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Abstract. In this paper, we propose an inertial method for solving a common solution to

fixed point and Variational Inequality Problem in Hilbert spaces. Under some standard and

suitable assumptions on the control parameters, we prove that the sequence generated by

the proposed algorithm converges strongly to an element in the solution set of Variational

Inequality Problem associated with a quasimonotone operator which is also solution to a

fixed point problem for a demimetric mapping. Finally, we give some numerical experiments

for supporting our main results and also compare with some earlier announced methods in

the literature.

1. Introduction

In this paper, we are concerned with solving variational inequality prob-
lems (shortly,VIP) in real Hilbert spaces. The notion of VIP was introduced
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independently by Stampacchia [40] and Fichera [18, 17] for modeling problems
arising from mechanics and for solving the Signorini problem. The theory of
VIP has been studied widely in several branches of pure and applied areas,
such as economics, transportation, engineering, network, finance and many
more, see for example [25, 26].

Let H be a real Hilbert space with the inner product 〈·, ·〉 and the induced
norm ‖ · ‖. Let C be a nonempty closed convex subset in H. The VIP is
formulated as: Find x ∈ C such that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C, (1.1)

where C is a nonempty closed convex subset in a real Hilbert space H and
A : H → H is a single-valued mapping. Let VIP(C,A) denote the solution set
of the variational inequality problem (1.1).

The problem of finding an iterative solution to the VIP is an interesting
area of research in optimization theory. One of the simplest method for ap-
proximating a solution to the VIP is the gradient method (see, Dafermo [13])
in which only one projection onto the feasible set C is performed. It is known
that the convergence of this method requires that the operator A be strongly
monotone or inverse strongly monotone [21]. To avoid the strong monotonic-
ity assumption on A, authors have used the extragradient method (EGM)
proposed by Korpelevich [28] (also by Antipin [5] independently) which was
initially used for saddle point problems. After that, it was extended to VIPs
in both Euclidean spaces and Hilbert spaces. To be more precise, the EGM
for a monotone and L-Lipschitz continuous operator A : H → H is given as
follows: 

x0 ∈ C,
yn = PC(xn − λnA(xn)),

xn+1 = PC(xn − λnA(yn)), ∀n ≥ 1,

(1.2)

where λn ∈ (0, 1
L), PC : H → C denotes the metric projection from H onto

C. Whenever the solution set V I(C,A) is nonempty then the sequence {xn}
generated by the algorithm (1.2) converges weakly to an element in V I(C,A).
In recent years, the EGM has received great attention by many authors, who
improved it in various ways, see, e.g., [7, 8, 9, 10, 11, 22, 23, 24, 27, 30, 31,
34, 48] and the references therein.

In the execution of the EGM, there is the need to compute the projection
onto the feasible set C twice per iteration which could be computationally
expensive most especially when the structure of C is not simple. For this
reason, authors have provided several modifications to the EGM (for example,
see [9, 36, 44, 46]) and the references therein. The notable modifications is the
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Tseng extragradient method (TEGM) (see [46]) proposed in Hilbert space H
given below: 

x1 ∈ H,
yn = PC(xn − λnA(xn)),

xn+1 = yn − λn(A(yn)−A(xn)), ∀n ≥ 1.

(1.3)

which only needs to calculate the metric projection once in each iteration. The
weak convergence theorem of TEGM in Hilbert space was obtained under some
mild assumptions. Since then, the TEGM has attracted the interest of many
authors, see, for instance, [4, 12, 33, 38, 43, 45, 47] and the references therein.
We note that the TEGM preserves one of the drawback of the EGM which is
the dependence of the methods on the Lipschitz constant of the associated cost
operator. To solve this problem, researchers in this direction have introduced
several self adaptive techniques [6, 16, 32]

On other hand, we consider the fixed point problem (shortly, FPP). A point
x ∈ H is called a fixed point of T if

x = Tx, (1.4)

where T : H → H is a nonlinear mapping. The set of solutions of problem
(1.4) is denoted by F (T ). In real life, many mathematical models have been
formulated as the problem of finding a fixed point of a nonlinear mapping.
Currently, many mathematicians are interested in finding a common solution
to the FPP (1.4) and the VIP (1.1). Thus in this article, we are interested in
finding a point x ∈ C such that

x ∈ F (T ) ∩ V I(C,A). (1.5)

This problem is of particular interest due to the fact that several problems in
applied sciences and engineering have constraint which can be expressed as a
problem of finding a solution to (1.5).

