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Abstract. We extend the applicability of semilocal convergence results by B.T. Polyak for

solving nonlinear equations in a Banach space setting [16]. Our idea uses the center-Lipschitz

instead of the Lipschitz condition in the convergence analysis of the iterative procedure

involved. Numerical examples are presented to show that the earlier results cannot apply

but the new results can apply to solve equations.

1. Introduction

In this study we are concerned with the problem of approximating a solution
x∗ of the nonlinear equation

F (x) = 0, (1.1)

where F is a Fréchet-differentiable operator defined on a nonempty convex
subset of a Banach space X with values in a Banach space Y.

Many problems in Applied Sciences can be brought in the form of equation
(1.1) using mathematical modelling [2], [6]-[7]. The solutions of these equations
can rarely be found in closed form. That is why most solution methods for
these equations are iterative. We shall study the most general one-step method
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for solving equation (1.1) which is defined by

xn+1 = xn −A(xn) for each n = 0, 1, 2, · · · (1.2)

where x0 is an initial point and A : X → Y is known. If

An = A(xn) = anF
′(xn)−1F (xn) for each n = 0, 1, 2, · · · (1.3)

where {an} is a sequence of real numbers, then we obtain the so-called damped
Newton method([2], [6], [15], [16]). If we let an = 1 in (1.3) we obtain Newton’s
method([1], [2]-[15], [9]-[12]).

If

A(x) = BF (x) for each x ∈ D (1.4)

where B : Y → X is known and linear. For B = F ′(x0)
−1 we obtain the

modified Newton method [3], [6], [15], [16] whereas if X = Y and B = aI where
a is the identity operator, we obtain the method of successive substitutions
[2],[3], [6]-[16]. Finally, method (1.2) specializes to solve (1.1) in Hilbert spaces.
If X,Y are Hilbert spaces and

An = anΓ(xn)F (xn) (1.5)

where Γ(x) = [F ′(x)]∗ ([2], [6], [15], [16]).
These iterative methods are naturally called gradient methods [2]- [16] since

they are the same time methods of minimizing some auxiliary function which
is used in the proof of their convergence.

The study about convergence analysis of these iterative methods is usually
divided into two categories: semi-local and local convergence analysis. The
semilocal convergence analysis is based upon the information around an ini-
tial point to give criteria ensuring the convergence of the iterative procedure.
While the local convergence analysis is based on the information around a
solution to find estimates of the radii of convergence balls.

There is a plethora of convergence results for method (1.2) and its special-
izations mentioned above [1]-[19].

In the present paper we are motivated by the elegant works of B.T.Polyak
[16] concerning the semilocal convergence of method (1.2) and its specializa-
tions. The semilocal convergence in [16] is based on the Lipschitz condition

‖F ′(x)− F ′(y)‖ ≤ L‖x− y‖

for L > 0 and each x and y ∈ D.
The Lipschitz condition is not satisfied for many interesting classes of oper-

ators (see the numerical examples in Section 3). We expand the applicability
as well as the convergence domain of method (1.2) by replacing the Lipschitz
condition by the weaker center Lipschitz condition

‖F ′(x)− F ′(x0)‖ ≤ L0‖x− x0‖
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for L0 > 0 and each x ∈ D. Notice that the Lipschitz implies the center-
Lipschitz condition but not vice versa. Moreover,

L0 ≤ L (1.6)

holds in general and L
L0

can arbitrarily large (see the last example in Section

3).
The paper is organized as follows: The semilocal convergence analysis is

presented in Section 2. The numerical examples are given in Section 3.

2. Semilocal Convergence

We present a general semilocal convergence result for method (1.2) followed
by its specializations and their comparisons to the earlier results which can be
found in [16].

Let U(x, ρ) stand for an open ball centered at x ∈ X and radius ρ > 0. We
also denote by U(x, ρ) its closure. We present the following main semilocal
convergence result for method (1.2).

Theorem 2.1. Let x0 ∈ D. Suppose that the following conditions hold

(i) F : D ⊆ X → Y is Fréchet-differentiable;
(ii) The Fréchet derivative F ′(x) satisfies the center-Lipschitz condition

‖F ′(x)− F ′(x0)‖ ≤ L0‖x− x0‖

for each x ∈ D and L0 > 0;
(iii) There exists A : D → Y and γ ∈ (0, 1) such that

‖F (x)− F ′(x)A(x)‖ ≤ γ‖F (x)‖

for each x ∈ D;
(iv) ‖A(x)‖ ≤ λ‖F (x)‖ for λ > 0;

(v) ‖F (x0)‖ ≤ µ0 = 2(9−γ−4
√
5−γ)

