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Abstract. We introduce a new derivative free family of difference iterative methods for

solving nonlinear equations with non-differentiable operators in a Banach space setting. This

family is obtained as a combination of Chebyshev’s and Kurchatov’s method, and is shown

to be faster than the corresponding one using the Chebyshev’s or Kurchatov’s methods.

Numerical examples validate our semilocal convergence results.

1. Introduction

In this study we are concerned with problem of approximating a locally
unique solution x∗ of nonlinear equation

F (x) = 0, (1.1)

where F is a continuous nonlinear operator defined on a non-empty convex
subset D of a Banach space X with values in a Banach space Y. Many problems
from computational sciences and other disciplines can be brought in a form
similar to equation (1.1) using mathematical modelling [8, 10, 13, 19, 21, 22].
The solution of these equations can rarely be found in closed form. That is why
most solution methods for these equations are iterative. In applied sciences
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the practice of Numerical Analysis for finding solutions x∗ of equation (1.1) is
essentially connected to variants of Newton’s method.

The Secant method

xn+1 = xn − [xn−1, xn;F ]−1F (xn) (n ≥ 0) (x−1, x0 ∈ D) (1.2)

is undoubtedly the most popular difference, iterative procedure for generat-
ing a sequence {xn} converging to x∗. Here, [x, y;F ] ∈ L(X,Y ) the space of
bounded linear operators from X into Y, denotes a divided difference of order
one on the points x and y with x 6= y if the following holds

[x, y;F ](x− y) = F (x)− F (y). (1.3)

The local as well as semilocal convergence of Secant method has been studied
by many authors (cf. [1]-[28] and the references therein). The convergence
order of the Secant method is 1.618· · · .

A less studied (linear interpolation based) difference method suggested by
Kurchatov [20] is given by

xn+1 = xn −A−1n F (xn),

An = [2xn − xn−1, xn−1;F ], (n ≥ 0), (x−1, x0 ∈ D).
(1.4)

As in the case of the Secant method (1.3), Kurchatov’s method (1.4) uses two
previous iterations, but its convergence is quadratic. However, the semilocal
convergence of Kurchatov’s method shown in [20] requires the very restrictive
boundedness condition on the norm of F ′′′.

Later the local as well as semilocal convergence of Kurchatov’s method
was given in [5], [6],[20],[27], where different techniques were used and divided
difference of order only one. Under such conditions Potra [24] studied a method
using three previous iterations, but the convergence is lower and equals to
1.839· · · .

The basic assumption in all studies on Kurchatov’s method (1.4) is that the
the divided difference of first order for the operator F is Lipschitz or Hölder
continuous on some ball around the starting point x0. But this assumption
forces the operator F to be differentiable ([4], [25]).

In this paper, we have two main aims. Firstly, we consider a multiparametric
family of iterative methods that do not use derivatives and generalize method
(1.2). Secondly, we obtain a semilocal convergence result for non-differentiable
operators. To do this, we change the conditions normally imposed on divided
differences. Thus, we relax the requirements that the first order divided dif-
ference operator F is Lipschitz or Hölder continuous, and just assume the
following condition:

‖[x, y;F ]− [v, w;F ]‖ ≤ ω(‖x− v‖, ‖y − w‖); x, y, v, w ∈ D,
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where ω : R+×R+ → R+ is a continuous non-decreasing function in its two
arguments. It is clear that this condition generalizes the conditions previously
indicated. In fact, when ω(u1, u2) = k(u1 + u2), we obtain the Lipschitz
continuous case and, when ω(u1, u2) = k(up1 + up2), we obtain the the (k, p)-
Hölder continuous case. Moreover, in general, this condition does not involve
the differentiability of the operator F .

