Nonlinear Functional Analysis and Applications Vol. 29, No. 3 (2024), pp. 885-897 ISSN: 1229-1595(print), 2466-0973(online)

https://doi.org/10.22771/nfaa.2024.29.03.14 http://nfaa.kyungnam.ac.kr/journal-nfaa

SOME FIXED POINT THEOREMS IN A GENERALIZED b_2 -METRIC SPACE OF (ψ, φ) -WEAKLY CONTRACTIVE MAPPINGS

Pravin Singh¹, Shivani Singh² and Virath Singh³

¹University of KwaZulu-Natal, Private Bag X54001, Durban, 4001, South Africa e-mail: singhp@ukzn.ac.za

²University of South Africa, Department of Decision Sciences, PO Box 392, 0003, Pretoria e-mail: singhs2@unisa.ac.za

³University of KwaZulu-Natal, Private Bag X54001, Durban, 4001, South Africa e-mail: singhv@ukzn.ac.za

Abstract. The purpose of this paper is to introduce a class of distance altering functions that establish the existence and uniqueness of fixed points of ν -admissible mappings that are subject to a generalized (ψ, φ) -almost weakly contraction on a generalized b_2 -metric space.

1. INTRODUCTION

The concept of a 2-metric was introduced by Gähler ([4]), as a generalization of the metric by using the concept of an area of a triangle in \mathbb{R}^2 as a basis for the formulation. The 2-metric spaces are not topologically equivalent to the metric spaces and so there is no easy relationship between results of these spaces ([2, 3]). In a recent paper, the authors Singh et al. introduce the concept of a generalized 2-metric ([1, 9, 10]).

Definition 1.1. ([4]) Let X be a nonempty set and $d: X \times X \times X \to [0, \infty)$ be a map satisfying the following properties:

(i) For $x, y, z \in X$ such that d(x, y, z) = 0 if at least two of the three points are the same.

⁰Received December 5, 2023. Revised March 13, 2024. Accepted March 14, 2024.

⁰2020 Mathematics Subject Classification: 47H10, 54H25.

⁰Keywords: Reich contraction, $b_{\nu}(s)$ -metric, monotonic.

⁰Corresponding author: V. Singh(singhv@ukzn.ac.za).

- (ii) For $x, y \in X$ such that $x \neq y$ there exists a point $z \in X$ such that $d(x, y, z) \neq 0$.
- (iii) symmetry property: for $x, y, z \in X$,

$$d(x, y, z) = d(x, z, y) = d(y, x, z) = d(y, z, x) = d(z, x, y) = d(z, y, x).$$

(iv) rectangle inequality:

$$d(x, y, z) \le d(x, y, t) + d(y, z, t) + d(z, x, t)$$

for
$$x, y, z, t \in X$$
.

Then d is a 2-metric and (X, d) is a 2-metric space.

Definition 1.2. ([6]) Let X be a nonempty set and $d: X \times X \times X \to [0, \infty)$ be a map satisfying the following properties:

- (i) For $x, y, z \in X$ such that d(x, y, z) = 0 if at least two of the three points are the same.
- (ii) For $x, y \in X$ such that $x \neq y$ there exists a point $z \in X$ such that $d(x, y, z) \neq 0$.
- (iii) symmetry property: for $x, y, z \in X$,

$$d(x,y,z) = d(x,z,y) = d(y,x,z) = d(y,z,x) = d(z,x,y) = d(z,y,x).$$

(iv) s-rectangle inequality: there exists $s \ge 1$ such that

$$d(x, y, z) \le s[d(x, y, t) + d(y, z, t) + d(z, x, t)]$$

for $x, y, z, t \in X$.

Then d is a b_2 -metric and (X, d) is a b_2 -metric space.

If s = 1, the b_2 -metric reduces to the 2-metric.

Example 1.3. ([6]) Let $X = [0, \infty)$ and define $d(x, y, z) = [xy + yz + zx]^p$ where $p \ge 1$. it suffices to only verify property (iv) of Definition 1.2. For $x, y, z, t \in X$, we get by using the Jensen's inequality,

$$\begin{split} d(x,y,z) &= [xy + yz + zx]^p \\ &= 3^p \left(\frac{1}{3}xy + \frac{1}{3}yz + \frac{1}{3}zx\right)^p \\ &\leq 3^p \left(\frac{1}{3}[xy]^p + \frac{1}{3}[yz]^p + \frac{1}{3}[zx]^p\right) \\ &\leq 3^p \left(\frac{1}{3}[xy + yt + xt]^p + \frac{1}{3}[yz + zt + yt]^p + \frac{1}{3}[zx + xt + zt]^p\right) \\ &= 3^{p-1}[d(x,y,t) + d(y,z,t) + d(z,x,t)] \end{split}$$

It follows that d is a b_2 -metric with $s \leq 3^{p-1}$.