In an attempt to solve (1.5), Takahashi and Toyoda [42] introduced an
iterative scheme for finding a solution to (1.5) for an inverse strongly monotone
mapping and then obtained a weak convergence theorem. Let C be a nonempty
closed convex subset of a real Hilbert space H. Let α > 0 and A : C → H be
an inverse strongly monotone and T : C → C is nonexpansive mapping, such
that F (T ) ∩ V I(C,A) 6= ∅. Let {xn} be a sequence generated by:

x0 = x ∈ C,
yn = PC(xn − λnA(xn)),

xn+1 = αnxn + (1− αn)TPC(xn − λnAxn), ∀n ≥ 0,

(1.6)



784 S. A. Kajola, O. K. Narain and A. Maharaj

where {λn} ⊂ [a, b] for some a, b ∈ (0, 2α) and {αn} ⊂ [c, d] for some c, d ∈
(0, 1). Then, {xn} converges weakly to z ∈ F (T ) ∩ V I(C,A), where z =
lim
n→∞

PF (T )∩V I(C,A)xn.

Very recently, Yin et al. [49] introduced an iterative scheme for approxi-
mating a solution to (1.5) and obtain the following weak convergence theorem.
Let C be a nonempty convex closed subset of Hilbert space H. Let T : C → C
be a continuous pseudocontractive operator. Let the nth iterate xn be given
by; {

yn = (1− βn)xn + βnT (xn),

zn = (1− αn)xn + αnT (yn).
(1.7)

Let the nth stepsize λn be known,{
wn = PC(zn − λnA(zn)),

xn+1 = (1− ζn)zn + ζnλn(A(zn)−A(wn)),
(1.8)

where λ1 > 0, {ζn}, {αn} and {αn} are sequences in (0, 1) satisfying some
standard assumption. The step size λn is updated as

λn+1 =

{
min

{
λn,

µ‖wn−zn‖
‖A(wn)−A(zn)‖

}
, if A(wn) 6= A(zn),

λn, otherwise,
(1.9)

where µ ∈ (0, 1). They proved that the sequence {xn} generated by (1.7)-(1.8)
converges weakly to some point in (1.5).

A technique used to speed up the convergence of iterative procedures in
fixed point and optimization theory is the Inertial Method. For this reason,
many mathematicians have proposed inertial based algorithm for solving fixed
point and optimization problems. The Inertial Method adds the technical term
θn(xn − xn−1), where θn is an inertial parameter which controls the inertial
force xn − xn−1 (see [3, 35]). For more on inertial based algorithms, we refer
the readers to see the following [2, 15, 19] and the references therein.

In this work, inspired and motivated by the results of Yin et al. [49], Taka-
hashi and Toyoda [42], we proposed an inertial Tseng extragradient algorithm
for solving a common solution to a fixed point and variational inequality prob-
lem in a real Hilbert space. Our proposed method is self adaptive and thus the
knowledge of the Lipschitz constant of the cost operator is not required. Using
this method we obtain and prove a strong convergent result for approximating
a common solution to a fixed point and variational inequality problem associ-
ated with demi-metric and quasimonotone operators respectively. Finally, we
report some numerical experiments to show the convergence of our algorithm.
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This paper is organized as follows: In Section 2, we recall some definitions
and preliminary results for further use. Section 3 deals with analyzing the
convergence of the proposed algorithms. In Section 4, some numerical exper-
iments are performed to illustrate the convergence of the propose algorithms
and compare them with previously known algorithms.

2. Preliminaries

We state some known and useful results which will be needed in the proof
of our main theorem. In the sequel, we denote strong and weak convergence
by ”→” and ”⇀”, respectively.

Lemma 2.1. ([41]) Let x, y ∈ H and t ∈ [0, 1]. Then the following properties
hold on H :

(i) ‖x± y‖2 = ‖x‖2 ± 2〈x, y〉+ ‖y‖2;
(ii) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉;

(iii) ‖tx+ (1− t)y‖2 ≤ t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2.

For all point H, there exists the unique nearest points in C, denoted PC(x),
such that

‖x− PC(x)‖ ≤ ‖x− y‖, ∀y ∈ C. (2.1)

The mapping PC is called the metric projection of H onto C. It is known that
PC is nonexpansive.