The family of iterative methods that we consider in this paper arises from
the Chebyshev method, a well known third-order convergence method that
has been studied, for instance, in [11] or [1]. Firstly, Hernández [16] and later
Ezquerro and Hernández [14]-[17], modify this method by avoiding the compu-
tation of the second derivative of F and reducing the number of evaluations of
the first derivative of F . Actually, these authors have obtained a modification
of the Chebyshev method with order of convergence at least three, which only
need to evaluate the first derivative of F . This family of iterative methods is
written as follows [14]:

x0 ∈ D,
yk = xk − F ′(xk)−1 F (xk),

zk = xk + p (yk − xk), p ∈ (0, 1],

xk+1 = xk −
1

p2
F ′(xk)

−1 ((p2 + p− 1) F (xk) + F (zk)), k ≥ 0.

So, they obtain a uniparametric family of iterative methods which depends
only on the first derivative of the operator F , which is evaluated only at one
point. Then, to construct a family of iterative methods free of derivatives, as
the classical Secant method, we consider an approximation of the first deriva-
tive of F from a divided difference of first order; that is, F ′(xn) ' [xn−1, xn, F ],
where, [x, y;F ] is a divided difference of first order for the operator F at the
points x, y ∈ D. So, we introduce a family of iterative methods that does not
use derivatives. We recall these iterative methods as Chebyshev-Secant-type
methods (CSTM) and they are written as follows:

x−1, x0 ∈ D,

yn = xn −An
−1
F (xn), An = [xn−1, xn;F ],

zn = xn + a (yn − xn),

xn+1 = xn −An
−1

(b F (xn) + c F (zn)), n ≥ 0,

(1.5)

where a, b, c are non-negative parameters to be chosen so that the sequence
{xn} converges to x∗. Note that (1.7) reduces to (1.4) if b = 1 and a = c = 0.
Even more, if ac = 0 and b > 0, the Chebyshev-Secant-type methods defined
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in (1.7) becomes the following Secant-type method:

xn+1 = xn − b[xn−1, xn;F ]−1F (xn);x0, x−1. (1.6)

This kind of methods have been studied in [17], [18]. However, if ac 6= 0, the
methods defined in (1.7) are essentially different from the Secant method (1.2)
or Secant-type methods (1.6).

In the present paper we introduce the Chebyshev-Kurchatov-type method
(CKTM) as follows.

x−1, x0 ∈ D,
yn = xn −A−1n F (xn), An = [2xn − xn−1, xn−1;F ],

zn = xn + a (yn − xn),

xn+1 = xn −A−1n (b F (xn) + c F (zn)), n ≥ 0.

(1.7)

Next, in Section 2, we provide a semilocal convergence result for the family of
iterative methods (1.7) when they are applied to non-differentiable operators.
Finally, in Section 3, we consider examples: where we compare (1.4) to (1.2).

Throughout the paper we denote B(x, r) = {y ∈ X : ‖y − x‖ ≤ r} and
B(x, r) = {y ∈ X : ‖y − x‖ < r}. In particular, we show that Kurchatov’s
method (CKTM) is faster than (CSTM).

2. Semilocal Convergence Analysis

We analyse the semilocal convergence of the new family of iterative methods
given by (1.7). To do this, we use a technique based on proving a system of
recurrence relations. Firstly, we suppose that there exists a first-order divided
difference [x, y;F ] ∈ L(X,Y ), for all x, y ∈ D. Let us suppose that

(C1) (1− b) = (1− a)c and a ∈ [0, 1],
(C2) x−1, x0 ∈ D are such that ‖x0 − x−1‖ ≤ α,
(C3) the linear operator A0 is invertible, ‖A−10 ‖ ≤ β and ‖A−10 F (x0)‖ ≤ η,
(C4) ‖[x, y;F ] − [u, v;F ]‖ ≤ ω(‖x − u‖, ‖y − v‖), x, y, u, v ∈ D, where ω :

R+ × R+ −→ R+ is a continuous non-decreasing function in both
arguments,

(C5) we denote m = max{p, acβω(2(1+p)η+α, α), acβω(α, aη+α)}, where
p = acω(α, aη + α). Suppose equation