2. Main result

Definition 2.1. Let X be a nonempty set and $d: X \times X \times X \to [0, \infty)$ be a map satisfying the following properties:

- (i) If $x, y, z \in X$ such that d(x, y, z) = 0 if at least two of the three points are the same.
- (ii) For $x, y \in X$ such that $x \neq y$ there exists a point $z \in X$ such that $d(x, y, z) \neq 0$.
- (iii) symmetry property: for $x, y, z \in X$,

$$d(x, y, z) = d(x, z, y) = d(y, x, z) = d(y, z, x) = d(z, x, y) = d(z, y, x).$$

(iv) modified rectangle inequality: there exists $\alpha, \beta, \gamma \geq 1$ such that

$$d(x, y, z) \le \alpha d(x, y, t) + \beta d(y, z, t) + \gamma d(z, x, t)]$$

for $x, y, z, t \in X$.

Then d is a generalized b_2 -metric and (X, d) is a generalized b_2 -metric space.

If $\alpha = \beta = \gamma$ then a generalized b_2 -metric is a b_2 -metric. Using the symmetry property, it can be shown that if d is a generalized b_2 -metric then

$$d(x, y, z) \le \left(\frac{\alpha + \beta + \gamma}{3}\right) \left[d(x, y, t) + d(y, z, t) + d(z, x, t)\right].$$

It follows that d is a b_2 -metric with $s = \frac{\alpha + \beta + \gamma}{3}$.

Example 2.2. Let X = (0, 1) and define

$$d(x, y, z) = \begin{cases} 0, \text{ if at least two of the three points are the same,} \\ e^{|x-y|+|y-z|+|z-x|}, \text{ otherwise.} \end{cases}$$

For $x, y, z \in X$ and using Jensen's inequality, we get

$$\begin{split} d(x,y,z) &= e^{|x-y|+|y-z|+|z-x|} \\ &= e^{\frac{1}{2}|x-y|+\frac{1}{3}|y-z|+\frac{1}{6}|z-x|} e^{\frac{1}{2}|x-y|+\frac{2}{3}|y-z|+\frac{5}{6}|z-x|} \\ &\leq e^2 e^{\frac{1}{2}|x-y|+\frac{1}{3}|y-z|+\frac{1}{6}|z-x|} \\ &\leq e^2 \left\{ \frac{1}{2} e^{|x-y|} + \frac{1}{3} e^{|y-z|} + \frac{1}{6} e^{|z-x|} \right\} \\ &\leq e^2 \left\{ \frac{1}{2} e^{|x-y|+|y-t|+|t-x|} + \frac{1}{3} e^{|z-y|+|y-t|+|t-z|} + \frac{1}{6} e^{|z-x|+|x-t|+|t-z|} \right\} \\ &= \alpha d(x,y,t) + \beta d(z,y,t) + \gamma d(z,x,t), \end{split}$$

where $\alpha = \frac{1}{2}e^2 \ge 1$, $\beta = \frac{1}{3}e^2 \ge 1$ and $\gamma = \frac{1}{6}e^2 \ge 1$. It follows that d is a generalized b_2 -metric but not a b_2 -metric.

Example 2.3. Let $X = [0, \infty)$ and define a mapping $d : X \times X \times X \to [1, \infty)$ by

$$d(x, y, z) = \begin{cases} 0, & \text{if at least two of the three points are the same,} \\ & \left| |x - y|^{\xi} + |y - z|^{\xi} + |z - x|^{\xi} \right|^{\eta}, & \text{otherwise.} \end{cases}$$

for $x, y, z \in X$ and real number $\xi, \eta > 1$.

