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Abstract. The objective of this article is to study the general set-valued nonlinear variational-

hemivariational inequalities and investigate the gap function, regularized gap function and

Moreau-Yosida type regularized gap functions for the general set-valued nonlinear variational-

hemivariational inequalities, and also discuss the error bounds for such inequalities using the

characteristic of the Clarke generalized gradient, locally Lipschitz continuity, inverse strong

monotonicity and Hausdorff Lipschitz continuous mappings.

1. Introduction

Stampacchia [38] first introduced the principle of variational inequality
problem for modeling problems arising from mechanics to investigate the reg-
ularity problem for partial differential equations. The topic of variational
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inequalities can also be used as a core problem in optimization and nonlinear
analysis to analyze various problems of complementarity and equilibrium in
operational science, we often naturally meet the variational inequality problem
for finding x ∈ D such that

〈A(x), y − x〉X ≥ 0, ∀y ∈ D, (1.1)

where D is a nonempty closed convex subset of a normed space X representing
constraints, A : X → X∗ is a given operator, and 〈·, ·〉X denotes the duality
pairing between X and its dual X∗.

It is well known that the variational inequality (1.1) can be solved by trans-
forming it into an equivalent optimization problem for the so-called merit
function µ(·;α) : X → R ∪ {+∞} dened by

µ(x;α) = sup{〈A(x), x− z〉X − α‖x− z‖2X | z ∈ D} for x ∈ D, (1.2)

where α is a nonnegative parameter. Here, we note that

(i) If α = 0 and X is finite dimensional, then (1.2) was first studied by
Auslender in [6].

(ii) If α > 0 and X is finite dimensional, then (1.2) was studied by
Fukushima in [17].

The function µ(·, 0) is usually known as the gap function, and the function
µ(·, α) for α > 0 is a regularized gap function.

Also, we notes that for all α > 0, the function µ(·, α) is nonnegative on D
and µ(x∗;α) = 0 whenever x∗ satises the variational inequality (1.1), see [19].

The concept of gap function plays an vital role in the development of it-
erative algorithms, an evaluation of their convergence properties and usefull
stopping methods for iterative algorithms. Error bounds are very important
and used because they provide a measure of the distance between a solution
set and a feasible arbitrary point. Solodov [37] developed some merit function
associated with a generalized mixed variational inequality, and used those func-
tions to achieve mixed variational error limits. Aussel et al. [8] introduced a
new inverse quasi variational inequality, obtained local (global) error bounds
for inverse quasi variational inequality in terms of certain gap functions to
demonstrate the applicability of inverse quasi variational inequality. Focused
on the Fukushima [18] concept, the regularized function of the Moreau-Yosida
type has been introduced by Yamashita and Fukushima in [39]. They also
suggested the so-called error bounds for variational inequalities via the regu-
larized gap functions. Recently, there have been many studies on gap functions
for different models on different topics such as iterative algorithms [21], the
Painlev-Kuratowski convergence [2] and error bounds [1, 3, 4, 7, 9, 16, 20, 22].
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In 2020, Chang et al. [11] introduce the mixed set-valued vector inverse
quasi-variational inequality problems and to obtain error bounds for this kind
of mixed set-valued vector inverse quasi-variational inequality problems in
terms of the residual gap function, the regularized gap function, and the D-
gap function. These bounds provide effective estimated distances between an
arbitrary feasible point and the solution set of mixed set-valued vector inverse
quasi-variational inequality problem. Recently, Chang et al. [10] studied the
three types of gap functions, i.e., the residual gap function, the regularized gap
function and the global gap function by using the relaxed monotonicity and
Hausdorff Lipschitz continuity and obtained the error bounds for generalized
vector inverse variational inequality problems.

