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Abstract. In this paper, we extend the concept of S-contractions of type E in an S-metric
space. Further, by combining simulation function and S-contractions of type F, we examine
the existence and uniqueness of fixed point in a complete S-metric space. Sufficient examples

are provided and application to the solution of integral equation is also made.

1. INTRODUCTION AND PRELIMINARIES

The result of Banach fixed point [2] has been generalised in various direc-
tions in the last decades. Some of the important generalisations of Banach’s
result based on contraction condition are Kannan [9], Chatterjea [5], Alber
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and Delabrier [1], etc. Recently, Fulga and Proca [7, 8] introduced the con-
cept of E-contraction. The concept of E-contraction is further extended to
S-contraction of type E by Fulga and Karapinar [6]. Sedghi et al. [15] intro-
duced S-metric space by generalising metric space. Motivated by the results
of [6] and [15], in this paper we introduce S-contractions of type E on S-
metric spaces. Also, we use simulation function introduced by Khojasteh et
al. [10] in order to obtain fixed points. For more information, one can see in
3, 4, 11, 12, 13, 14, 16, 17].
Definition 1.1. ([10]) A function o : Ry x Rj — R is referred to as a
simulation function if it verifies the following criteria:

(i) 0(0,0) =0,

(ii) o(z,y) <y — x for every z,y € R,

(iii) if {xn}, {yn} are two sequences defined on (0, c0) such that lim x, =

n—oo
lim y, > 0, then
n—oo

limsup o(zn, yn) < 0. (1.1)
n—oo

The collection of all simulation functions will be represented as S. It is
evident, as a result of axiom (ii), that

o(z,z) <0, Va>0. (1.2)

Consider ¢ as the set of continuous functions ¢ : [0,00) — [0, 00) that adhere
to the following criterion:

¢(t) =0 ifand only if ¢=0.
Suppose (X, d) is a metric space, and o € S represents a simulation function.

We define a function f : X — X as an S-contraction with respect to o (as
defined in [10]) if the inequality

J(d(fO, fﬁ),d(@,ﬁ)) >0 forevery 0,9 X (1.3)
is satisfied.
Remark 1.2. Deriving from axiom (ii), it becomes apparent that
d(f0, fv) # d(0,9) holds true for all different 0,9 € X. (1.4)

This implies that in cases where S functions as an S-contraction, it is not
possible for S to be an isometry. Consequently, if a S-contraction S possesses
a fixed point (when such a point exists), it is necessarily unique.

Theorem 1.3. ([10]) In a complete metric space, each S-contraction has pre-
cisely one fixed point. Moreover, every sequence generated by the Picard iter-
ative process converges, and its limit corresponds to the unique fized point.
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In the year 2012, Sedghi and colleagues (Sedghi et al. [15]) presented the
concept of S-metric space.

Definition 1.4. ([15]) Let X # ¢. An S-metric on X is a function S :
X X X x X — [0,00) satisfying:

(i) S(0,9,6) =0 if and only if = 9 =4,

(ii) S(6,9,2) < S(0,60,a) + S(9,9,a) + S(6,0,a) for all ,9,d,a € X.

The pair (X, S) is referred to as an S-metric space.

Definition 1.5. ([6]) A self-map S defined on a complete metric space (X, d)
is classified as an S-contraction of type E with respect to o if there exists
o € S for which the following condition holds:

o (d(50,59), E(0,9)) >0 for every 0,9 € X,

where

E0,9) =d(0,9) + [d(0, S0) — d(I, SV)|.
The set Cp(X) represents the collection of S-contractions of type E with
respect to o, which are defined on X.

Theorem 1.6. ([6]) There exists a fized point for every S € Cg(X).

Here, we extend the concept of S-contractions of type E in an S-metric
space.

2. MAIN RESULTS

We will now present our primary findings. To achieve this, we initiate by
introducing a new form of S-contraction.

Definition 2.1. A self-map denoted as f and defined on a complete S-metric
space (X, S) is said to have S-contraction of type E; with respect to o if there
exists 0 € § such that

a(S(fQ,fﬂ,fé),E(Q,ﬁ,fy)) >0 forall 0,9,v€ X, (2.1)
where
E0,9,v) = S(0,9,v) +15(6,0, f0) — S(¥,9, f9)| (2.2)
+[S(,9, f9) = S(v, v, f)]-

Definition 2.2. A self-map denoted as f and defined on a complete S-metric
space (X, S) is said to have S-contraction of type F; with respect to o if 3
o € § such that

o (S(f0, f6, f09), E(6,6,9)) >0 for all 6,9 € X, (2.3)



638 Thangjam Bimol, N. Priyobarta, Yumnam Rohen and Kumam Anthony Singh

where

Let Cp(X) denote the set of all S-contractions of type E with respect to o
defined on (X, S).