(1 + ϕ(t))η = t

(
1− ϕ(t)

(
1 +

1

ac
(1 + ϕ(t))

))
, (2.1)

where ϕ(t) = m
1−βω(3t+α,t+α) , has at least one positive root; we denote

the smallest positive root of this equation by R and bω(3R+α,R+α) <
1.
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(C6) (1 +M)M
(
1 + 1

ac(1 +M)
)
< 1, where M = m

1−βω(3R+α,R+α) ,

(C7) U(x0, R) ⊆ D.
(C8) x, y ∈ D ⇒ 2y − x ∈ D.

As noted in [5], [6], [8], [10] condition (C8) is automatically satisfied,
if X = D. Otherwise, replace (C7) and (C8) by

(C7)’ U(x0, 3R) ⊆ D.

Note that under (C7)’, ‖2y−x−x0‖ ≤ 2‖y−x0‖+‖x−x0‖ ≤ 2R+R = 3R
for all x, y ∈ U(x0, R).

Next, we present three auxiliary results for later usage.

Lemma 2.1. If the method (1.7) is well defined, then the following assertions
hold

F (zn) = (1− a)F (xn) + a(Bn −An)(yn − zn), n ≥ 0,

F (xn+1) = (An+1 −An)(xn+1 − xn) + ac(An −Bn)(yn − xn) n ≥ 0,

where An = [xn−1, xn;F ], Bn = [xn, zn;F ] and (1− b) = (1− a)c.

Lemma 2.2. Suppose that (C1)–(C7) hold. Then, the following assertion
holds

n∑
i=0

M i

(
1 +

1

ac
(1 +M)

)i
η = (1 +M)

1−
(
M
(
1 + 1

ac(1 +M)
))n+1

1−M
(
1 + 1

ac(1 +M)
) η

<
(1 +M) η

1−M
(
1 + 1

ac(1 +M)
)

= R.

Lemma 2.3. Suppose that (C1)–(C7) hold. Then, for n ≥ 1, we have the
following recurrence relations:

[I] There exists A−1n and ‖A−1n ‖ ≤
β

1−βω(α+R,R) ,

[II] ‖yn − xn‖ ≤M
(
1 + 1

ac(1 +M)
)
‖yn−1 − xn−1‖

≤Mn
(
1 + 1

ac(1 +M)
)n ‖y0 − x0‖,

[III] ‖yn − x0‖ ≤ (1 +M)
∑n

i=0M
i
(
1 + 1

ac(1 +M)
)i ‖y0 − x0‖ < R,

[IV] ‖zn − x0‖ ≤ (1 +M)
∑n

i=0M
i
(
1 + 1

ac(1 +M)
)i ‖y0 − x0‖ < R,

[V] ‖xn+1 − xn‖ ≤ (1 +M)‖yn − xn‖
≤ (1 +M)Mn

(
1 + 1

ac(1 +M)
)n ‖y0 − x0‖,

[VI] ‖xn+1 − x0‖ ≤ (1 +M)
∑n

i=0M
i
(
1 + 1

ac(1 +M)
)i ‖y0 − x0‖ < R.
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Proof. We have that ‖y0 − x0‖ ≤ η, ‖z0 − x0‖ ≤ η and

‖x1 − x0‖ ≤
(
1 + ac‖A−10 ‖‖A0 −B0‖

)
‖y0 − x0‖

≤ (1 + p)‖y0 − x0‖ ≤ (1 +M)η

< R.

Next, we can prove that [I]–[VI] are true for n = 1 suppose that [I]–[VI] are
true for k = 1, 2, . . . , n− 1. Then, we have in turn

[I]: Since ‖I − A−10 An‖ ≤ βω(‖xn−1 − x−1‖, ‖xn − x0‖) ≤ βω(α + R,R) < 1,
then, by Banach’s lemma, it follows

‖A−1n ‖ ≤
1

1− bω(2‖xn − x0‖+ ‖xn−1 − x−1‖, ‖xn−1 − x−1‖)

≤ β

1− βω(3R+ α,R+ α)
.