Hemivariational variational inequalities, which were first introduced by Pana-
giotopoulos [32, 33], deal with certain mechanical problems involving noncon-
vex and nonsmooth energy functions. If the energy function is convex, then
hemivariational inequalities reduce to variational inequalities earlier studied by
many authors, [5, 12, 15, 23, 24, 26, 28, 31]. On the other hand, the theory of el-
liptic type variational-hemivariational inequalities is known as a generalization
of variational inequalities and hemivariational inequalities to the case involving
both the convex and the nonconvex potentials, and based on the notion of the
Clarke generalized gradient for locally Lipschitz functions, see, [13]. Interest
in the study of variational-hemivariational inequality was originally motivated
by various problems in mechanics, see, [25, 27, 29, 30, 34, 35, 36, 40, 41].

Our main purpose of this paper is to introduce the gap functions and regu-
larized gap functions for a class of general set-valued nonlinear variational-
hemivariational inequality problems and discuss the gap functions for the
Minty version of these inequalities by utilizing the locally Lipschitz continu-
ity, inverse strong monotonicity and Hausdorff Lipschitz continuous mapping
and also provides two new error bounds for the general set-valued nonlinear
variationalhemivariational inequality problems.

2. Mathematical prerequisites

In this section, we present some basic notations and concepts. Let (X, ‖·‖X)
be a real Banach space with the dual X∗, and 〈·, ·〉X be the duality pairing
between X and X∗. Let CB(X) be the family of all nonempty, closed and
bounded subsets in X.

Definition 2.1. ([14]) A function p : X → R ∪ {+∞} is said to be

(a) proper, if p 6= +∞.
(b) convex, if p(tx+ (1− t)y) ≤ tp(x) + (1− t)p(y), ∀x, y ∈ X, t ∈ [0, 1].
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(c) lower semicontinuous (l.s.c.) at x ∈ X, if for any sequence {xn} ⊂ X
with xn → x,

p(x) ≤ lim inf p(xn).

(d) upper semicontinuous (u.s.c.) at x ∈ X, if for any sequence {xn} ⊂ X
with xn → x,

lim sup p(xn) ≤ p(x).

(e) l.s.c (resp. u.s.c.) on X, if p is l.s.c (resp. u.s.c.) at every x ∈ X.

Definition 2.2. ([13]) Let g : X → R∪ {+∞} be a proper, convex and lower
semicontinuous function. Then the convex subdifferential ∂cg : X → X∗ of g
is defined by

∂cg(x) =
{
x∗ ∈ X∗

∣∣〈x∗, y − x〉X ≤ g(y)− g(x), ∀ y ∈ X
}
, ∀ x ∈ X.

An element x∗ ∈ ∂cg(x) is called a subgradient of g at x ∈ X.

Definition 2.3. ([13]) A function p : X → R is said to be locally Lipschitz,
if for every x ∈ X, there exist a neighbourhood U of x and a constant χx > 0
such that

|p(z1)− p(z2)| ≤ χx‖z1 − z2‖X , ∀ z1, z2 ∈ U.

Let p : X → R be a locally Lipschitz function. Then the Clarke generalized
directional derivative of p at the point x ∈ X in the direction y ∈ X is defined
by

p◦(x; y) = lim sup
z→x,t→0+

p(z + ty)− p(z)
t

.

The generalized gradient of p at x ∈ X is a subset of X∗ defined by

∂p(x) = {x∗ ∈ X∗|p◦(x; y) ≥ 〈x∗, y〉X , ∀ y ∈ X} .

Lemma 2.4. ([31, 35]) Let X be a real Banach space and p : X → R be a
locally Lipschitz function. Then the following statements are satisfied.

(a) For each x ∈ X, the function X 3 y� p◦(x; y) ∈ R is finite, positively
homogeneous and subadditive, and

|p◦(x; y)| ≤ χx‖y‖X , ∀ y ∈ X,

where χx > 0 is a Lipschitz constant of p near x.
(b) The function X ×X 3 (x, y)� p◦(x; y) ∈ R is upper semicontinuous.
(c) For every x, y ∈ X,

p◦(x; y) = max{〈ζ, y〉X | ζ ∈ ∂p(x)}.