Theorem 2.3. Every f € Cp(X) possesses at least one fixed point.

Proof. For any arbitrary 6y from the set X, we consider the constructive se-
quence 6, contained within X. This sequence is defined as

Ont1 = f(On) = f"(60)

for all n € N. Let’s make the assumption that 6,41 # 6, holds true for all
natural numbers n. On the contrary, if the situation arises where 0,,, = 0,41
for a certain ng € N, then we have f6,,, = 6,,. This brings us to the conclusion
of our proof, affirming that the point 6,,, is indeed a fixed point of the function
f. Consequently, S(0p+1,0n+1,0,) > 0 and from (2.1), it follows, for all n > 1,
that

0 < U(S(fenvfenafenfl)’E(envenvenfl))
= U(S(9n+1u0n+170n)7E(6n76n76n—1))
< E(04,04,0,-1) — S(0n+1,0n+1,0n)- (2.4)
In conclusion, for alln =1,2,3,---, we have
S(6n+170n+17‘9n) < E(9n79n7‘9n—1)~ (25)

We take into account two situations in order to understand the inequality
(2.5). For the first case, we assume that S(0p41,0n+1,60n) > S(On,0n,0n—1).
The inequality (2.5) becomes

S(9n+la 0n+la en) < S(ena ena en—l) + |S(0na ena en—i—l) - S(Qn—lv 977,—17 9n)|

= S(ena ena en—l) + S(9n+17 9n+17 Hn) - S(@n, 0117 en—l)
= S(en—i-l’en—i-l’en)-

This leads to a contradiction. Hence, the subsequent case arises:

S(Onst,Onst1,0n) < S(On,0p,0n_1), V=123 (2.6)

Thus, we can conclude that the sequence {S(0,,0,,0,-1)} exhibits a non-
increasing pattern and bounded below by 0. Consequently, the sequence
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{S(0n,0n,0,—1)} converges to some S* > 0. Now

lim B (0,0, 0n-1) (2.7)
= nh_EI;o (S(Qn, 9717 971—1) + ‘S(ena 9717 9n+1) - S(en—ly en—l, en)‘ )
= lim (S(Hna 917,7 enfl) - S(ena ena 0n+1) + S(gnfla enfla Hn))
n—oo
= nh—>KgO (25(97“ On, anl) - S(9n+17 Ont1, en))
= S
We claim that
S* = lim S(6n, b, 0n-1) = 0. (2.8)

Imagine, in contrast, that S* > 0. In this scenario, if we define

7571, = S(9n+1a 9n+la en)
and
Sp = E(HTH 9717 971—1)7

then we can deduce from the inequality (2.1) and condition (iii) that

0 < limsupa(5(9n+179n+1a9n)7E(0na0na0n71))
n—oo
= limsupo(ty,sn) (2.9)

n—oo

< 0.

This inconsistency demonstrates that S* = 0.

Next, we will prove that {6, } is a Cauchy sequence. Imagine, in contrast,
that the sequence {6,} is not a Cauchy sequence, then there exists subse-
quences {0y} and {0} of {6, } and a positive number € > 0 such that
a(n) > B(n) > n and

S(ea(n)aea(n)aeﬁ(n)) > &,
< & VnéeN.

SOa(n)=150a(n)=1,08(n))
Therefore, by triangular inequality
e < S(Qa(n)a Hoc(n)a O,B(n))
< 25(0a(n)s Oa(n): Oa(m)—1) + S(Oam)—1, 0a(n)—1:05(n))
< 28(0a(n)> Oa(n) bam)—1) +€
and by (2.8), we get
lim S((ga(n), 904(71)7 Ha(n)_l) = E. (2.10)

n—o0
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On the other hand, we can easily show that
S Oa(n)—1 Oatn)—1:05(m)-1) = SOan), Oam), Osm))|
< 2(S(0a(n)-1: Oatm)—1:a(m) + SOs0)-1, 0()-1:05(n)))
and from (2.8), respectively (2.10)
nh_g)lo S(Oa(n)=150a(n)-1,08(n)—1) = € (2.11)
And from equations (2.2), (2.8) and (2.10), it follows that
i E(0q ()1 0a(m)-1,0pm)-1) = m {S(Oa(m)-1, 0a(m)-1: O5(n)-1)
+ 1S (0a(my-1,0am)—1, FOn)—1)
= 8(O(m)-1,08(n)—1, FOsm)-1)}
= lim {S(0a(n)-1:0a(m)-1,05m)-1)
+[S(0a(n)-1,Oatn)—1,Oa(n))

