for the polynomials having all zeros
at origin.

As a refinement of result of Bernstein [4], we mention the following result
due to Aziz [2];
Theorem 1.1. ([2]) If p € P, and p*(z) = z"p(2), then

sup||(p*(2))'] + [p(2)[] = nsup [p(2)]. (1.2)
zeT z€T

The next result was conjuctured by Erdos and later verified by Lax [6]:
If p € Py, and all the zeros of p(z) lie in TUD™, then for z € T, we have

n

sup |p/(2)| < 3 sup |p(2)].
z€T z€T

Equality holds for p(z) = A\z" 4+ p, |A| = |u| = 1.

Let ay,as, ...,a, be n given points in DT. We consider the following space
of rational functions R,, with prescribed poles:

R, = R,(a1,a9,...,ap) = [Z((Z)) ip e pn}
where
w(z) = (z —a1)(z — a2)...(z — an).
Let

B(2) = 2"w(1/Zz) _ H 1—agz

 w(z) z—ap’

k=1
where B(z) € R, is called Blaschke product. Note that |B(z)| = 1, when
zelT.

Li, Mohapatra and Rodriguez [8] extended Bernstein inequality to ratio-
nal functions r € R,, with prescribed poles a1, a9, ..., a, and replaced z™ by
Blaschke product B(z) and proved:
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Theorem 1.2. ([8]) If z € T, then for any r € Ry,
|r'(2)| < |B'(2)]sup |r(2)].
z€T

Further more, the inequality is sharp and equality holds for r(z) = aB(z) with
la| = 1.

The next result is due to Borwein and Erdelyi [4]:

Theorem 1.3. ([4]) If r € R,, and all the zeros of 7(z) lie in TUD™, then for

zeT
|B'(2)|
2

sup [r(2)].

7' (2)] <
zeT

Equality holds for r(z) = AB(z) + u, |A| = |p| = 1.
Now, we consider a class of rational functions r(f(z)) defined by

p(f(2))
(rof)(z) = r(f(2)) = :
w(f(2))
where f(z) is a polynomial of degree m* and r(z) is a rational function of
degree n, so that rof € Ry+n, and

m*n

w(f(2)) = | ] (z = aj).

<.
Il

1
Hence, in case of Balaschke product B(z) is given by

_ ) re(d) T (1-ae
B(z) := w(f(2)) w(f(z)) 11 < p— )

j=1
Now onwards, we shall always assume that all poles ay, as, ..., @mrn of 7(f(2))
lie in DT. For the case when all poles are in D™, we can obtain analogous
results with suitable transformations.
2. LEMMAS

The first two lemmas are due to Li, Mohapatra and Rodriguez [8].

Lemma 2.1. ([8]) Suppose A € T'. Then the equation B(z) = X\ has ezactly n
simple roots, say ti,to, ..., t, and all lie on the unit circle T. Moreover

th tk \aj\Q -1
Z PR for k=1,2,3,...,n. (2.1)
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Lemma 2.2. ([8]) If |z| = |y| = 1, then
(¢ —y)* = —ayle —yl*. (2.2)

Qasim [5] have proved:

Lemma 2.3. ([5]) Ifrof € Ry and z € T, then

B(z) <2 B(z) — A|?
B B = P2 o ZE 2 e
k=1
where ¢ = cx(N) is defined for k =1,2,3,...,m*n by
-1 _ = |CLJ|2 -1
DM e 20
Furthermore, for z € T
2B'(z2) L |B(z) - A
B(z) p N ty (2:5)
and also .
PIBIEAC L (2.6

where ti, k =1,2,3,...,m*n are defined in Lemma 2.1.

Aziz and Dawood [1] proved the following lemma :

Lemma 2.4. ([1]) Let p(z) be a polynomial of degree n, having all zeros in
TUD™. Then

. / > . )
5/ 2) 2 a0

Next Lemma has been proved by Idrees Qasim [5]:
Lemma 2.5. ([5]) Let r(f(z)) € Rpmrn. Then for z € T,

_ 1B G

[ (FD]+ I (f()] < sup [r(f(2))]; (2.7)

*
mrm  yer

where 77(f(2)) = B(z)m. The result is sharp and equality holds for
r(f(z)) = aB(z) with a € T, where f(z) = Zm”

Now, we shall prove the following lemma:
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Lemma 2.6. Let r(f(2)) € Rmrn. Then for z € T,

A(wof)(z)) _ n—|B()
R won(z) — 2

and

2((wof)*(2)) _ n+|B'(2)|
o) T2
Proof. We have
(wof)"(z) = 2"(wof)(1/2).
Also
2wof)*(2)) = nz"(wof)(1/2) — 2" f'(1/2)(w (f(1/2).