Gap functions and error bounds 871

Definition 2.5. ([1, 24]) An operator B : X → CB(X∗) is said to be pseu-
domonotone, if B is a bounded operator and for every sequence {un} ⊆ X
converging weakly to u ∈ X with

lim sup〈un, xn − x〉 ≤ 0, ∀un ∈ B(xn),

then we have

〈u, x− y〉 ≤ lim inf〈un, xn − y〉, ∀ y ∈ X, u ∈ B(x).

Let X be a reflexive Banach space and D be a nonempty, closed and convex
subset of X. Let B : D → CB(X∗) be a set-valued mapping, A : CB(X∗)→
CB(X∗) be a single-valued operator and ϕ : D ×D → R and J : X → R be
the functionals, and f ∈ X.

Our purpose of this paper is to study following constrained general set-
valued nonlinear variational-hemivatiational inequalities for finding x ∈ D
such that

〈A(u)− f, y− x〉X + ϕ(x, y)− ϕ(x, x) + J◦(x; y− x) ≥ 0, ∀ y ∈ D, u ∈ B(x).
(2.1)

Now, we have the following assumptions:

(1) the operator A : CB(X∗)→ CB(X∗) is satisfying
(a) A is continuous mapping.
(b) A is locally Lipschitz continuous, that is, there exists αA > 0 such

that

‖A(y1)−A(y2)‖X∗ ≤ αA‖y1 − y2‖X , ∀ y1, y2 ∈ X. (2.2)

(2) the operator B : X → CB(X∗) is satisfying
(a) B is pseudomonotone.
(b) B is inverse strongly monotone, that is, there exists αB > 0 such

that

〈v1 − v2, y1 − y2〉X ≥ αB‖v1 − v2‖2X∗ ,

∀ y1, y2 ∈ X, v1 ∈ B(y1), v2 ∈ B(y2). (2.3)

(c) B is Hausdorff Lipschitz continuous, that is, there exists βB > 0
such that

‖v1 − v2‖X∗ ≤ H(B(y1), B(y2)) ≤ βB‖y1 − y2‖X , (2.4)

for all y1, y2 ∈ X. whereH(·, ·) is the Hausdorff metric on CB(X).
(3) ϕ : D ×D → R is such that

(a) for each x ∈ D, ϕ(x, ·) : Ω→ R is convex and lower semicontinu-
ous.
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(b) there exists αϕ > 0 such that

ϕ(x1, y2)−ϕ(x1, y1)+ϕ(x2, y1)−ϕ(x2, y2) ≤ αϕ‖x1 − x2‖X‖y1 − y2‖X ,
∀ x1, x2, y1, y2 ∈ D. (2.5)

(4) J : X → R is a locally Lipschitz function such that
(a) ‖∂J(y)‖X∗ ≤ g0 +g1‖y‖X , ∀ y ∈ X with some g0,g1 ≥ 0.
(b) there exists αJ ≥ 0 such that

J◦(y1; y2 − y1) + J◦(y2; y1 − y2) ≤ αJ‖y1 − y2‖2X , ∀ y1, y2 ∈ D. (2.6)

For (2.1), we have the following existence and uniqueness result.

Theorem 2.6. Let D be a nonempty, closed and convex subset of a re-
flexive Banach space X. Let B : D → CB(X∗) be a set-valued mapping,
A : CB(X∗) → CB(X∗) be a single-valued operator and ϕ : D ×D → R and
J : X → R be the functionals, and f ∈ X. Assume that (1)-(4) hold. If, in
addition, the following condition is satisfied

αj + αϕ
αBα2

Aβ
2
B

< 1. (2.7)

Then (2.1) has a unique solution. Moreover, x solves (2.1) if and only if it
solves the following general set-valued nonlinear Minty variational hemivaria-
tional inequalities for nding x ∈ D such that

〈A(v)− f, y − x〉X + ϕ(x, y)− ϕ(x, x) + J◦(y; y − x) ≥ 0,

∀ y ∈ D, v ∈ B(y). (2.8)

Proof. Let x ∈ D be the unique solution of (2.1). First, we note that the
assumption 4-(b) is equivalent to the following relaxed monotonicity condition
of the generalized gradient