(2.2)

[II]:

‖yn − xn‖
≤ ‖A−1n ‖‖F (xn)‖
≤ ‖A−1n ‖ω(‖xn−1 − xn−2‖+ 2‖xn − xn−1‖, ‖xn−1 − xn−2‖)‖xn − xn−1‖

+ac ω(‖xn−1 − xn−2‖, ‖zn−1 − xn−2‖)‖yn−1 − xn−1‖

≤M
(

1 +
1

ac
(1 +M)

)
‖yn−1 − xn−1‖

≤Mn

(
1 +

1

ac
(1 +M)

)n
‖y0 − x0‖,

[III]:

‖yn − x0‖ ≤ ‖zn − xn‖+ ‖xn − x0‖

≤ (1 +M)
n∑
i=0

M i

(
1 +

1

ac
(1 +M)

)i
‖y0 − x0‖

< R,

[IV]:

‖zn − x0‖ ≤ ‖zn − xn‖+ ‖xn − x0‖

≤ (1 +M)

n∑
i=0

M i

(
1 +

1

ac
(1 +M)

)i
‖y0 − x0‖

< R,
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[V]:

‖xn+1 − xn‖ ≤
(
1 + ac‖A−1n ‖‖An −Bn‖

)
‖yn − xn‖

≤
(

1 +
m

1− βω(3R+ α,R+ α)

)
‖yn − xn‖

≤ (1 +M)‖yn − xn‖

≤ (1 +M)Mn

(
1 +

1

ac
(1 +M)

)n
‖y0 − x0‖,

[VI]:

‖xn+1 − x0‖ ≤ ‖xn+1 − xn‖+ ‖xn − x0‖

≤ (1 +M)
n∑
i=0

M i

(
1 +

1

ac
(1 +M)

)i
‖y0 − x0‖

< R.

The proof of the Lemma is complete. �

Next, we present the main semilocal convergence theorem for iterative
method (1.7) when they are applied to nondifferentiable operators that satisfy
conditions (C1)–(C8).

Theorem 2.4. Let X and Y be two Banach spaces and let F : D ⊆ X → Y be
defined on on a non-empty open convex domain D. Suppose that there exists
[x, y;F ] ∈ L(X,Y ), for all x, y ∈ D, and conditions (C1)–(C8) are satisfied.
Then sequence (1.7), starting from x−1 and x0 is well defined, remains in
U(x0, R) for all n ≥ 0 and converges to a unique solution x∗ ∈ U(x0, R) of
F (x) = 0.

Proof. We have that

‖xn+k − xn‖
≤ ‖xn+k − xn+k−1‖+ ‖xn+k−1 − xn+k−2‖+ · · ·+ ‖xn+1 − xn‖
≤ (1 +M) (‖yn+k−1 − xn+k−1‖+ ‖yn+k−2 − xn+k−2‖+ · · ·+ ‖yn − xn‖

≤ (1 +M)

n+k−1∑
i=n

(
M i

(
1 +

1

ac
(1 +M)

)i)
‖y0 − x0‖

< (1 +M)Mn

(
1 +

1

ac
(1 +M)

)n 1−
(
M
(
1 + 1

ac(1 +M)
))k

1−M
(
1 + 1

ac(1 +M)
) η.