Now for z € T, we have

(wof)' () _ WU
(wof)*(2) (wof)(2)
This gives
Awof (), WD)
B wofy ) T oz " 29

Also we know that

* m*n 1 m'n _
Bl =Y (f(2)) _z w(f(3)) _ <1 —ajz)
AT ETFIC R § e
Since Zlg(lz()z ) is a positive real number, this gives
ZB/(Z) :m nz[ —aj _ 1 ] :m < (’aj‘Z_l)
B(z) = l-aiz z—a; (2 —a;)(z —aj)
and
oy 2B R el -1
|B( )| B(Z) _k:1 |Z—6Lk|2
Again
, Z((w0f)*(z)) N
zB'(2) (wo])(2) ((wof)"(2))  ((wof)(2))
B(z) ((ESUOOJ;))*((ZZ))) (wof)*(z) (wof)(z)
Equivalently
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Therefore, for z € T, we get

B - Re {Z(((Q;)UZJ;);((Z)))/] R WUEDIE) g

From (2.8) and (2.9), we obtain for z € T,
o A(woD() _ n—|B()

(wof)(z) 2
and )
2@l () nt|B ()]
(wof)*(2) 2
This completes the proof. O

3. MAIN RESULTS
We first prove the following generalization of Theorem 1.3:

Theorem 3.1. Let rof € R+, and all zeros of r(f(2)) lie in Ty U D;", where

k > 1, Ty, is circle of radius k (centre origin) and D,‘: represents exterior of
Ty. Then for z € T,

et < L[IB ) nfrof mt N
P < 3 | e *<supzeT\r(f(zm)?r(ff(z))?r<k+1 1) ]

xsup [r(f(2))l,
z€T

where m = inf,cp | f(2)].

Proof. Let (rof)(z) = ((Z?}))(é) € Ryepn. If by, bo,...,byxp+ are all zeros of

(pof)(z), then m*n* < m*n, |bj| >k >1, j=1,2,3,...,m*n* and we have
/ (pof)(2))\’
(N _ o)

TR
_ Z[p’(f(Z))f’(Z) _ 2 (f(2)f'(2)
(pof)(2) (wof)(z)

B SO0}
k=1 J

(wof)(z)
For z € T, this gives, with the help of Lemma 2.6, that

PRI CG B S T L1

(rof)(z) ]~ T & E=h T (wo)(2)
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Now it can be easily verified that for z € T, |b| > k > 1, since Re(z) < |z

Z 1
R < .
e(z—b) =k +1

Using this in (3.1), we get for z € T,

and

R [ (((ZZ§))((Z)))/] - |B2( I I:@Jrnl _g
nl G < B el -]
Sin
(orr@) = [ (ronh)]
and
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((T#)*(Z))l )

2
(rof)(z)

we have

z

and
U P +alron@P (21 - )1+ )G
<P GENS G+ P UENS )

Combining this with Lemma 2.5, we get

U P -l (P2 - )1F )+ o)
< 171D sup (7)),

where m* is degree of the polynomial f(z) and m = inf,e7 |f(2)|. This gives
2 *
NS G +nlrof) (P ~ DIBG)
B : 1P

< I sup (sl - 1F Gens @I
Equivalently
2m*
k+1

P (FENSEI = nlrof)(2) - DIB'(2)]
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"(z "z 2 / /
< (EEIE D sy (21 + 1 s o
2 sup sl ) G
Which after simplification yields for z € T,
e 1[B() nlrof|? N
Ir(F@Nf (@)l < 2[ o+ Guper AT ) <k+1 1) ]
X igglr(f)l-

For k =1, we get the following:

Corollary 3.2. Let rof € R+, and all zeros of r(f(2)) lie in TUD™. Then
for zeT,

1

: B(2) nirof
I < 5 |

mm*  (super [r(f(2))?1(f(2))?]

Set f(z) = z, Theorem 3.1 yields the following:

<m*—1>mm*} sup (1 (2)

Corollary 3.3. Let r € R, and all zeros of r lie in Ty U D,‘:, where k > 1.
Then for z € T,
1
G < 5|1 -
Equality holds for
k 2
CR==1F

(z—a)
2
where a > 1, k> 1 and B(z) = [(l_az)} and z = 1.

sup [r(z)|.
zeT

nk—1)  |r(2) }
(k+1) (sup,er |r(2)])?

(z—a)
Remark 3.4. For k =1, Corollary 3.2 reduces to Theorem 1.3.

Next, we shall prove the following result:

Theorem 3.5. Let rof € Ry, and r*(f(2)) = B(z)r(f(1)). Then
()] () )(

B'(z) B'(z) f'(z)
Furthermore, in above equation suprema on both sides is attained at the same
point zg € T.