Properties (i)-(iii) of Definition 1.2 can be easily verified. We shall show property (iv) of Definition 1.2. For x, y, z, using Jensen's inequality, we get

$$\begin{split} d(x,y,z) &= \left| |x-y|^{\xi} + |y-z|^{\xi} + |z-x|^{\xi} \right|^{\eta} \\ &= 3^{\eta} \left| \frac{1}{3} \left| x-y \right|^{\xi} + \frac{1}{3} \left| y-z \right|^{\xi} + \frac{1}{3} \left| z-x \right|^{\xi} \right|^{\eta} \\ &\leq 3^{\eta-1} \left[|x-y|^{\xi\eta} + |y-z|^{\xi\eta} + |z-x|^{\xi\eta} \right] \\ &\leq 3^{\eta-1} \left[\left| |x-y|^{\xi} + |y-t|^{\xi} + |t-x|^{\xi} \right|^{\eta} \\ &+ \left| |y-z|^{\xi} + |z-t|^{\xi} + |t-y|^{\xi} \right|^{\eta} \\ &+ \left| |z-x|^{\xi} + |x-t|^{\xi} + |t-z|^{\xi} \right|^{\eta} \right] \\ &= 3^{\eta-1} \left[d(x,y,t) + d(y,z,t) + d(z,x,t) \right]. \end{split}$$

It follows that d is a b_2 -metric but a special generalized b_2 -metric with $\alpha = \beta = \gamma = 3^{\eta-1}$.

Definition 2.4. Let (X, d) be a generalized b_2 -metric space. Let $x, y \in X$ and $\varepsilon > 0$. Then the subset

$$B_{\varepsilon}(x,y) = \{ z \in X; d(x,y,z) < \varepsilon \}$$

of X is called a generalized b_2 -ball centered at x, y with radius ε . A topology can be generated on X by taking the collection of all generalized b_2 -balls as a subbasis, which we call the generalized b_2 -metric topology and is denoted by τ . Thus (X, τ) is a generalized b_2 -metric topological space. Members of τ are called b_2 -open sets. From the property of the metric, it can easily be seen that $B_{\varepsilon}(x, y) = B_{\varepsilon}(y, x)$ for $\varepsilon > 0$.

Definition 2.5. ([6]) Let $\{x_n\}_{n \in \mathbb{N}}$ be a sequence in a generalized b_2 -metric space (X, d).

(1) the sequence $\{x_n\}_{n\in\mathbb{N}}$ is convergent to $x\in X$, if for all $\xi\in X$,

$$\lim_{n \to \infty} d(x_n, x, \xi) = 0$$

(2) the sequence $\{x_n\}_{n \in \mathbb{N}}$ is Cauchy in X, if for all $\xi \in X$,

$$\lim_{n,m\to\infty} d(x_n, x_m, \xi) = 0.$$

In this paper we have amended the space of altering distance functions found in [5], to establish existence and uniqueness of fixed points for ν -admissible mappings subject to a generalized almost weakly (ψ, φ) -contraction type.

Definition 2.6. Let \mathfrak{F} denote the class of all functions $\psi : [0, \infty) \to [0, \frac{1}{\beta})$, where $\beta > 1$, satisfying the following condition:

- (i) the function ψ is continuous and non-decreasing,
- (ii) if the function $\psi(t) = 0 \implies t = 0$.

Definition 2.7. ([8, 11]) Let (X, d) be a complete generalized b_2 -metric space. Assume that $T: X \to X$ and $\nu: X \times X \times X :\to [0, \infty)$ are functions. The function T is an ν -admissible mapping if $\nu(x, y, \xi) \ge 1$ for $x, y, \xi \in X$ implies that $\nu(Tx, Ty, \xi) \ge 1$.

In [7], the author used a similar definition for a generalized (ψ, φ) -almost weakly contractive mapping.

Definition 2.8. Let (X, d) be a generalized b_2 -metric space. A mapping $T: X \to X$ is a generalized (ψ, φ) -almost weakly contractive type mapping if there exists $\mu \ge 0, \beta > 1$ such that

$$\beta\psi(d(Tx,Ty,\xi)) \leq f(d(x,y,\xi))\psi\left(\max\left\{d(x,y,\xi),\frac{d(x,Tx,\xi)d(y,Ty,\xi)}{1+d(x,y,\xi)},\frac{d(x,Tx,\xi)d(y,Ty,\xi)}{1+d(Tx,Ty,\xi)}\right\}\right) \\ -\varphi\left(\max\left\{d(x,y,\xi),\frac{d(x,Tx,\xi)d(y,Ty,\xi)}{1+d(x,y,\xi)},\frac{d(x,Tx,\xi)d(y,Ty,\xi)}{1+d(Tx,Ty,\xi)}\right\}\right) \\ +\mu\psi\left(\min\left\{d(x,Tx,\xi),d(x,Ty,\xi),d(y,Ty,\xi),d(y,Tx,\xi)\right\}\right)$$
(2.1)

for all $x, y, \xi \in X$ and $\psi, \varphi, f \in \mathfrak{F}$.