A mapping T : H → H is said to be

(a) monotone, if

〈Tx− Ty, x− y〉 ≥ 0, ∀x, y ∈ H;

(b) pseudomonotone, if

〈Tx, y − x〉 ≥ 0⇒ 〈Ty, y − x〉 ≥ 0, ∀x, y ∈ H;

(c) a contraction, if there exists a constant k ∈ (0, 1) such that

‖Tx− Ty‖ ≤ k‖x− y‖, ∀x, y ∈ H;

(d) nonexpansive, if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ H;

(e) quasinonexpansive, if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x ∈ H and y ∈ F (T );

(f) L-Lipschitz continuous with L such that

‖Tx− Ty‖ ≤ L‖x− y‖, ∀x, y ∈ H;
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(g) quasimonotone, if

〈Tx, x− y〉 > 0⇒ 〈Ty, x− y〉 ≥ 0, ∀x, y ∈ H;

(h) sequentially weakly continuous if for each {xn}, we obtain {xn} con-
verges weakly to x implies that T (xn) converges weakly to T (x);

(i) a mapping T : C → H is called k-demimetric, if F (T ) 6= 0 and there
exists k ∈ (−∞, 1) such that

〈x− y, x− T (x)〉 ≥ 1− k
2
‖x− T (x)‖2, ∀x ∈ C, y ∈ F (T ).

Lemma 2.2. ([20, 50]) Let C be a nonempty, closed and convex subset of
a Hilbert space H and A : H → H be a L-Lipschitzian and quasimonotone
operator. Suppose that y ∈ C and for some p ∈ C, we have 〈Ay, p − y〉 ≥ 0.
Then at least one of the following hold

〈Ap, p− y〉 ≥ 0 or 〈Ay, q − y〉 ≤ 0, ∀q ∈ C. (2.2)

Lemma 2.3. ([1]) Let C be a nonempty closed subset of a real Hilbert space
H. Let k ∈ (−∞, 1) and T be a k-demimetric mapping of C onto H such that
F (T ) 6= ∅. Let β ∈ (0, 1) and define S = (1− β)I + βT where I is the identity
mapping. Then there holds

(i) F (S) = F (T ) if β 6= 0;
(ii) S is a quasinonexpansive mapping for β ∈ (0, 1− k);
(iii) F (T ) is closed and convex.

Lemma 2.4. ([37]) Let {an} ⊂ R+, {bn} ⊂ R and {εn} ⊂ (0, 1) such that
∞∑
n=1

εn =∞ and

an+1 ≤ (1− εn)an + εnbn, ∀n ∈ N.

If lim sup
i→∞

bni ≤ 0 for every subsequence {ani} of {an} satisfying

lim inf
i→∞

(ani+1 − ani) ≥ 0,

then lim
n→∞

an = 0.

3. Main result

In this section, we state and prove our main result of the sequel. First, we
make the following assumptions:

Assumption 3.1. Suppose

(A1) C is a nonempty, closed and convex subset of a real Hilbert space H.
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(A2) f : C → C be a contraction mapping with constant κ ∈ (0, 1).
(A3) T : C → C is a η-demimetric mapping such that F (T ) 6= ∅.
(A4) A : H → H is a quasimonotone, sequentially weakly and Lipschitz con-

tinuous operator. We note however that the execution of our method
does not depend on the knowledge of the Lipschitz constant of A.

(A5) The solution set of the VIP (1.1) denoted by Γ := {x ∈ F (T ) ∩ V I(C,A)}
is nonempty.

Assumption 3.2. We also require the following assumptions:

(C1) {αn} ⊂ (0, 1), lim
n→∞

αn = 0 and
∞∑
n=0

αn =∞.

(C2) lim
n→∞

εn
αn

= 0.

(C3) {αn} ∈ (0, 1) such that βn ∈ (0, 1− η).
(C4) {δn} ∈ (0, 1).

We introduce an inertial extrapolation method for finding common solution
to the fixed point problem and variational inequality problem:

Algorithm 3.3. Inertial Tseng-type method for FPP and VIP.

Initialization: Given θ > 0, λ0 > 0 and 0 < µ < 1. Choose a nonnegative

real sequence {δn} such that
∞∑
n=1

δn < +∞. Let x0, x1 ∈ H be arbitrary

starting points. Define

θn =

{
min

{
θ, εn
‖xn−xn−1‖

}
, if xn 6= xn−1,

θ, otherwise.
(3.1)

Iterative Steps: Calculate xn+1 as follows:



wn = xn + θn(xn − xn−1),

yn = PC(wn − λnA(wn)),

zn = yn − λn(A(yn)−A(wn)),

tn = (1− βn)zn + βnTzn,

xn+1 = αnf(xn) + (1− αn)tn.