λ2L0
; and U(x0, r) ⊆ D,

where

r =
2λ‖F (x0)‖

1− γ − λ2L0
2 ‖F (x0)‖+

√
(1− γ − λ2L0

2 )2 − 8λ2L0‖F (x0)‖
. (2.1)

Then, sequence {xn} generated by method (1.2) is well defined, remains in
U(x0, r) for each n = 0, 1, 2, · · · and converges to a solution x∗ ∈ U(x0, r)
of equation F (x) = 0. Moreover, the following estimates hold for each n =
0, 1, 2, · · ·

‖xn+1 − xn‖ ≤ λδn‖F (x0)‖ (2.2)

and

‖xn − x∗‖ ≤ rδn, (2.3)
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where

δ = γ + L0λ
(

2r +
λ‖F (x0)‖

2

)
. (2.4)

Proof. It follows from (v) that r is well defined; r > 0, λ‖F (x0)‖ ≤ r and
δ ∈ (0, 1). Then, ‖x1−x0‖ = ‖A(x0)‖ ≤ λ‖F (x0)‖ ≤ r. Hence, we deduce that
x1 ∈ U(x0, r). Let us assume that xk ∈ U(x0, r) for each k = 0, 1, 2, · · · , n.
Using the approximation

F (xn+1) = [F (xn)−F ′(xn)A(xn)] +

∫ 1

0
{[F ′(x0)−F ′(xn+θ(xn+1 − xn))]dθ

+[F ′(xn)− F ′(x0)]}(xn+1 − xn),

conditions (iii), (iv) and (2.1) we obtain in turn

‖F (xn+1)‖ ≤ ‖F (xn)− F ′(xn)A(xn)‖+ ‖F ′(xn)− F ′(x0)‖‖xn+1 − xn‖

+

∫ 1

0
‖F ′(x0)− F ′(xn + θ(xn+1 − xn))dθ‖‖xn+1 − xn‖2

≤ γ‖F (xn)‖+ L0[2‖xn − x0‖+
1

2
‖xn+1 − xn‖]‖xn+1 − xn‖

≤ γ‖F (xn)‖+ L0(2‖xn − x0‖+
λ

2
‖F (xn)‖)λ‖F (xn)‖

≤ δn‖F (xn)‖,

where δn = γ + λL0(2r + λ‖F (xn)‖
2 ). If δn ≤ 1, then δn+1 ≤ δn ≤ · · · ≤

δ0 = δ < 1, since ‖F (xn)‖ ≤ δn‖F (xn)‖ ≤ ‖F (xn)‖. It follows that

‖F (xn)‖ ≤ ‖F (x0)‖
n−1∏
k=0

δk ≤ δn‖F (x0)‖. (2.5)

Consequently,

δn ≤ γ + 2L0λr +
λ2L0‖F (x0)‖δn

2

= (γ + 2λL0r)(1 +
λ2L0‖F (x0)‖δn

2(γ + 2λL0r)
)

≤ γ0 exp expαδn

and

‖F (xn)‖ ≤ ‖F (x0)‖γn exp

n−1∑
k=0

αδk ≤ βγn,

where

γ0 = γ0(r) = γ + 2L0λr, α =
λ2L0‖F (x0)‖

2γ0
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and

β = ‖F (x0)‖ exp
α

1− δ
.

We also have

‖xn+1 − xn‖ = ‖A(xn)‖ ≤ λ‖F (xn)‖
≤ λδn‖F (x0)‖.

Hence, for m ≥ n

‖xm − xn‖ ≤
m−1∑
k=n

‖xk+1 − xk‖ ≤ λ‖F (x0)‖
m−1∑
k=n

δk

= r(δn − δm).

In particular for n = 0, we get that

‖xm − x0‖ ≤ r(1− δm) ≤ r.

That is, sequence {xn} is complete in a Banach space X and as such it con-
verges to some x∗ ∈ U(x0, r) (since U(x0, r) is a closed set). Finally, by letting
n → ∞ in (2.5) we deduce that F (x∗) = 0. That completes the proof of the
Theorem. �

Remark 2.2. Condition (v) of Theorem 2.1 measures the smallness of ‖F (x0)‖.
The corresponding condition in [16] using the Lipschitz instead of the center-

Lipschitz condition is given by, ‖F (x0)‖ ≤ µ = 2(1−γ)
λ2L

.

We have that, µ0µ = 9−γ−4
√
5−γ

1−γ
L
L0
→∞ as L

L0
→∞. The preceding estimate

shows by how many times we have extended the applicability of Theorem 1 in
[16]. Note however that if the Lipschitz condition can be verified and L0 = L
we shall use Theorem 1 instead of Theorem 2.1, since the former guarantees
quadratic convergence whereas the latter only linear. Note also that in this
case µ > µ0.