— S(05(n)-1,98(n)—1: Op(n)) | }
—. (2.12)

Letting ty, = S(Qa(n), Qa(n), Qﬁ(n)) and s, = E(%(n)—b%(n)—b 96(71)—1)7 we

have lim s, = lim ¢, = ¢ and combining with (iii)

n—oo n—oo
0< limjup o (S(fOatn)—15 FOatn)—1> fO80)-1), E(Oain)—1,Oa(m)—1,0(n)-1))
= ligl_igp 7 (S(Oa(n): Oa(n)> 95(n))s E(Oa(m)—1,Oa(m)—1>05(m)—-1))
= limsup o (ty, sp)
n—oo
<0. (2.13)

This inconsistency demonstrates that ¢ = 0, hence {6, } is Cauchy. Because of
the completeness of the space (X, S), a point 6* exists within the set X, such
that

lim 6, = 6* = 0. (2.14)

n—oo
Our next task is to prove that 8* = f6*. Adopting a proof by contradiction
approach, let’s suppose that S(6*, 6%, f6*) > 0. According to property (ii), for
a sufficiently large r € N, it follows that

0 < J(S(fﬁr,f@r,fﬁ*),E(Gr,Qr,G*))
= U(S(9T+1a07’+17fe*)vE(Qh‘gTve*))
< E0,,0,,0%) — S(0rs1, 0011, £07). (2.15)

Considering the sequences
ti = 5(97‘-{-17 67‘-}—17 fg*)
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and
s, = E(0,,0.,0%) = S(0,,0,,0%) +|5(0:, 0, f0,) — S(0%,0%, f07)],

we find that
lim t; = lgn sy = S(0%,0%, f6*) > 0, (2.16)

r—00

which implies together with (2.15)
0 < limsup o (S(fO,, f0r, £0°), B0, 6,,0%)) < 0,
r—00

which is a contradiction. Thus, we have S(6*, 6%, f0*) = 0, that is, f6* =
0*. O

Example 2.4. Let X =[0,2]U{2} and 5: X x X x X — R by
S(0,9,0) =10 — 9| + |9 — 4.
Suppose that ¢ : [0,00) x [0,00) — R is defined as o(s,t) = § — ¢ and hence
o € S. Define a map f: X — X as follows
: 5
jo={ } 1<
Notice that for # = ¢ =2 and § = g, we have

5) )

5) 11 1 1 1 2
and for these values, there is no k; € [0,1) such that
) 2 1 )
2, f2, f- ) ==-<ki-=k 2,2, - .
s(r2r205) =5 <ty =ns (22)

Hence, the function f is not a contraction mapping. But, it exhibits S-
contraction of type Ej. To validate our assertion, we must analyze two sepa-
rate scenarios:

Case(i): 6 =2,0 =9 < 1. Then we find that
S(0,0,2) =2 —0,5(0.0, f0) =1 — 0
and

1

w| ot

Also, we have
1 2
S(f0, 0, f2) = S(1,1, §) =3
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Since
30+2 8

3 3

E(9,9,2):2—9+\1—6—§|:2—0+

we have that

7(S(/6, 0. £2), B(6,6,2)) = S B(0,0,2) ~ (6, 16, f2)
1 8 2

Case(ii): If 6 =2,0 =9 > 1, then
S5(0,6,2)=2—-0, S0,0,f0)=60—1

and )
S(2,2,f2)=|2— §| =

w| ot

Also, we have
2

L2

5(f0,10,f2) =5(1,1,5) = 5

As a result, we have
8—-30 1460
3 3

E(6,0,2):270+|071—g]:279+
and
o (S0, £, f2), E(0,0,2)) = %E(@,&,Q) — S(f6, 10, 2)
C14-60 2 5-30

6 3 3

> 0.

Our deduction leads us to the conclusion that f is a S-contraction of type Ej.
Moreover, all the criteria of Theorem 2.3 are satisfied and # = 1 is a fixed
point of f. Finally, it’s worth noting that the uniqueness of the fixed point is
a consequence of Remark 1.2.