(3.2)

Update

λn+1 =

{
min

{
µ‖wn−yn‖

‖A(wn)−A(yn)‖ , λn + δn

}
, if A(wn) 6= A(yn),

λn + δn, otherwise.
(3.3)
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Remark 3.4. The stepsize in (3.3) is similar to the ones in [29, 44] if δn = 0.
Also, stepsize employed in the (3.3) is to increase from iteration to iteration
and so (3.3) reduces the dependence on the initial step size λ0. Since the
sequence {δn} is summable, we have that lim

n→∞
δn = 0. Hence, the stepsize λn

may be non-increasing when n is large.

Lemma 3.5. Let {xn} be the sequence defined iteratively by Algorithm 3.3
and p ∈ Γ. Then, the following holds:

‖zn − p‖2 ≤ ‖wn − p‖2 −
(

1− µ2 λ2
n

λ2
n+1

)
‖yn − wn‖2. (3.4)

Proof. Let p ∈ Γ. From Lemma 2.1(i) and zn = yn − λn(A(yn) − A(wn)), we
have

‖zn − p‖2 = ‖yn − λn(A(yn)−A(wn))− p‖2

= ‖yn − p‖2 + λ2
n‖A(yn)−A(wn)‖2 − 2λn〈yn − p,A(yn)−A(wn)〉

= ‖wn − p‖2 + ‖wn − yn‖2 + 2〈yn − wn, wn − p〉
+ λ2

n‖A(yn)−A(wn)‖2 − 2λn〈yn − p,A(yn)−A(wn)〉
= ‖wn − p‖2 − ‖wn − yn‖2 + 2〈yn − p, yn − wn〉

+ λ2
n‖A(yn)−A(wn)‖2 − 2λn〈yn − p,A(yn)−A(wn)〉. (3.5)

Since yn = PC(wn − λnA(wn)), we have

〈yn − wn + λnA(wn), yn − p〉 ≤ 0

equivalently

〈yn − wn, yn − p〉 ≤ −λn〈A(wn), yn − p〉. (3.6)

From (3.5) and (3.6), it follows that

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖wn − yn‖2 − 2λn〈A(wn), yn − p〉
+ λ2

n‖A(yn)−A(wn)‖2 − 2λn〈yn − p,A(yn)−A(wn)〉
= ‖wn − p‖2 − ‖wn − yn‖2 + λ2

n‖A(yn)−A(wn)‖2

− 2λn〈yn − p,A(yn)〉. (3.7)

Since p ∈ Γ, we have 〈A(p), yn − p〉 ≥ 0. Using Lemma 2.2, we obtain
〈A(yn), yn − p〉 ≥ 0. This, together with (3.7), implies

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖wn − yn‖2 + λ2
n‖A(yn)−A(wn)‖2, (3.8)

combining (3.3) and (3.8), we obtain,

‖zn − p‖2 ≤ ‖wn − p‖2 −
(

1− µ2 λ2
n

λ2
n+1

)
‖yn − wn‖2. (3.9)
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Lemma 3.6. The sequence {xn} defined iteratively by Algorithm 3.3 is bounded.
Consequently, the sequences, {tn}, {zn} and {yn} are bounded.

Proof. From lim
n→∞

(
1− µ2 λ2n

λ2n+1

)
= 1− µ2 > 0, there exists n0 ∈ N such that

1− µ2 λ2
n

λ2
n+1

> 0, ∀n ≤ n0.

Using (3.9) we have

‖zn − p‖ ≤ ‖wn − p‖, ∀n ≤ n0. (3.10)

By definition of wn, we get

‖wn − p‖ = ‖xn + θn(xn − xn−1)− p‖
≤ |xn − p‖+ θn‖xn − xn−1‖

≤ ‖xn − p‖+ θn ·
αn
αn
‖xn − xn−1‖

≤ ‖xn − p‖+ αn ·
θn
αn
‖xn − xn−1‖. (3.11)

From (3.3), we get

θn‖xn − xn−1‖ ≤ εn
for all n, which together with

lim
n→∞

εn
αn

= 0,

implies that

lim
n→∞

θn
αn
‖xn − xn−1‖ ≤ lim

n→∞

εn
αn

= 0.