] = sup

sup [
zeT

zeT
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Proof. Let rof € Ry+n. Then we have

(rof)*(z) = B(z)r(f(
Therefore,

((rof)*(2)) _zB'(z) v (f()rQ)

(rof)*(z) — B(2) 2rof)(L)

Since

forzeT

This gives

) N f(2
+

)*(2) 2(rof)(L)

N ' (FE) ()

(rof)(3)
Since for z € T, |(rof)*(2)| = |(rof)(z)|, it follows from (2.2) that

|1B'(2)|[(rof)(2)] < [((rof)"(2))'I + Ir'(f(2)).f'(2)].

Equivalently
] [P < L [ref)e)
|| B | 2
From Lemma 2.5, we have
[ (f() ] | |r'(f(2) (rof)(2)
| B o | <

From (3.4) and (3.5), we get

| (f )] [ (F(2) } (rof)(2) |

B'(z) B'(z) || ser| ()

sup
zeT |

This completes the proof.

Set f(z) = z in Theorem 3.5, we get the following result:
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Corollary 3.6. Let r € R, and r*(z) = B(2)r(%). Then
(2 r'(z r(z

CINLC INLCH)
B'(z)| |B(2)|]  zer|B(z)
Furthermore, in above equation suprema on both sides is attained at the same
point zg € T

sup {
zeT

The rational function r € Ry, is self-inversive if r*(z) = sr(2), for s € T. The
following result, which is a generalization of Theorem 1 of [7] for self-inversive
polynomials, follows from Theorem 3.5.

Corollary 3.7. If r € R, is self-inversive function, then

rE) ||
B'(z)|  en|B()|

2 sup

zeT zeT

Theorem 3.8. Suppose rof € Ry« has m*n zeros and all the zeros of rof
lie in TUD™. If

(rof)"(2) = BEI(/(2),
then for € T,
e [[PG@) || D] e | ref)z)
225[ B'(2) B'(2) H_zeg 7(2)

Moreover, in above equation infima on both sides is attained at the same point
zgeT.

Proof. Suppose all zeros m*n of rof € Ry, lie in TUD™ and let m, =
inf,er |(rof)(2)|, then we have m, < |(rof)(z)|, for z € T. We show for any
complex number a with |a| < 1, then rational function F(z) = c(z) + am,
has all its zeros in TU D~. This is obvious if m, = 0 i.e, if (rof)(z) has a zero
on T. So we suppose all the zeros of (rof)(z) lie in D~ so that m, # 0 and we
have for z € T'
|ama] < |m.| < [(rof)(2)].
Apply Rouche’s theorem, it follows that
F(z) = c(z) + am,

has all its zeros in D~. Hence in any case F'(z) has all its zeros in TUD™ for
every a, |a| < 1. Let

= B:)(rof)(2) + amB(2)
= (rof)*(z) + amB(z).
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Then all the zeros of F*(z) lie in TUD™. Now, it follows from Theorem 3.1
with k =1, z € T and (rof)* replaced by F*,
[(F*(2))'] < [(F(2))'].

This implies

[((rof)*(2)) + amB'(2)| < |((rof)(2))'l.
Choosing argument of « suitably, we get for z € T'

((rof)"(2))'| +mlal|B'(2)| < [((rof)(2))']-

Letting |a| — 1, we get

m|B'(2)] < [((rof)*(2))'| = [((rof)(2))'l.
This implies

PG| R[] o | rof) ()
i??[ B(2) BI(2) HZ& ) | (36)
Again
(rofy () =B (12))
Therefore,
G =|BEr (10) - SBer (1) (2)
2| (1)~ [per (10) 7 ()
This implies
PG| R[] - | rof) (@)
2B Bz | =) (3.7
From (3.6) and (3.7), we get
FEE| U] o)
zeT || B'(z) B'(z) || zer| f'(2) |

We now show that the infimum of both sides are attained at the same point
20 € T. Let

inf [(rof)(2)] = [(rof)(20)l-

zeT
Since

|(rof)(2)IB'(2)] = [((rof)(2))'| = [((rof)"(2))'l, (3.8)

((rof)(20))"|  |((rof)*(20))’
B'(z) B'(z) |

we have

|(rof)(20)| =
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From (3.8) and (3.9), we get

inf [ T*/(f(zo))’Jr T/(f(zo))H _ g | rof)(z0)
2€T B/(zo) B/(Zo) ZeT f’(z())
This completes the proof. 0

From Theorem 3.3 we can deduce the following:

Corollary 3.9. Suppose rof € R+ has m*n zeros and all the zeros of rof
lie in TUD™. If

(rof)*() = B)r(F(2)),

then for € T, ,
ot ||| 2

Set f(z) = z, we get the following result:
Corollary 3.10. Ifr € R, has n zeros and all the zeros of r lie in TUD™. If

hen for € T,
. r'(2) .
> .
it |75 > ing 0
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