〈∂J(y)− ∂J(x), y − x〉X ≥ −αj‖y − x‖2X , ∀ y, x ∈ D. (2.9)

Next from the condition (2.7) together with (2.9), and the locally Lipscitz
continuity of A, inverse strong monotonicity of B together with A, and Haus-
dorff Lipschitz continuity of B, we have, for all ζy ∈ ∂J(y), ζx ∈ ∂J(x), x, y ∈
D,u ∈ B(x), v ∈ B(y),
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〈A(v)−A(u), y − x〉X+〈ζy − ζx, y − x〉X
≥ αB‖A(v)−A(u)‖2X∗ − αj‖y − x‖2X ,
≥ αBα2

A‖v − u‖2X∗ − αj‖y − x‖2X ,
≥ αBα2

A(H(B(y), B(x))X∗)2 − αj‖y − x‖2X ,
≥ αBα2

Aβ
2
B‖y − x‖2X − αj‖y − x‖2X ,

≥ (αBα
2
Aβ

2
B − αj)‖y − x‖2X . (2.10)

Let y ∈ D be arbitrary. From (2.10), Lemma 2.4-(c) and the definition of
generalized gradient, we have

〈A(v)− f, y − x〉X + ϕ(x, y)− ϕ(x, x) + J◦(y; y − x)

≥ 〈A(v)− f + ζy, y − x〉X + ϕ(x, y)− ϕ(x, x)

≥ 〈A(u)− f + ζx, y − x〉X + ϕ(x, y)− ϕ(x, x) + (αBα
2
Aβ

2
B − αj)‖y − x‖2X

≥ 〈A(u)− f + ζx, y − x〉X + ϕ(x, y)− ϕ(x, x)

= 〈A(u)− f, y − x〉X + ϕ(x, y)− ϕ(x, x) + J◦(x; y − x)

≥ 0,∀ζy ∈ ∂J(y),

where ζx ∈ ∂J(x) is satisfied

J◦(x; y − x) = 〈ζx, y − x〉X .
Since y ∈ D is arbitrary, hence x ∈ D is a solution of (2.8).

Conversely, let x ∈ D be a solution to the problem (2.8). For any y ∈ D and
t ∈ (0, 1), we denote yt = ty + (1− t)x ∈ D. Inserting yt into (2.8) and using
the convexity of y � ϕ(x, y) and the positive homogeneity of y � J◦(x; y),
we have

0 ≤ t〈A(vt)− f, y − x〉X + ϕ(x, yt)− ϕ(x, x) + J◦(yt; yt − x)

≤ t〈A(vt)− f, y − x〉X + tϕ(x, y)− tϕ(x, x) + tJ◦(yt; y − x), ∀vt ∈ B(yt).

Hence,

〈A(vt)−f, y−x〉X +ϕ(x, y)−ϕ(x, x)+J◦(yt; y−x) ≥ 0, ∀vt ∈ B(yt). (2.11)

Since B is pseudomonotone, therefore it is demicontinuous, see [28]. Passing
to the upper limit as t→ 0+ in (2.11), it follows from Lemma 2.6-(b) that

〈A(u)− f, y − x〉X + ϕ(x, y)− ϕ(x, x) + J◦(x; y − x)

≥ lim sup
t→0+

〈A(vt)− f, y − x〉X + ϕ(x, y)− ϕ(x, x) + lim sup
t→0+

J◦(yt; y − x)

≥ lim sup
t→0+

{〈A(vt)− f, y − x〉X + ϕ(x, y)− ϕ(x, x) + J◦(yt; y − x)}

≥ 0, ∀vt ∈ B(yt).
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Since y ∈ D is an arbitrary, hence, we conclude that x ∈ D is a solution of
(2.1) and proof is completed. �

3. Main results

The purpose of this section is to discuss the gap function, regularized gap
function and the Moreau-Yosida type regularized gap function utilizing lo-
cal Lipschitz continuity, inverse strongly monotone and Hausdorff Lipschitz
continuity associates with (2.1).