In [8], the authors have proved a similar result in a partially ordered b_2 metric space for mappings subject to an almost generalized (ψ, φ)-contraction.

Theorem 2.9. Let (X, d) be a complete generalized b_2 -metric space, $T : X \to X$ be a self-mapping and $\nu : X \times X \times X \to [0, \infty)$ be a function such that T is an ν -admissible mapping. Suppose that

$$\begin{array}{ll} \text{(i)} \ \ For \ all \ x, y, \xi \in X \ and \ f, \psi, \varphi \in \mathfrak{F}, \\ \beta\nu(x, Tx, \xi)\nu(y, Ty, \xi)\psi(d(Tx, Ty, \xi)) \\ \leq f(d(x, y, \xi))\psi\left(\max\left\{d(x, y, \xi), \frac{d(x, Tx, \xi)d(y, Ty, \xi)}{1+d(x, y, \xi)}, \frac{d(x, Tx, \xi)d(y, Ty, \xi)}{1+d(Tx, Ty, \xi)}\right\}\right) \\ - \varphi\left(\max\left\{d(x, y, \xi), \frac{d(x, Tx, \xi)d(y, Ty, \xi)}{1+d(x, y, \xi)}, \frac{d(x, Tx, \xi)d(y, Ty, \xi)}{1+d(Tx, Ty, \xi)}\right\}\right) \\ + \mu\psi\left(\min\left\{d(x, Tx, \xi), d(x, Ty, \xi), d(y, Ty, \xi), d(y, Tx, \xi)\right\}\right). \end{array}$$
(2.2)

(ii) If $\{x_n\}_{n\in\mathbb{N}}$ is a sequence such that $x_n \to x$, $\nu(x_n, x_{n+1}, \xi) \ge 1$, then $\nu(x, Tx, \xi) \ge 1$.

If $\nu(x_0, Tx_0, \xi) \ge 1$ for some $x_0 \in X$, then T has a unique fixed point in X.

Proof. Let $x_0 \in X$ such that $\nu(x_0, Tx_0, \xi) \ge 1$. Define a sequence $\{x_n\}_{n \in \mathbb{N}}$ in X by

$$x_n = Tx_{n-1}$$

for all $n \in \mathbb{N}$. Since T is ν -admissible mapping and $\nu(x_0, Tx_0, \xi) \ge 1$, it follows that $\nu(x_1, Tx_1, \xi) = \nu(Tx_0, T^2x_0, \xi) \ge 1$. By continuing with the process, we get $\nu(x_n, Tx_n, \xi) \ge 1$ for all $n = 0, 1, 2, \cdots$. Then it follows that the product

$$\nu(x_n, Tx_n, \xi)\nu(x_{n-1}, Tx_{n-1}, \xi) \ge 1$$

for all $n = 1, 2, \cdots$.

We shall now show that the sequence $\{d(x_n, x_{n+1}, \xi)\}_{n \in \mathbb{N}}$ is a decreasing sequence of real numbers. By (2.2), we get

$$\begin{aligned} \beta\psi\left(d(x_{n}, x_{n+1}, \xi)\right) \\ &= \beta\psi\left(d(Tx_{n-1}, Tx_{n}, \xi)\right) \\ &\leq \beta\nu(x_{n-1}, Tx_{n-1}, \xi)\nu(x_{n}, Tx_{n}, \xi)\psi\left(d(Tx_{n-1}, Tx_{n}, \xi)\right) \\ &\leq f(d(x_{n-1}, x_{n}, \xi))\psi\left(\max\left\{d(x_{n-1}, x_{n}, \xi), \frac{d(x_{n-1}, Tx_{n-1}, \xi)d(x_{n}, Tx_{n}, \xi)}{1+d(Tx_{n-1}, Tx_{n}, \xi)}\right\}\right) \\ &\quad \left(2.3\right) \\ &\quad -\varphi\left(\max\left\{d(x_{n-1}, x_{n}, \xi), \frac{d(x_{n-1}, Tx_{n-1}, \xi)d(x_{n}, Tx_{n}, \xi)}{1+d(Tx_{n-1}, Tx_{n}, \xi)}\right\}\right) \\ &\quad \left(\frac{d(x_{n-1}, Tx_{n-1}, \xi)d(x_{n}, Tx_{n}, \xi)}{1+d(Tx_{n-1}, Tx_{n}, \xi)}\right) \\ &\quad + \mu\psi(\min\{d(x_{n-1}, Tx_{n}, \xi), d(x_{n}, Tx_{n}, \xi), d(x_{n-1}, Tx_{n-1}, \xi), d(x_{n}, Tx_{n-1}, \xi)\}) \end{aligned}$$