The results obtained here are usefull even if Lipschitz condition holds when
the sufficient convergence condition ‖F (x0)‖ ≤ µ is not satisfied but condition
‖F (x0)‖ ≤ µ0 is satisfied. Indeed we simply start with method (1.2) (or its
specializations) until a certain finite iterate xN (N a finite positive integer) for
which ‖F (x0)‖ ≤ µ is satisfied with xN now being the starting point of these
methods. Then, Theorem 1 in [16] guarantees the quadratic convergence of
method (1.2) for γ 6= 0. Such an approach has already been reported in [3]
where modified Newton’s method is used as a predictor for Newton’s method.

In the rest of the paper we suppose that hypotheses (i) and (ii) of Theorem
2.1 are satisfied and D = U(x0, ρ). Next from Theorem 2.1, we present some
semilocal convergence results on concrete methods for some special choices of
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operator A. The proofs are analogous to the corresponding ones in [16] are
abreviated.

Corollary 2.3. Suppose that ‖[F ′(x)]∗y‖ ≥ ξ‖y‖, ξ > 0 for all x ∈ D and
y ∈ Y ∗. Then, the following assertions hold

(i) If ξ‖F (x0)‖<ρ, equation F (x) = 0 has a solution x∗∈U(x0, ξ‖F (x0)‖);
(ii) Let 0 < ε1 ≤ an ≤ 2 − ε2, ε2 > 0, an 6= 1. If δ and r ≤ ρ are defined

by (2.4) and (2.1), respectively for all r = maxε1≤an≤2−ε2 |1 − an| =
max{1− ε1, 1− ε2} and λ = (2− ε2)ξ.

Suppose that zn is any solution of equation F ′(xn)zn = F (xn) (guaranteed to
exist by the condition ‖F ′(x)∗y‖ ≥ ξ‖y‖ [16]) such that ‖zn‖ ≤ ξ‖F (xn)‖.
Then, the sequence {xn} generated by

xn+1 = xn − anzn (2.6)

converges to a solution x∗ ∈ U(x0, ρ); of equation F (x) = 0. Moreover, esti-
mates (2.2) and (2.3) hold.

Proof. Simply verify the conditions of Theorem 2.1 for An(x) = an(xn−xn+1).
If we assume that the operator F ′(x) has an inverse, then method (2.6) reduces
to the so-called damped Newton method

xn+1 = xn − anF ′(xn)−1F (xn) for each n = 0, 1, 2, · · · (2.7)

since z = F ′(xn)−1F (xn) in this case. In particular, if an = 1 for each n =
0, 1, 2, · · · , then (2.7) reduces to Newton’s method

xn+1 = xn − F ′(xn)−1F (xn) for each n = 0, 1, 2, · · · . (2.8)

Next, we consider another special case of method (1.2) defined by

xn+1 = xn −BF (xn) for each n = 0, 1, 2, · · · (2.9)

where B : Y → X is a linear operator. Notice that if B = F ′(x0)
−1 we obtain

the modified Newton method, whereas if X = Y and B = aI, where I is the
identity operator, we obtain the method of successive substitutions. �

Corollary 2.4. Suppose that for each x ∈ D
‖I − F ′(x)B‖ ≤ γ < 1,

δ and r ≤ ρ are given by (2.4) and (2.1), respectively for λ = ‖B‖. Then,
the sequence {xn} generated by (2.9) converges to a solution x∗ ∈ U(x0, r) of
equation F (x) = 0.

Corollary 2.5. Let X and Y be Hilbert spaces and let M = supx∈D ‖F ′(x)‖.
Suppose that ‖Γ(x)y‖ ≥ ξ‖y‖, ξ > 0 for each x ∈ D and each y ∈ Y. Then,
the following assertions hold
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(i) If ρ0 = M‖F (x0)‖
ξ2

< ρ, then there exists a solution x∗ ∈ U(x0, ρ0) of

equation F (x) = 0.

Moreover, estimates (2.2) and (2.3) hold.

Proof. We simply verify the conditions of Theorem 2.1 for An(x) = BF (x).
Finally, we specialize method (1.2) in the case when X and Y are Hilbert

spaces by defining

xn+1 = xn − anΓ(xn)F (xn) for each n = 0, 1, 2, · · · (2.10)

where Γ(x) = [F ′(x)]∗.
(i) If 0 < ε1 ≤ an ≤ 2

M2 − ε2, ε2 > 0 and δ, r ≤ ρ are given by (2.4) and

(2.1), respectively for γ = max{1−ε1ξ2, 1−ε2ξ2}, then there exists a solution
x∗ ∈ U(x0, r) of equation F (x) = 0. Moreover, estimates (2.2) and (2.3)
hold. �

Remark 2.6. The advantages of the results after Remark 2.2 over the corre-
sponding ones in [16] have already been explained in Remark 2.2.