Definition 3.1. ([6, 32]) A real-valued function µ : D → R is said to be a
gap function for (2.1), if it satises the following assertions:

(a) µ(x) ≥ 0, ∀x ∈ D.
(b) For x∗ ∈ D, µ(x∗) = 0 if and only if x∗ is a solution of (2.1).

Consider the functions Υf , Υf
∗ : D → R defined by

Υf (x) = sup
y∈D
{〈A(u)− f, x− y〉X + ϕ(x, x)− ϕ(x, y)− J◦(x; y − x)} ,

∀x ∈ D,u ∈ B(x), (3.1)

Υf
∗(x) = sup

y∈D
{〈A(v)− f, x− y〉X + ϕ(x, x)− ϕ(x, y)− J◦(y; y − x)} ,

∀x ∈ D, v ∈ B(y). (3.2)

The following lemma shows that functions Υf and Υf
∗ are gap functions for

(2.1).

Lemma 3.2. Assume that the assumptions of Theorem 2.6 hold. Then, the

functions Υf and Υf
∗ defined by (3.1) and (3.2) are two gap functions for

(2.1).

Proof. First of all, we prove that Υf is a gap function for (2.1). It is not

difficult to demonstrate in an analogous way that the function Υf
∗ is also a

gap function for (2.1). We will review two conditions of Denition 3.1.
(a) From the definition of Υf , for all x ∈ D, we have

Υf (x) ≥ 〈A(u)− f, x− x〉X + ϕ(x, x)− ϕ(x, x)− J◦(x;x− x)

= −J◦(x; 0)

= 0, ∀u ∈ B(x). (3.3)

It implies that Υf (x) ≥ 0 for all x ∈ D.
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(b) Suppose that for x∗ ∈ D, Υf (x∗) = 0, that is, for all u∗ ∈ B(x∗),

sup
y∈D
{〈A(u∗)− f, x∗ − y〉X + ϕ(x∗, x∗)− ϕ(x∗, y)− J◦(x∗; y − x∗)} = 0.

(3.4)

This together with the fact

〈A(u∗)−f, x∗−x∗〉X +ϕ(x∗, x∗)−ϕ(x∗, x∗)−J◦(x∗;x∗−x∗) = 0, ∀u∗ ∈ B(x∗)

implies that (3.4) is equivalent to

〈A(u∗)− f, y − x∗〉X + ϕ(x∗, y)− ϕ(x∗, x∗)− J◦(x∗; y − x∗) ≥ 0

for all y ∈ D,u∗ ∈ B(x∗). Therefore, we infer that x∗ is a solution of (2.1) if
and only if

Υf (x∗) = 0.

This means that Υf is a gap function for (2.1). This completes the proof. �

Let λ > 0 be a fixed parameter. We consider the following functions

Υf,λ,Υf,λ
∗ : D → R defined by

Υf,λ(x)

= sup
y∈D

{
〈A(u)− f, x− y〉X + ϕ(x, x)− ϕ(x, y)− J◦(x; y − x)− 1

2λ
‖x− y‖2X

}
(3.5)

for all x ∈ D,u ∈ B(x),

Υf,λ
∗ (x)

= sup
y∈D

{
〈A(v)− f, x− y〉X + ϕ(x, x)− ϕ(x, y)− J◦(y; y − x)− 1

2λ
‖x− y‖2X

}
(3.6)

for all x ∈ D, v ∈ B(y).

In what follows, the functions Υf,λ and Υf,λ
∗ are called the regularized gap

functions for (2.1).

Theorem 3.3. Suppose the assertions of Theorem 2.6 hold. Then, for any

λ > 0, the functions Υf,λ and Υf,λ
∗ are two gap functions for (2.1).

Proof. Now, we prove that Υf,λ is a gap function for (2.1). Applying the

analogous techniques, we can easily show that Υf,λ
∗ is also a gap function for

(2.1).
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(a) For any λ > 0 fixed, it is trivial that for each x ∈ D, Υf,λ(x) ≥ 0. Since
for x ∈ D,

Υf,λ(x) = 〈A(u)− f, x− x〉X+ϕ(x, x)−ϕ(x, x)−J◦(x;x− x)− 1

2λ
‖x− x‖2X

= −J◦(x; 0)

= 0, ∀u ∈ B(x).