Thus there exists a constant M1 > 0 such that

θn
αn
‖xn − xn−1‖ ≤M1, ∀n ≥ 1. (3.12)

Therefore,

‖zn − p‖ ≤ ‖wn − p‖ ≤ ‖xn − p‖+ αnM1, ∀n ≥ n0. (3.13)

Set Wn = (1− βn)I + βnT. Since Wn is quasi-nonexpansive with F (Wn) =
F (T ), due to Lemma 2.3 and tn in Algorithm 3.3, we obtain

‖tn − p‖ = ‖Wnzn − p‖
≤ ‖zn − p‖. (3.14)
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Again, from Algorithm 3.3, we have

‖xn+1 − p‖ = ‖αnf(xn) + (1− αn)tn − p‖
= ‖αn(f(xn)− p) + (1− αn)(tn − p)‖
≤ αn‖f(xn)− f(p)‖+ αn‖f(p)− p‖+ (1− αn)‖tn − p‖
≤ αnκ‖xn − p‖+ αn‖f(p)− p‖+ (1− αn)‖tn − p‖
≤ αnκ‖xn − p‖+ αn‖f(p)− p‖+ (1− αn)‖zn − p‖
≤ αnκ‖xn − p‖+ αn‖f(p)− p‖+ (1− αn)‖wn − p‖

≤ (1− αn(1− κ))‖xn − p‖+ (1− κ)αn

(
M1 + ‖f(p)− p‖

1− κ

)
≤ max

{
‖xn − p‖,

M1 + ‖f(p)− p‖
1− κ

}
...

≤ max

{
‖x1 − p‖,

M1 + ‖f(p)− p‖
1− κ

}
. (3.15)

This implies that {xn} is bounded. Consequently, the sequences {yn}, {zn}
and {tn} are also bounded. �

Theorem 3.7. Assume that Conditions 3.1 and 3.2 hold. Then the sequence
{xn} generated by Algorithm 3.3 converges strongly to an element p ∈ Γ,
where p = PΓf(p).

Proof. As before, fix p ∈ Γ. We can see that the operator PΓf is a contraction.
By Banach contraction principle, there exists a unique point p ∈ Γ such that
p = PΓf(p). It follows from the characterization of PΓ that

〈f(p)− p, q − p〉 ≤ 0, ∀q ∈ Γ. (3.16)

Observe from 3.3 and Lemma 2.1 (iii), that

‖tn − p‖2 = ‖(1− βn)zn + βnTzn − p‖2

= ‖(1− βn)(zn − p) + βn(Tzn − p)‖2

= (1− βn)‖zn − p‖2 + βn‖Tzn − p‖2 − βn(1− βn)‖zn − Tzn‖2

≤ (1− βn)‖zn − p‖2 + βn(‖zn − p‖2 + η‖zn − Tzn‖2)

− βn(1− βn)‖zn − Tzn‖2

= ‖zn − p‖2 − βn(1− η − βn)‖zn − Tzn‖2,
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from (3.9), we get

‖tn − p‖2 ≤ ‖wn − p‖2 −
(

1− µ2 λ2
n

λ2
n+1

)
‖yn − wn‖2

− βn(1− η − βn)‖zn − Tzn‖2.

But,

‖wn − p‖2 = ‖xn − p‖2 + θ2
n‖xn − xn−1‖2 + 2θn〈xn − p, xn − xn−1〉.

Thus, we obtain

‖tn − p‖2 ≤ ‖xn − p‖2 + θ2
n‖xn − xn−1‖2 + 2θn〈xn − p, xn − xn−1〉

−
(

1− µ2 λ2
n

λ2
n+1

)
‖yn − wn‖2 − βn(1− η − βn)‖zn − Tzn‖2

≤ ‖xn − p‖2 + θ2
n‖xn − xn−1‖2 + 2θn‖xn − p‖‖xn − xn−1‖

−
(

1− µ2 λ2
n

λ2
n+1

)
‖yn − wn‖2 − βn(1− η − βn)‖zn − Tzn‖2.

(3.17)

From Algorithm 3.3, Lemma 2.1 (i), (iii) and (3.17)

‖xn+1 − p‖2 ≤ ‖(1− αn)(tn − p) + αn(f(xn)− f(p))‖2

+ 2αn〈f(p)− p, xn+1 − p〉
= (1− αn)‖tn − p‖2 + αn‖f(xn)− f(p)‖2

+ 2αn〈f(p)− p, xn+1 − p〉
≤ (1− αn)‖xn − p‖2 + θ2

n‖xn − xn−1‖2 + 2θn‖xn

− p‖‖xn − xn−1‖ −
(

1− µ2 λ2
n

λ2
n+1

)
‖yn − wn‖2

− βn(1− η − βn)‖zn − Tzn‖2 + αnκ‖xn − p‖2

+ 2αn〈f(p)− p, xn+1 − p〉
= (1− αn(1− κ))‖xn − p‖2 + αn(1− κ)bn

−
(

1− µ2 λ2
n

λ2
n+1

)
‖yn − wn‖2

− βn(1− η − βn)‖zn − Tzn‖2, (3.18)
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where

bn :=
1

1− κ

(
2〈f(p)− p, xn+1 − p〉

+
θ2
n

αn
‖xn − xn−1‖2 + 2

θn
αn
‖xn − p‖‖xn − xn−1‖

)
. (3.19)