It follows from Lemma 2.3, that (1.7) is a complete sequence, and as such it
converges to some x∗ ∈ U(x0, R) (since U(x0, R) is a closed set).
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Hence, for (II) there exists γ > 0 such that

‖F (xn)‖ ≤ γ‖yn−1 − xn−1‖

and ‖yn−1 − xn−1‖ → 0 as n → ∞. That is we deduce F (x∗) = 0. To prove
the uniqueness of the solution x∗, suppose that y∗ is a solution of F (x) = 0 in
U(x0, R). Define the operator A = [x∗, y∗;F ]. Then, we have in turn that

‖A−10 A− I‖ ≤ ‖A−10 ‖‖A−A0‖ ≤ ‖A−10 ‖‖[y
∗, x∗;F ]− [x−1, x0;F ]‖

≤ βω(‖y∗ − x−1‖, ‖x∗ − x0‖) ≤ βω(α+R,R)

< 1.

Hence, operator A−1 exists. It then follows from A(y∗ − x∗) = F (y∗)− F (x∗)
that x∗ = y∗. The proof of the Theorem is complete. �

Remark 2.5. Using the same information as in Theorem 2.4, we can provide
at least as tight upper bounds on the distances involved, and at least as precise
information on the location of the solution x∗. Indeed, let us assume

(C9) ‖[2x0 − x−1, x−1;F ] − [x, y;F ]‖ ≤ ω0(‖2x0 − x−1 − x‖, ‖x−1 − y‖),
x, y ∈ D, where ω0 : R+ × R+ −→ R+ is a continuous and non-
decreasing function in both arguments,

(C10) there exists R1 ≥ 3R such that

β ω0(R1 + α,R+ α) < 1,

and

(C11) U(x0, 3R1) ⊆ D.
Condition (C9) always follows from (C4) (simply, set ω = ω0). Hence, (C9) is
not an additional (to (C4)) hypothesis. Note that

ω0 ≤ ω (2.3)

holds in general, and
ω

ω0
can be arbitrarily large [7]–[9]. It follows from (2.3),

and the proof of [I] in Lemma 2.3 that

‖A−1n ‖ ≤
1

1− β ω0(‖xn−1 − x−1‖, ‖xn − x0‖)
(2.4)

which is an at least as tight estimate as (2.2). In particular, if strict inequality
holds in (2.3), then (2.4) can replace (I), which leads to tighter error bounds
on the distances involved. Conditions (C9)–(C10) extend the uniqueness ball
for the solution x∗. Indeed, assuming y∗ ∈ U(x0, R1), the uniqueness proof of
Theorem 2.4 now gives

‖A−10 A− I‖ ≤ β ω0(α+R1, R+ α) < 1.
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We finish this section with a semilocal convergence theorem for the methods
defined in 1.7 in the case ac = 0 or, equivalently, for Secant-type methods 1.6
with b > 0. We omit the proof because it follows directly from the proof of
Theorem 2.1 in [17].

Theorem 2.6. Let X and Y be two Banach spaces and let F : D ⊆ X → Y be
a nonlinear operator defined on on a non-empty open convex domain D such
that there exists [x, y;F ] ∈ L(X,Y ), for all x, y ∈ D. Let us suppose that

(c1) The linear operator A0 is invertible, ‖A−10 ‖ ≤ β and ‖A−10 F (x0)‖ ≤ η,
(c2) x−1, x0 ∈ D are such that ‖x0 − x−1‖ ≤ α,
(c3) ‖[x, y;F ] − [u, v;F ]‖ ≤ ω(‖x − u‖, ‖y − v‖), x, y, u, v ∈ D, where

ω : R+ × R+ −→ R+ is a continuous non-decreasing function in both
arguments,

(c4) we denote m = max{βω(α, η), βω(η, η)}, and suppose that the equation

x

(
1− bm

1− βω(x+ α, x)

)
− η = 0,

has at least one positive root; we denote the smallest positive root of
this equation by R,

(c5) βω(R+ α,R) < 1 and
bm

1− βω(α+R,R)
< 1,

(c6) U(x0, R) ⊆ D.

Then sequence (1.6), starting from x−1 and x0, converges to a unique solution
x∗ of F (x) = 0. Moreover, the solution x∗ and the iterates xn belong to

U(x0, R).