(b) Assume that for x∗ ∈ D, Υf,λ(x∗) = 0. Then for all u∗ ∈ B(x∗),

sup
y∈D

{
〈A(u∗)−f, x∗−y〉X+ϕ(x∗, x∗)−ϕ(x∗, y)−J◦(x∗; y− x∗)− 1

2λ
‖x∗−y‖2X

}
= 0.

This implies that

〈A(u∗)− f, y − x∗〉X − ϕ(x∗, x∗) + ϕ(x∗, y) + J◦(x∗; y − x∗)

≥ − 1

2λ
‖x∗ − y‖2X , ∀y ∈ D,u∗ ∈ B(x∗). (3.7)

For any z ∈ D and t ∈ (0, 1), we put y = yt = (1− t)x∗+ tz ∈ D in (3.7), and
using the convexity of y� ϕ(x, y) and positive homogeneity of y� J◦(x; y),
then we have

t〈A(u∗)− f, z − x∗〉X − tϕ(x∗, x∗) + tϕ(x∗, z) + tJ◦(x∗; z − x∗)
≥ 〈A(u∗)− f, yt − x∗〉X − ϕ(x∗, x∗) + ϕ(x∗, yt) + J◦(x∗; yt − x∗)

≥ − 1

2λ
‖x∗ − yt‖2X

= − t
2

2λ
‖x∗ − z‖2X , ∀u∗ ∈ B(x∗).

Hence, we have

〈A(u∗)− f, z − x∗〉X−ϕ(x∗, x∗) + ϕ(x∗, z)− J◦(x∗; z − x∗)

≥ − t

2λ
‖x∗ − z‖2X , ∀z ∈ D,u∗ ∈ B(x∗).

Letting t→ 0+ for the above inequality, we get

〈A(u∗)−f, z−x∗〉X−ϕ(x∗, x∗)+ϕ(x∗, z)+J◦(x∗; z−x∗) ≥ 0, ∀z ∈ D,u∗ ∈ B(x∗).

Hence, x∗ is a solution of (2.1).

Conversely, suppose that x∗ ∈ D is a solution of (2.1), that is,

〈A(u∗)−f, y−x∗〉X−ϕ(x∗, x∗)+ϕ(x∗, y)+J◦(x∗; y−x∗) ≥ 0, ∀y ∈ D,u∗ ∈ B(x∗).
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This ensures that

sup
y∈D

{
〈A(u∗)−f, x∗−y〉X + ϕ(x∗, x∗)−ϕ(x∗, y)−J◦(x∗; y−x∗)− 1

2λ
‖x∗−y‖2X

}
≤ 0

for all u∗ ∈ B(x∗). The latter combined with the fact

Υf,λ(x) ≥ 0, ∀x ∈ D

and imply that

Υf,λ(x∗) = 0.

This completes the proof. �

Lemma 3.4. Assume that the assumptions of Theorem 2.6 are satisfied. If,
in addition, ϕ : D×D → R is continuous, then, for each λ > 0, the functions

Υf,λ and Υf,λ
∗ are both lower semicontinuous.

Proof. We can prove that Υf,λ is a lower semicontinuous for each λ > 0. It

is not difficult to use a similar argument to verify that Υf,λ
∗ has the same

property.
Consider the function Υ̂f,λ : D ×D → R defined by

Υ̂f,λ(x, y) = 〈A(u)− f, x− y〉X + ϕ(x, x)− ϕ(x, y)

− J◦(x; y − x)− 1

2λ
‖x− y‖2X , ∀u ∈ B(x).

Since the operators A : CB(X∗) → CB(X∗) and B : X → CB(X∗) are
demicontinuous being pseudomonotone, this means that the function x �
〈A(u), x〉X is continuous. The latter together with the lower semicontinuity
of (x, y) � −J◦(x; y), and the continuity of (x, y) � ϕ(x, y) and x � ‖x‖X
guarantees that x� Υ̂f,λ(x, y) is lower semicontinuous for all y ∈ D.