It follows that,(
1− µ2 λ2

n

λ2
n+1

)
‖yn − wn‖2 + βn(1− η − βn)‖zn − Tzn‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn(1− κ)M ′, (3.20)

where

M ′ = sup{bn : n ∈ N}. (3.21)

We now show that {xn} converges strongly to p. Set an := ‖xn − p‖ and
εn := αn(1− κ). From (3.18), we have the following inequality;

an+1 ≤ (1− εn)an + εnbn. (3.22)

To apply Lemma 2.4, we have to show that lim sup
k→∞

bnk
≤ 0, whenever a sub-

sequence {ank
} of {an} satisfies.

lim inf
k→∞

(ank+1 − ank
) ≥ 0. (3.23)

Now suppose that {ank
} ⊂ {an} is a subsequence satisfying (3.23). Then,

by (3.20) and Assumption 3.2(C1), we have

lim sup
k→∞

(1−αnk
)

(
1−µ2 λ2

nk

λ2
nk+1

)
‖ynk
−wnk

‖2+βnk
(1−η−βnk

)‖znk
−Tznk

‖2

≤ lim sup
k→∞

(ank
− ank+1) + (1− κ)M ′ lim

k→∞
αnk

= − lim
k→∞

inf(ank+1 − ank
)

≤ 0, (3.24)

which implies,

lim
k→∞

‖ynk
− wnk

‖ = lim
k→∞

‖znk
− Tznk

‖ = 0. (3.25)

Observe that

‖wnk
− xnk

‖ = αnk
.
θnk

αnk

‖xnk
− xnk−1‖ → 0 and k →∞. (3.26)

Combining (3.25) and (3.26), we obtain

lim
k→∞

‖ynk
− xnk

‖ = 0. (3.27)
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Observe from Algorithm 3.3, that

‖znk
− ynk

‖ = λnk
‖(A(ynk

)−A(wnk
))‖

≤ µ λnk

λnk+1
‖ynk

− wnk
‖.

Thus, by (3.25), we have

lim
k→∞

‖znk
− ynk

‖ = 0, (3.28)

combining this with (3.25) and (3.28), we obtain

lim
k→∞

‖znk
− wnk

‖ = 0 = lim
k→∞

‖znk
− xnk

‖. (3.29)

Using (3.2)(ci),(3.25), (3.26) and (3.29), we have;

‖xnk+1 − xnk
‖ ≤ αnk

‖f(xnk
)− tnk

‖+ ‖tnk
− xnk

‖
≤ αnk

‖f(xnk
)− tnk

‖+ ‖tnk
− wnk

‖+ ‖wnk
− xnk

‖
≤ αnk

‖f(xnk
)−tnk

‖+‖tnk
− znk

‖+‖znk
−wnk

‖+ ‖wnk
−xnk

‖
≤ αnk

‖f(xnk
)− tnk

‖+ βnk
‖Tznk

− znk
‖+ ‖znk

− wnk
‖

+ ‖wnk
− xnk

‖ → 0 as k →∞. (3.30)

We next show that lim sup
k→∞

bnk
≤ 0. It suffices to show that,

lim sup
k→∞

〈f(p)− p, xnk+1 − p〉 ≤ 0.

Let {xnkj
} be a subsequence of {xnk

} such that

lim
j→∞
〈f(p)− p, xnkj

− p〉 = lim sup
k→∞

〈f(p)− p, xnk
− p〉. (3.31)

Since {xnk
} is bounded, there exists a subsequence {xnkj

} of {xnk
} such that

xnkj
⇀ p̄ ∈ H. By (3.27), we have that {ynkj

} also converges weakly to p̄.