It follows that

$$\max\left\{d(x_{n-1}, x_n, \xi), \frac{d(x_{n-1}, Tx_{n-1}, \xi)d(x_n, Tx_n, \xi)}{1 + d(Tx_{n-1}, Tx_n, \xi)}, \frac{d(x_{n-1}, Tx_{n-1}, \xi)d(x_n, Tx_n, \xi)}{1 + d(x_{n-1}, x_n, \xi)}\right\}$$

$$\leq \max\left\{d(x_{n-1}, x_n, \xi), d(x_n, x_{n+1}, \xi)\right\}$$
(2.4)

and

$$\min \{ d(x_{n-1}, Tx_n, \xi), d(x_n, Tx_n, \xi), d(x_{n-1}, Tx_{n-1}, \xi), d(x_n, Tx_{n-1}, \xi) \}$$

= min { $d(x_{n-1}, x_{n+1}, \xi), d(x_n, x_{n+1}, \xi), d(x_{n-1}, x_n, \xi), d(x_n, x_n, \xi) \}$
= 0. (2.5)

Using (2.4) and (2.5), inequality (2.3) reduces to

$$\beta \psi d(x_n, x_{n+1}, \xi) \leq f(d(x_{n-1}, x_n, \xi)) \psi \left(\max \left\{ d(x_{n-1}, x_n, \xi), d(x_n, x_{n+1}, \xi) \right\} \right) - \varphi \left(\max \left\{ d(x_{n-1}, x_n, \xi), d(x_n, x_{n+1}, \xi) \right\} \right).$$
(2.6)

Inequality (2.6) further reduces, if we assume that

$$\max\left\{d(x_{n-1}, x_n, \xi), d(x_n, x_{n+1}, \xi)\right\} = d(x_{n-1}, x_n, \xi).$$

Thus, we get

$$\beta\psi((d(x_n, x_{n+1}, \xi)) \le \frac{1}{\beta}\psi((d(x_{n-1}, x_n, \xi)).$$
(2.7)

Since $\beta \geq 1$, we obtain

$$\psi((d(x_n, x_{n+1}, \xi)) \le \frac{1}{\beta^2} \psi((d(x_{n-1}, x_n, \xi)) \le \psi((d(x_{n-1}, x_n, \xi)).$$
(2.8)

It follows that from the property of the altering function that $\{d(x_n, x_{n+1}, \xi)\}_{n \in \mathbb{N}}$ is decreasing that is bounded from below and thus converges.

Suppose that $\lim_{n\to\infty} d(x_n, x_{n+1}, \xi) = r$, where r > 0 then taking limit as $n \to \infty$ in inequality (2.7), we get

$$\beta\psi(r) \le \frac{1}{\beta}\psi(r),\tag{2.9}$$

which leads to a contradiction unless r = 0, that is,,

$$\lim_{n \to \infty} d(x_n, x_{n+1}, \xi) = 0.$$
 (2.10)

In the case, we assume that

$$\max\left\{d(x_{n-1}, x_n, \xi), d(x_n, x_{n+1}, \xi)\right\} = d(x_{n+1}, x_n, \xi),$$

we get

$$\psi((d(x_n, x_{n+1}, \xi)) \le \frac{1}{\beta^2} \psi((d(x_n, x_{n+1}, \xi)) < \psi((d(x_n, x_{n+1}, \xi)), \quad (2.11)$$

which leads to a contradiction.

Next we shall prove that $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in X.