Next, we see that

Υf,λ(x) = sup
y∈D

Υ̂f,λ(x, y), ∀ x ∈ D.

Let {xn} ⊂ D and xn → x as n→∞. Then, we have

lim inf
n→∞

Υf,λ(xn) = lim inf
n→∞

sup
y∈D

Υ̂f,λ(xn, y)

≥ lim inf
n→∞

Υ̂f,λ(xn, z)

≥ Υ̂f,λ(x, z), ∀z ∈ D.
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Passing to supremum with z ∈ D for the above inequality, it gives

lim inf
n→∞

Υf,λ(xn) ≥ sup
z∈D

Υ̂f,λ(x, z)

= Υf,λ(x).

Therefore, the function Υf,λ is lower semicontinuous and proof is completed.
�

Let λ, τ > 0 be two parameters. Moreover, let us consider the following
functions

kΥf,λ,τ , kΥf,λ,τ∗
: D → R

are defined by

kΥf,λ,τ (x) = inf
z∈D

{
Υf,λ(z) + τ‖x− z‖2X

}
, ∀x ∈ D, (3.8)

k
Υf,λ,τ∗

(x) = inf
z∈D

{
Υf,λ
∗ (z) + τ‖x− z‖2X

}
, ∀x ∈ D. (3.9)

In the sequel, we invoke the functions kΥf,λ,τ and k
Υf,λ,τ∗

to be the Moreau-

Yosida regularized gap functions for (2.1). Subsequently, we will verify that
these functions are two gap functions for (2.1).

Theorem 3.5. Assume that the assumptions of Lemma 3.4 are satisfied.
Then, for all λ, τ > 0, the functions kΥf,λ,τ and k

Υf,λ,τ∗
are two gap func-

tions for (2.1).

Proof. We can prove that kΥf,λ,τ is a gap function for (2.1). It is possible to
prove, in an analogous way, that k

Υf,λ,τ∗
is also a gap function for (2.1).

(a) For any λ, τ > 0 fixed, recall that Υf,λ,τ is a gap function for (2.1),
hence

Υf,λ,τ (x) ≥ 0, ∀ x ∈ D.
In consequence,

kΥf,λ,τ (x) ≥ 0, ∀ x ∈ D.
(b) Suppose that x ∈ D is a solution of (2.1). Theorem 3.3 show that

Υf,λ,τ (x∗) = 0.

Moreover, the inequality

kΥf,λ,τ (x∗) = inf
z∈D

{
Υf,λ(z) + τ‖x∗ − z‖2X

}
≤ Υf,λ(x∗) + τ‖x∗ − x∗‖2X
= 0

and the fact kΥf,λ,τ (x∗) ≥ 0 implies that kΥf,λ,τ (x∗) = 0.
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Conversely, let for x∗ ∈ D, kΥf,λ,τ (x∗) = 0, that is,

inf
z∈D

{
Υf,λ(z) + τ‖x∗ − z‖2X

}
= 0.

Then, there exists a minimizing sequence {zn} in D such that

0 ≤ Υf,λ(zn) + τ‖x∗ − zn‖2X <
1

n
. (3.10)

It is obvious that

Υf,λ(zn)→ 0

and

‖x∗ − zn‖X → 0 as n→∞,
that is, zn → x∗ as n→ +∞.

From Lemma 3.4 and nonnegativity of Υf,λ, we have

0 ≤ Υf,λ(x∗)

≤ lim inf
n→+∞

Υf,λ(zn)

= 0.

Thus Υf,λ(x∗) = 0. Since Υf,λ is a gap function, x∗ is a solution of (2.1), and
proof is completed. �

4. The error bounds

In this section, we discuss two error bounds for (2.1) associated with the
regularized gap function Υf,λ,τ and the Moreau-Yosida regularized gap func-
tion kΥf,λ,τ , respectively. These error estimates measure the distance between
any admissible point and the unique solution of (2.1).