We next show that p̄ ∈ V I(C,A). From ynk
= PC(wnk

− λnk
A(wnk

)) and
the characteristic of the metric projection, we have

〈wnk
− λnk

A(wnk
)− ynk

, x− ynk
〉 ≤ 0, ∀x ∈ C (3.32)

which implies that

〈wnk
− ynk

, x− ynk
〉 ≤ λnk

〈A(wnk
), x− ynk

〉. (3.33)

Since λnk
> 0, we have

1

λnk

〈wnk
− ynk

, x− ynk
〉+ 〈A(wnk

), ynk
− wnk

〉 ≤ 〈A(wnk
), x− wnk

〉. (3.34)
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Using (3.25), we have

0 ≤ lim inf
k→∞

〈A(wnk
), x− wnk

〉

≤ lim sup
k→∞

〈A(wnk
), x− wnk

〉. (3.35)

Now, observe that

〈A(ynk
), x− ynk

〉 = 〈A(ynk
)−A(wnk

), x− wnk
〉

+ 〈A(wnk
), x− wnk

〉
+ 〈A(ynk

), wnk
− ynk

〉. (3.36)

From (3.3) and (3.25), we obtain

lim
k→∞

‖A(wnk
)−A(ynk

)‖ = 0.

Using this (3.25) and (3.36), we have

0 ≤ lim
k→∞

inf〈A(ynk
), x− ynk

〉

≤ lim
k→∞

sup〈A(ynk
), x− ynk

〉. (3.37)

First, we consider the case in which

lim sup
k→∞

〈A(ynk
), x− ynk

〉 > 0

for all x ∈ C. Then there exists a sequence {ynkj
} of {ynk

} such that

lim sup
j→∞

〈A(ynkj
), x− ynkj

〉 > 0

for all x ∈ C. It follows that we can find n0 such that

〈A(ynkj
), x− ynkj

〉 > 0, ∀j > n0. (3.38)

Using the fact that A is quasimonotone, we obtain that

〈Ax, x− ynk
〉 > 0, ∀j > n0. (3.39)

Passing to the limit in (3.39) with nk replaced by nkj , we have

lim
j→∞
〈Ax, x− ynkj

〉 = 〈Ax, x− p̄〉

> 0.

Hence, p̄ ∈ V I(C,A).
Secondly, we consider the case in which lim sup

k→∞
〈Aynk

, x − ynk
〉 = 0 for all

x ∈ C. Let {δk} be a non-increasing positive sequence defined by

δk = 〈Aynk
, x− ynk

〉+
1

κ+ 1
. (3.40)
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It is easy to see that

lim
k→∞

δk = lim
k→∞
〈Aynk

, x− ynk
〉+ lim

k→∞

1

κ+ 1
= 0. (3.41)

Therefore, we have

〈Aynk
, x− ynk

〉+ δk ≥ 0, (3.42)

for each k ≥ 1.
Since {ynk

} ⊂ C, it implies that {Aynk
} > 0 and lim inf

k→∞
‖Aynk

‖ = n0, we

therefore deduce that,

‖Aynk
‖ > n0

2
. (3.43)

Furthermore, let {εnk
} be a sequence defined by

εnk
=

Aynk

‖Aynk
‖2
.

Then

〈Aynk
, εnk
〉 = 1. (3.44)

Combining (3.42) and (3.44), we have

〈Aynk
, x− δkεnk

− ynk
〉 > 0.

Since A is quasimonotone on H, we get that

〈A(x+ δkεnk
), x+ δkεnk

− ynk
〉 ≥ 0. (3.45)

Now, observe that

〈Ax, x+ δkεnk
− ynk

〉 = 〈Ax−A(x+ δkεnk
) +A(x+ δkεnk

), x+ δkεnk
− ynk

〉
= 〈Ax−A(x+ δkεnk

), x+ δkεnk
− ynk

〉
+ 〈A(x+ δkεnk

), x+ δkεnk
− ynk

〉, (3.46)

using this (3.45) and applying the well-known Cauchy Schwartz inequality, we
have

〈Ax, x+ δkεnk
− ynk

〉 ≥ 〈Ax−A(x+ δkεnk
), x+ δkεnk

− ynk
〉

≥ −‖Ax−A(x+ δkεnk
)‖‖x+ δkεnk

− ynk
‖. (3.47)

Since A is Lipschitz continuous, we have

〈Ax, x+ δkεnk
− ynk

〉+ L‖δkεnk
‖‖x+ δkεnk

− ynk
‖ ≥ 0, (3.48)

combining (3.43), (3.48) and using the definition of {εnk
}, we have

〈Ax, x+ δkεnk
− ynk

〉+
2L

n0
δk‖x+ δkεnk

− ynk
‖ ≥ 0.
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Thus,

lim
k→∞

[
〈Ax, x+ δkεnk

− ynk
〉+

2L

n0
δk‖x+ δkεnk

− ynk
‖
]

= 〈Ax, x− p̄〉

> 0.