Using inequality (2.2), we get

$$\begin{split} \psi(d(x_{n}, x_{m}, \xi)) &= \psi(d(Tx_{n-1}, Tx_{m-1}, \xi)) \\ &\leq \beta \nu(x_{n-1}, Tx_{n-1}, \xi) \nu(x_{m-1}, Tx_{m-1}, \xi) \psi(d(Tx_{n-1}, Tx_{m-1}, \xi)) \\ &\leq \beta(f(d(x_{n-1}, x_{m-1}, \xi)) \\ &\times \psi \Big(\max \Big\{ d(x_{n-1}, x_{m-1}, \xi), \frac{d(x_{n-1}, Tx_{n-1}, \xi)d(x_{m-1}, Tx_{m-1}, \xi)}{1 + d(Tx_{n-1}, Tx_{m-1}, \xi)}, \\ & \frac{d(x_{n-1}, Tx_{n-1}, \xi)d(x_{m-1}, Tx_{m-1}, \xi)}{1 + d(x_{n-1}, x_{m-1}, \xi)} \Big\} \Big) \\ &- \beta \varphi \Big(\max \Big\{ d(x_{n-1}, x_{m-1}, \xi), \frac{d(x_{n-1}, Tx_{n-1}, \xi)d(x_{m-1}, Tx_{m-1}, \xi)}{1 + d(Tx_{n-1}, Tx_{m-1}, \xi)}, \\ & \frac{d(x_{n-1}, Tx_{n-1}, \xi)d(x_{m-1}, Tx_{m-1}, \xi)}{1 + d(x_{n-1}, x_{m-1}, \xi)} \Big\} \Big) \\ &+ \mu \psi(\min\{d(x_{n-1}, Tx_{n-1}, \xi), d(x_{n-1}, Tx_{m-1}, \xi), d(x_{m-1}, Tx_{n-1}, \xi), \\ & d(x_{m-1}, Tx_{m-1}, \xi) \}). \end{split}$$
(2.12)

Since $f(t) \leq \frac{1}{\beta}$, we obtain that

$$\begin{split} \psi(d(x_n, x_m, \xi)) &= \psi(d(Tx_{n-1}, Tx_{m-1}, \xi)) \\ &\leq \beta \nu(x_{n-1}, Tx_{n-1}, \xi) \nu(x_{m-1}, Tx_{m-1}, \xi) \psi(d(Tx_{n-1}, Tx_{m-1}, \xi)) \\ &\leq \psi \Big(\max \left\{ d(x_{n-1}, x_{m-1}, \xi), \frac{d(x_{n-1}, Tx_{n-1}, \xi)d(x_{m-1}, Tx_{m-1}, \xi)}{1 + d(Tx_{n-1}, Tx_{m-1}, \xi)}, \frac{d(x_{n-1}, Tx_{n-1}, \xi)d(x_{m-1}, Tx_{m-1}, \xi)}{1 + d(x_{n-1}, x_{m-1}, \xi)} \right\} \Big) \\ &- \beta \varphi \Big(\max \left\{ d(x_{n-1}, x_{m-1}, \xi), \frac{d(x_{n-1}, Tx_{n-1}, \xi)d(x_{m-1}, Tx_{m-1}, \xi)}{1 + d(Tx_{n-1}, Tx_{m-1}, \xi)}, \frac{d(x_{n-1}, Tx_{n-1}, \xi)d(x_{m-1}, Tx_{m-1}, \xi)}{1 + d(x_{n-1}, x_{m-1}, \xi)} \right\} \Big) \\ &+ \mu \psi (\min \{ d(x_{n-1}, Tx_{n-1}, \xi), d(x_{n-1}, Tx_{m-1}, \xi) \}). \end{split}$$
(2.13)

Taking $m, n \to \infty$ and using (2.10), we get,

$$\lim_{m,n\to\infty} \max\left\{ d(x_{n-1}, x_{m-1}, \xi), \frac{d(x_{n-1}, Tx_{n-1}, \xi)d(x_{m-1}, Tx_{m-1}, \xi)}{1+d(Tx_{n-1}, Tx_{m-1}, \xi)}, \frac{d(x_{n-1}, Tx_{m-1}, \xi)d(x_{m-1}, Tx_{m-1}, \xi)}{1+d(x_{n-1}, x_{m-1}, \xi)} \right\}$$