3. Examples

We present three examples in this Section. In the first two we show that
center-Lipschitz holds but not Lipschitz condition. Whereas in the third ex-
ample we show that L

L0
can be arbitrarily large.

Example 3.1. Let X = Y = R, D = [0,∞), x0 = 1 and define function F on
D by

F (x) =
x1+

1
i

1 + 1
i

+ c1x+ c2, (3.1)

where c1, c2 are real parameters and i > 2 an integer. Then F ′(x) = x1/i + c1
is not Lipschitz on D. However central Lipschitz condition holds for L0 = 1.

Indeed, we have

‖F ′(x)− F ′(x0)‖ = |x1/i − x1/i0 |

=
|x− x0|

x
i−1
i

0 + · · ·+ x
i−1
i

so

‖F ′(x)− F ′(x0)‖ ≤ L0|x− x0|.
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Example 3.2. We consider the integral equations

u(s) = f(s) + λ

∫ b

a
G(s, t)u(t)1+1/ndt, n ∈ N. (3.2)

Here, f is a given continuous function satifying f(s) > 0, s ∈ [a, b], λ is a real
number, and the kernel G is continuous and positive in [a, b]× [a, b].

For example, when G(s, t) is the Green kernel, the corresponding integral
equation is equivalent to the boundary value problem

u′′ = λu1+1/n

u(a) = f(a), u(b) = f(b).

These type of problems have been considered in [1], [2], [6], [9]-[12].
Equation of the form (3.2) generalize equations of the form

u(s) =

∫ b

a
G(s, t)u(t)ndt (3.3)

studied in [1], [2], [6], [9]-[12]. Instead of (3.2) we can try to solve the equation
F (u) = 0 where

F : Ω ⊆ C[a, b]→ C[a, b],Ω = {u ∈ C[a, b] : u(s) ≥ 0, s ∈ [a, b]},

and

F (u)(s) = u(s)− f(s)− λ
∫ b

a
G(s, t)u(t)1+1/ndt.

The norm we consider is the max-norm.
The derivative F ′ is given by

F ′(u)v(s) = v(s)− λ(1 +
1

n
)

∫ b

a
G(s, t)u(t)1/nv(t)dt, v ∈ Ω.

First of all, we notice that F ′ does not satisfy a Lipschitz-type condition in
Ω. Let us consider, for instance, [a, b] = [0, 1], G(s, t) = 1 and y(t) = 0. Then
F ′(y)v(s) = v(s) and

‖F ′(x)− F ′(y)‖ = |λ|(1 +
1

n
)

∫ b

a
x(t)1/ndt.

If F ′ were a Lipschitz function, then

‖F ′(x)− F ′(y)‖ ≤ L1‖x− y‖,

or, equivalently, the inequality∫ 1

0
x(t)1/ndt ≤ L2 max

x∈[0,1]
x(s), (3.4)
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would hold for all x ∈ Ω and for a constant L2. But this is not true. Consider,
for example, the functions

xj(t) =
t

j
, j ≥ 1, t ∈ [0, 1].

If these are substituted into (3.4)

1

j1/n(1 + 1/n)
≤ L2

j
⇔ j1−1/n ≤ L2(1 + 1/n), ∀j ≥ 1.

This inequality is not true when j →∞.
Therefore, condition (3.4) is not satisfied in this case. However, center-

Lipschitz condition holds. To show this, let x0(t) = f(t) and γ = mins∈[a,b] f(s),
α > 0. Then for v ∈ Ω,

‖[F ′(x)− F ′(x0)]v‖ = |λ|(1 +
1

n
) max
s∈[a,b]

|
∫ b

a
G(s, t)(x(t)1/n − f(t)1/n)v(t)dt|

≤ |λ|(1 +
1

n
) max
s∈[a,b]

Gn(s, t)

where Gn(s, t) = G(s,t)|x(t)−f(t)|
x(t)(n−1)/n+x(t)(n−2)/nf(t)1/n+···+f(t)(n−1)/n ‖v‖. Hence,

‖[F ′(x)− F ′(x0)]v‖ =
|λ|(1 + 1/n)

γ(n−1)/n
max
s∈[a,b]

∫ b

a
G(s, t)dt‖x− x0‖

≤ L0‖x− x0‖,

where L0 = |λ|(1+1/n)

γ(n−1)/n N and N = maxs∈[a,b]
∫ b
a G(s, t)dt. Then center-Lipschitz

condition holds for sufficiently small λ.

Example 3.3. Define the scalar function F by F (x) = d0x+ d1 + d2 sin ed3x,
x0 = 0, where di, i = 0, 1, 2, 3 are given parameters. Then, it can easily be
seen that for d3 large and d2 sufficiently small, L0

L can be arbitrarily small.
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