Therefore, p̄ ∈ V I(C,A).
Further, we obtain from (3.25), (3.29) and the demiclosedness of I−T that

p̄ ∈ F (T ). Hence p̄ ∈ Γ. Finally, from (3.16), (3.30) and (3.31), we have

lim sup
k→∞

〈f(q)− q, xnk+1
− q〉 ≤ lim sup

k→∞
〈f(q)− q, xnk+1

− xnk
〉

+ lim sup
k→∞

〈f(q)− q, xnk
− q〉

= lim
j→∞
〈f(q)− q, xnki

− q〉

= 〈f(q)− q, q̄ − q〉
≤ 0. (3.49)

By Lemma 2.4, we conclude that {xn} converges to p̄. The proof is completed.
�

4. Numerical example

In this section, we give some numerical illustrations of our main result in
the sequel. The following examples show the competitive advantage of our
method Algorithm 3.3 over Algorithm 3.1 and Algorithm 1 as announced in
[44] and [49], respectively. We choose the parameters for this experiment as
follows: αn = 1

n+1 , βn = n
7(n+1) , θ = 1

3 , µ = 1
2 , δn = 1

n
√
n

and εn = 1
n1.1 .

All computations were done on MATLAB 2023a with a Dell Latitude E7450
personal computer.

Example 4.1. We start with the following problem given in Liu and Yang
[29]. Let H = R, C = [−1, 1] and

A(x) =


2x− 1, x > 1,

x2, x ∈ [−1, 1],

−2x− 1, x < −1.

(4.1)

Then A is quasimonotone, Lipschitz continuous and V I(C,A) = {−1, 0}.
Now, let T : C → C be given by T (x) = −2x. Then F (T ) = {0} and thus

Γ = {0}. For this experiment, we consider the following initial values:
Case Ia: x0 = 1, x1 = 0.075;
Case Ib: x0 = 0.95, x1 = 0.064;
The results are presented in Figure 1.
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Figure 1. Left: Plot of {xn} against number of iteration;
Right: Plot of error against number of iteration- Top: Case
1a; Bottom: Case 1b. Numerical report for Example 4.1.

Example 4.2. Let A : R2 → R2 be defined by A(x1, x2) = (−x1 expx2 , x2) and
C =

{
x ∈ R2 : x1

2 + x2
2 ≤ 1, 0 ≤ x1

}
. Then, V I(C,A) = {(1, 0)T , (0, 0)T }. It

can easily be verified that all the conditions of Algorithms 3.3 are satisfied.
Now, we choose different initial values as follows:

Case IIa: x0 = (0.3, 1.2)T , x1 = (0.6, 0.01)T ;
Case IIb: x0 = (0.5, 0.6)T , x1 = (0.4, 0.2)T ;
Case IIc: x0 = (1.2, 1.5)T , x1 = (1.0, 1.3)T ;
Case IId: x0 = (−1.5,−1.1)T , x1 = (0.1, 0.6)T .
The results are presented in Figure 2.
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Figure 2. Plot of error against number of iteration - Top left:
Case IIa; Top Right: Case IIb; Bottom left: Case IIc; Bottom
right: Case IId. Numerical report for Example 4.2.

Example 4.3. We consider the next example in an infinite dimensional Hilbert
space. Let

H =

{
x = (x1, x2, ..., xi, ...) :

∞∑
i=1

|xi|2 < +∞

}
.

Let α, β ∈ R be such that α > β
2 > 0. Take C = Cα = {x ∈ H : ‖x‖ ≤

α} and A = Aβ(x) = (β − ‖x‖)x. Then A is quasimonotone and Lipschitz
continuous (see Salahuddin [39]). Furthermore, we have that V I(C,A) = {0} .
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We take β = 3 and α = 2. Define the mapping T : C → C by

T (x) =

{
x, if x < 0,

−3x, 0 ≤ x <∞.

Choose different initial values as follows:
Case IIIa: x0 = ( 1

10 , · · · , · · · ), x1 = (2
5 , · · · , · · · ),

Case IIIb: x0 = (1
5 , · · · , · · · ), x1 = (1

2 , · · · , · · · ).
The results of this experiment are presented in Figure 3.
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Figure 3. Plot of error against number of iteration - Left:
Case IIIa; Right: Case IIIb (1). Numerical report for Ex-
ample 4.3.
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