$$= \lim_{m,n\to\infty} \max\left\{ d(x_{n-1}, x_{m-1}, \xi), \frac{d(x_{n-1}, x_{n}, \xi)d(x_{m-1}, x_{m}, \xi)}{1+d(x_{n}, x_{m}, \xi)}, \frac{d(x_{n-1}, x_{n}, \xi)d(x_{m-1}, x_{m}, \xi)}{1+d(x_{n-1}, x_{m-1}, \xi)} \right\}$$

$$= \lim_{m,n\to\infty} d(x_{n-1}, x_{m-1}, \xi) \qquad (2.14)$$

$$\lim_{m,n\to\infty} \min\{d(x_{n-1}, Tx_{n-1}, \xi), d(x_{n-1}, Tx_{m-1}, \xi), d(x_{m-1}, Tx_{n-1}, \xi), d(x_{m-1}, Tx_{n-1}, \xi)\}$$

$$= \lim_{m,n\to\infty} \min\{d(x_{n-1}, x_n, \xi), d(x_{n-1}, x_m, \xi), d(x_{m-1}, x_n, \xi), d(x_{m-1}, x_m, \xi)\}$$

$$= 0.$$
(2.15)

Taking $m, n \to \infty$ in (2.13), using (2.14) and (2.15), we get

$$\lim_{m,n\to\infty} \psi(d(x_n, x_m, \xi)) \le \psi(\lim_{m,n\to\infty} d(x_{n-1}, x_{m-1}, \xi)) - \beta \varphi(\lim_{m,n\to\infty} d(x_{n-1}, x_{m-1}, \xi)).$$
(2.16)

Suppose that $\lim_{m,n\to\infty} d(x_n, x_m, \xi) = r$ with r > 0. Then, since ψ is continuous, $\psi(d(x_n, x_m, \xi)) \to \psi(r)$ as $n, m \to \infty$ and that $0 \le \psi(r) < \frac{1}{\beta}$, we get

$$\psi(r) \le \psi(r) - \beta \varphi(r) \le \psi(r), \tag{2.17}$$

which leads to a contradiction, unless $\psi(r) = 0$, which implies that

$$\lim_{m,n\to\infty} d(x_n, x_m, \xi) = 0.$$

Thus $\{x_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence in X. Since (X,d) is complete, there exists $x'\in X$ such that $\lim_{m,n\to\infty} d(x_n,x',\xi)=0$.

We now show that $x' \in X$ is a fixed point of T. Using (2.2) and from assumption (ii), $\nu(x', Tx', \xi) \ge 1$, we get

$$\begin{split} \psi(d(x',Tx',\xi)) &\leq \lim_{n \to \infty} \beta \psi(d(Tx',\xi,x_{n+1})) \\ &\leq \beta \lim_{n \to \infty} \nu(x_n,Tx_n,\xi) \nu(x',Tx',\xi) d(Tx',\xi,Tx_n) \\ &\leq \lim_{n \to \infty} \left[f(d(x_n,x',\xi)) \psi \Big(\max\left\{ d(x_n,x',\xi), \frac{d(x_n,Tx_n,\xi)d(x',Tx',\xi)}{1+d(Tx_n,Tx',\xi)}, \frac{d(x_n,Tx_n,\xi)d(x',Tx',\xi)}{1+d(x_n,x',\xi)} \right\} \Big) \\ &- \varphi \Big(\max\left\{ d(x_n,x',\xi), \frac{d(x_n,Tx_n,\xi)d(x',Tx',\xi)}{1+d(Tx_n,Tx',\xi)}, \frac{d(x_n,Tx_n,\xi)d(x',Tx',\xi)}{1+d(x_n,x',\xi)} \right\} \Big) \\ &+ \mu \psi \Big(\min\left\{ d(x_n,Tx',\xi), d(x',Tx_n,\xi), d(x_n,Tx_n,\xi), d(x',Tx',\xi) \right\} \Big) \Big]$$
(2.18)

$$\leq \lim_{n \to \infty} \left[\frac{1}{\beta} \psi \left(\max \left\{ d(x_n, x', \xi), \frac{d(x_n, Tx_n, \xi)d(x', Tx', \xi)}{1 + d(Tx_n, Tx', \xi)}, \frac{d(x_n, Tx_n, \xi)d(x', Tx', \xi)}{1 + d(x_n, x', \xi)} \right\} \right) - \varphi \left(\max \left\{ d(x_n, x', \xi), \frac{d(x_n, Tx_n, \xi)d(x', Tx', \xi)}{1 + d(Tx_n, Tx', \xi)}, \frac{d(x_n, Tx_n, \xi)d(x', Tx', \xi)}{1 + d(x_n, x', \xi)} \right\} \right) + \mu \psi \left(\min \left\{ d(x_n, Tx', \xi), d(x', Tx_n, \xi), d(x_n, Tx_n, \xi), d(x', Tx', \xi) \right\} \right) \right].$$