Theorem 4.1. Let x∗ ∈ D be the unique solution of (2.1) and λ > 0 be such
that

αBβ
2
Bα

2
A − αϕ − αJ >

1

2λ
. (4.1)

Assume that the assertions of Theorem 2.6 hold. Then, for each x ∈ D, we
have

‖x− x∗‖X ≤

√√√√√ Υf,λ(x)

αBβ2
Bα

2
A − αϕ − αJ −

1

2λ

. (4.2)

Proof. Let x∗ ∈ D be the unique solution of (2.1), that is, for y ∈ D,u∗ ∈
B(x∗).

〈A(u∗)− f, y − x∗〉X + ϕ(x∗, y)− ϕ(x∗, x∗) + J◦(x∗; y − x∗) ≥ 0. (4.3)
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Then, for any x ∈ D fixed, we put y = x in (4.3), we obtain, for u∗ ∈ B(x∗),

〈A(u∗)− f, x− x∗〉X + ϕ(x∗, x)− ϕ(x∗, x∗) + J◦(x∗;x− x∗) ≥ 0. (4.4)

By virtue of the definition of Υf,λ, we have

Υf,λ(x) ≥ 〈A(u)− f, x− x∗〉X + ϕ(x, x)− ϕ(x, x∗)

− J◦(x;x∗ − x)− 1

2λ
‖x− x∗‖2X . (4.5)

It follows from the locally Lipschitz continuity of A with respect to constant
αA, inverse strongly monotone of B with respect to the constant αB > 0
and Hausdorff Lipschitz continuity with constant βB, assumptions (3)-(b) and
(4)-(b), and inequality (4.4), we have

〈A(u)− f, x− x∗〉X + ϕ(x, x)− ϕ(x, x∗)− J◦(x;x∗ − x)− 1

2λ
‖x− x∗‖2X

≥ 〈A(u∗)− f, x− x∗〉X + ϕ(x∗, x)− ϕ(x∗, x∗) + J◦(x∗;x− x∗)

+ (β2
BαBα

2
A − αj − αϕ −

1

2λ
)‖x− x∗‖2X

≥
(
β2
BαBα

2
A − αj − αϕ −

1

2λ

)
‖x− x∗‖2X , ∀u ∈ B(x), u∗ ∈ B(x∗). (4.6)

Combining (4.5) and (4.6), we have

Υf,λ(x) ≥
(
β2
BαBα

2
A − αj − αϕ −

1

2λ

)
‖x− x∗‖2X . (4.7)

Hence, the desired inequality (4.2) is valid. �

Theorem 4.2. Let x∗ ∈ D be the unique solution of (2.1) and λ > 0 be such
that

β2
BαBα

2
A − αJ − αϕ ≥

1

2λ
. (4.8)

Assume that the assumptions of Theorem 2.6 hold. Then, for each x ∈ D and
all τ > 0, we have

‖x− x∗‖X ≤

√√√√√ 2kΥf,λ,τ (x)

min

{
β2
BαBα

2
A − αϕ − αJ −

1

2λ
, τ

} . (4.9)
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Proof. Let x∗ ∈ D be the unique solution of (2.1). By the definition of the
function kΥf,λ,τ ,

kΥf,λ,τ (x) = inf
z∈D

{
Υf,λ(z) + τ‖x− z‖2X

}
≥ inf

z∈D

{(
β2
BαBα

2
A − αJ − αϕ −

1

2λ

)
‖x∗ − z‖2X + τ‖x− z‖2X

}
≥ min

{
β2
BαBα

2
A−αJ−αϕ−

1

2λ
, τ

}
inf
z∈D

{
‖x∗ − z‖2X + ‖x− z‖2X

}
≥ 1

2
min

{
β2
BαBα

2
A − αJ − αϕ −

1

2λ
, τ

}
‖x− x∗‖2X , ∀x ∈ D.

Hence

‖x− x∗‖X ≤

√√√√√ 2kΥf,λ,τ (x)

min

{
β2
BαBα

2
A − αϕ − αJ −

1

2λ
, τ

} , ∀x ∈ D,
which completes the proof of the theorem. �
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