Example 2.5. Let X = {1,3,4,5} and S: X x X x X — R defined by
S(0,9,0) =10 — 9| + |9 — 4.
Let f: X — X be defined as f1 = f3=f4=3,f5=1 anda(t,s):%s—t.
Then it can easily calculate that
S5(3,3,4) = S(4,4,5) = S(3,3,5) = S(1,1,3) = 2,
5(114)_3 S(1,1,5) = 4,
S(f3,f3,f4) = S(f1, f1,f3) = S(f1,f1,f4) = 0,
S(f3,f3,15) = S(f4, f4,f5) = S(f1,f1,f5) = 2
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Also, we have
E(1,1,4) = E(1,1,3) = E(4,4,5) = 4,
E(1,1,5) = E(3,3,5) = 6 and E(3,3,4) = 2.

First of all we show that f is not a contraction mapping. This can be il-
lustrated by considering the values § = ¢ = 4 and § = 5. In this scenario,
it’s impossible to identify a real constant k2 € [0,1) that would satisfy the
condition S(f4, f4, f5) =2 < k25(4,4,5). As a result, the function f is not a
contraction mapping.

In the following steps, we will establish that function f satisfies the condi-
tions of being an S-contraction of type E;. To achieve this, we will systemat-
ically analyze all possible cases:

For 8 =9 =1,6 = 3, we have

o(S(f1, f1, f3), E(1,1,3)) = 0(0,4) = = — 0 =2.

For § =9 =1,6 = 4, we have

o(S(f1, f1, f4), E(1,1,4)) = 5(0,4) =

For 8 =9 =1,6 =5, we have

6
o(S(f1, 1, f5), E(1,1,5)) = 0(2,6) = 5~ 2=1.

For 6 =9 = 3,5 = 4, we have

o(S(f3,13,f4),E(3,3,4)) =0(0,2) = g —0=1.
For § =9 = 3,5 = 5, we have

o(S(f3,13,f5), E(3,3,5)) = 0(2,4) = g —2=0.
For § = = 4,5 = 5, we have

o (S(f4, f4, f5), E(4,4,5)) = 0(2,4) = g —-2=0.

Evidently, f € Cg(X).

Furthermore, all the requirements stated in Theorem 2.3 are attained, and
0 = 3 is a fixed point of the function f. As demonstrated in the previous
example, the uniqueness of the fixed point is derived from Remark 1.2.

Example 2.6. Let X = [0,3] U {3} and define

max{#, 9,4}, if not § =9 =4,
S(0,9,0) =

0, otherwise.
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Let
{HG’ if 0 € [0, )U(%,l],
f(0) =
,if0==2
Now, we will show that f is an S-contractlon of type Ey for o(t, ) = ;5 —t.

Case(i): For 0 <r <9 <6 <1, we have
S(0, 19 ,0) = max{9,29, 5} =0,

9 ] 6
S(76. 19, fé)_max{eﬂ 19+1 FESTiESL
S(6,0, f@)—max{ﬁ }—
S(9, 0, f0) = max{¥, m} — 9,
S(6,0, f0) = max{d, m} =J.

So, we have
E0,9,6)=0+10 -9+ |0 —6]=20-9
and

a(S(f, 19, f6), E(0,9,6)) = % — S(f6, fv, fo)
20 -9 0

1+20—6 0+1
0—6
B (29—5+1)(0+1)

> 0.

Clearly, the above observation remains applicable in the cases where 0 <
f<9<i<fand0<H<I<9<]

Case(ii): For 0 <0 <9 < % and 6 = %, we have

S(0,9,5) = max{0, 9,5} 2

and 9 1 )
S(19, 10, £9) —max{9+1 I+ 1 2} 2’
50,0, £0) = max{6. 6, ; b ot =0,5(0,9, f9) = max{ﬁﬁﬁil} 9
and
0 3
S(9,9, f0) = max{J, d, t=d=-.

0+1 4
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So, we have

3 3
S/ | 1
S oo+l — 2

3 3 3
—Z—H?—Q—i—z—ﬁ = 5—0.
Consequently
13 560 1 1-20
0(5’5_9)_3_9_5_5—29>0'

Case(iii): For 0 <§ < 1 and § =9 = 3, it is similar to Case(ii).

In every scenario, it is evident that f belongs to the set Cg(X). This
concludes the demonstration, leading us to the deduction that f has a fixed
point at # = 0. Referring to Remark 1.2, this fixed point of f is unique.

3. CONSEQUENCES AND APPLICATION

Within this section, we present a corollary and delve into an instance where
the main outcome finds application, allowing for the depiction of a solution to
an integral equation.