3. Applications

We provide two examples in this concluding Section. In the first exam-
ple, we solve a system of two equations with two unknowns including a non-
differentiable part. We suggest applications for solving nonlinear integral equa-
tions, where operator F is not necessarily differentiable in the concluding ex-
ample of this Section.

Example 3.1. In this example we apply the above result to the following
nonlinear system:

x21 − x2 + 1 + 1
9 |x1 − 1| = 0,

x1 + x22 − 7 + 1
9 |x2| = 0.

(3.1)

Observe that system (3.1) is equivalent to F (x) = 0, where F : R2 → R2,
F = (F1, F2), x = (x1, x2), F1(x1, x2) = x21−x2+1+ 1

9 |x1−1| and F2(x1, x2) =

x1 + x22 − 7 + 1
9 |x2|.
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Moreover, for u, v ∈ R2, [u, v;F ] ∈ L(R2,R2) and

[u, v;F ]i1 =
Fi(u1, v2)− Fi(v1, v2)

u1 − v1
,

[u, v;F ]i2 =
Fi(u1, u2)− Fi(u1, v2)

u2 − v2
, i = 1, 2,

so that

[u, v;F ] =

(
u21−v21
u1−v1 −1

1
u22−v22
u2−v2

)
+

1

9

(
|u1−1|−|v1−1|

u1−v1 −1

1 |u2|−|v2|
u2−v2

)
.

If we take the Chebyshev norm as vector norm and the matrix norm subordi-
nated to this vector norm, we obtain

‖[x, y;F ]− [u, v;F ]‖ ≤ ‖x− u‖+ ‖y − v‖+
2

9
,

and consequently, from (C4), it follows ω(s, t) = s+ t+ 2/9.
Now, we apply an iterative method of (1.7) for approximating a solution of

(3.1). For example, we choose a = b = c/2 = 1/2. We start the corresponding
iterative method with x−1 = (0, 0) and x0 = (1, 1). The solution is

x∗ = (1.159360850, 2.361824342).

The next two tables shows the result of 25th to 35th iterations of method (1.5)
and (1.7) respectively.

Table 1. 25th to 35th Iterations of (CSTM) of Example 3.1.

n xn
25 ( 1.159360859, 2.361824364)
26 ( 1000991.18, -21674242.7900000000)
27 (1667673.863, -32560048.6399999999)
28 (-680216.541999999999, 16150460.95)
29 (-437579.255400000000, 13466090.79)
30 (-3684474.1379999999, 47500115.97)
31 (-811460.2386000000000, 14278327.17)
32 (-1224537.989000000000, 17372467.23)
33 (1435080.934, -31510306.4799999999)
34 (635016.9977, -21331918.4300000000)
35 (1870663.883, -43763005.8399999999)
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Table 2. 25th to 35th Iterations of (CKTM) of Example 3.1.

n xn
25 ( 1.159360855, 2.361824353)
26 ( 1.159360853, 2.361824348)
27 (1.159360851, 2.361824345)
28 (1.159360851, 2.361824344)
29 (1.159360851, 2.361824343)
30 (1.15936085, 2.361824342)
31 (1.15936085, 2.361824342)
32 ( 1.15936085, 2.361824342)
33 ( 1.15936085, 2.361824342)
34 ( 1.15936085, 2.361824342)
35 ( 1.15936085, 2.361824342)

Example 3.2. Let G(x, t, x(t)) be a continuous function of its arguments. Let
operator F be given by

F (x(s)) = x(s)−
∫ 1

0
G(x, t, x(t)) dt.

Define divided difference An by

An(s, t) =
G(s, t, xn(t))− G(s, t, xn−1(t))

xn(t)− xn−1(t)
.

We refer the reader to [8], [9], [17] for special choices of function G, so that
condition (C4) is satisfied.
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