Corollary 3.1. Let f : X — X be defined on a complete S-metric space
(X,S). If there exist 1,2 € © with pi(s) < s < pa(s) for all s > 0, such
that for all 0,9,6 € X, the following inequality is fulfilled

p2 (S(f0, 0, £0)) < pa (E(0,9,9)),
where
E0,9,6) = S(0,9,0)+15(0,0, f0) — S(¥,9, f9)|+ |S(I, 9, f©) — S(4,0, fd)].
Then f has a unique fixed point.
Proof. Take o(t,s) = o1(t,s) in Example 2.4 and apply Theorem 2.3. O

By opting the function ¢ provided in Example 2.4 and utilizing Theorem
2.3, we can derive additional corollaries similar to Corollary 3.1. So, we skip
list of these corollaries through this analogy.

Consider the set X = C(I,R) represents the collection of all continuous
functions on I = [0, 1] endowed with an S-metric

5(0,9,7) = [16 = Il + || =[] = sup{|0(s) — I(s)[ + [I(s) —(s)| : s € I},
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for all 6,9, € X. Consequently, the pair (X, S) establishes an S-metric space
that is complete. Now, we will delve into the analysis of the integral equation.

1
0(s) = &(s) +/0 K(s,z)n(z,0(zx))dz, s € [0,1]. (3.1)

Consider the continuous functions : I x R -+ R and £ : I — R, as well as
a function K : I x I — RT such that K(s,.) € L'(I) for each s € [0,1]. We
address the mapping f : X — X, which is defined as follows:

1
f(0)(s) =&(s) +/O K(s,z)n(z,0(x))dx, s € [0,1]. (3.2)

Theorem 3.2. The integral equation (3.1) possesses a unique solution within
the set X when the subsequent conditions are satisfied:

(a1) there is a p € ® such that for each s > 0, u(s) < s satisfying

0 < In(z,01(x)) — n(z, b2(x))|
< p(101(x) = Oa2(2)| + [|01(2) — f(61)(2)] — |6a(x) ()I])
forallx € I and 01,02 € X.
(ag2) followed by

1
sup/ K(s,z)dx < 1.
sel JOo

Proof. It should be noted that any fixed point of (3.1) is also a solution for
the (3.1). It can be deduced from (a;) and (az2) that

1
£ (01)(s) = £(02)(s)] = /0 K(s,z)[n(z,01(2)) — n(x, b2(x))]dz

1
</ K(s,x)‘n(xﬁl(l“ n(z, b2(x |d$

/Ksa: (16:(x) — 6a(z)| + [161 ()
— F(01)(2)] — |02(z) — f(62)(2)]])dz
< pu(E(01,01,62)),

where E(61,601,02) = ||61 — 62]| + |||61 — f61]] — ||02 — f62|||. Hence, we can
deduce that

1761 — fO21] < u(1101 — Oaf| + [[|02 — fOrl] — (162 — f2l[])-
Therefore, we have

o (S(f01, 161, f62), E(61,01,02)) = u(E(61,01,02)) — S(f61, f61, f62) >0
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This leads to the inference that all the conditions stated in Corollary 3.1 are
fulfilled, and consequently, so are the conditions of Theorem 2.3. As a result,
the operator f possesses a unique fixed point, exclusively representing solution
to integral equation (3.1) within the domain X. O

Example 3.3. To illustrate Theorem 3.2, we examine the following integral
equation as an example:

1 1 Y asin2z |6
)= —+ = d 0,1]. 3.3
(z) 1+84+3/0 12(1+52) 1+ |6 z, s €[0,1] (3.3)
This equation is derived from equation (3.1) by selecting &(s) = H%’ K(s,z) =
x and (S 9) — |9|sin2s
2(1+s2)? s, 6(1+10])
Consider a self-mapping f defined as follows:
1
F0)6) = 66)+ [ K(saab@)do, se 01, (34
taking p(s) = 5, we get that
sin2s |64 sin2s |65
01) — 02)| = -
(s, 01) = 1(s, 02)) 6 1+[61] 6 1+]6f

1
< 6'91 — O] < 1 ([|61 — O2] + |61 — 62| — 61 — 62]])

= ,U,(E(Ql, 91, 92))
On the other hand,

1 1 T 1
sup Ks,xdm—sup/ ——dr=—- < 1.
sel /0 < ) sel JO 2(1 + 32) 4

Therefore, we can deduce that equation (3.3) possesses a unique solution
within the set C'(I,R).
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