Since

$$\lim_{n \to \infty} \max\left\{ d(x_n, x', \xi), \frac{d(x_n, Tx_n, \xi)d(x', Tx', \xi)}{1 + d(Tx_n, Tx', \xi)}, \frac{d(x_n, Tx_n, \xi)d(x', Tx', \xi)}{1 + d(x_n, x', \xi)} \right\} = 0$$

and

$$\lim_{n \to \infty} \min \left\{ d(x_n, Tx', \xi), d(x', Tx_n, \xi), d(x_n, Tx_n, \xi), d(x', Tx', \xi) \right\} = 0.$$

We conclude from (2.18) that $\psi(d(x', Tx', \xi)) \leq 0$ which implies that

$$d(x', Tx', \xi) = 0$$

and since ξ is arbitrary, we get Tx' = x'.

To prove uniqueness of x', we assume that x'' is a fixed point of T such that $x' \neq x''$ and $\nu(x', Tx', \xi) \geq 1$, $\nu(x'', Tx'', \xi) \geq 1$. From inequality (2.2), we obtain

$$\begin{aligned} \beta\psi(d(x',x'',\xi)) &\leq \beta\nu(x',Tx',\xi)\nu(x'',Tx'',\xi)\psi(d(Tx',Tx'',\xi)) \\ &\leq \frac{1}{\beta}\psi\left(\max\left\{d(x',x'',\xi),\frac{d(x',Tx',\xi)d(x'',Tx'',\xi)}{1+d(x',x'',\xi)},\frac{d(x',Tx',\xi)d(x'',Tx'',\xi)}{1+d(Tx',Tx'',\xi)}\right)\right) \\ &-\varphi\left(\max\left\{d(x',x'',\xi),\frac{d(x',Tx',\xi)d(x'',Tx'',\xi)}{1+d(x',x'',\xi)},\frac{d(x',Tx',\xi)d(x'',Tx'',\xi)}{1+d(Tx',Tx'',\xi)}\right)\right) \\ &+\mu\min\left\{d(x',Tx',\xi),d(x',Tx'',\xi),d(x'',Tx'',\xi),d(x'',Tx'',\xi)\right\}. \end{aligned}$$
(2.19)

It follows that

$$\left(\beta - \frac{1}{\beta}\right)\psi(d(x', x'', \xi)) \le -\beta\varphi\left(d(x', x'', \xi)\right) \le 0$$
(2.20)

is a contradiction unless $\psi(d(x', x'', \xi)) = 0$ which implies that $d(x', x'', \xi) = 0$, and it follows that x' = x''.

Example 2.10. Let $X = \begin{bmatrix} 0, \frac{1+\sqrt{17}}{8} \end{bmatrix}$ and define a generalized b_2 -metric by

$$d(x, y, z) = \begin{cases} 0, & \text{if at least two of the three points are the same,} \\ & \frac{e^{|x-y|+|y-\xi|+|\xi-x|}}{\gamma}, & \text{otherwise,} \end{cases}$$

where $\gamma = \sup_{x,y,\xi \in X} e^{|x-y|+|y-\xi|+|\xi-x|}$. Define $T: X \to X$ by

$$Tx = \sqrt{\frac{x+1}{4}}.$$

Since $0 \le x \le \frac{1+\sqrt{17}}{8}$, it follows that $\frac{1}{2} \le \sqrt{\frac{x+1}{4}} \le \frac{1}{2}\sqrt{\frac{1+\sqrt{17}}{8}} \le \frac{1+\sqrt{17}}{8}$. If $x \ge y$ then $e^{\frac{1}{4}x - \frac{1}{4}y} \ge 1$. Define

$$\nu(x, y, \xi) = \begin{cases} e^{\frac{1}{4}x - \frac{1}{4}y}, & x \ge y, \\ 0, & \text{otherwise.} \end{cases}$$

It follows that for $x \ge y$

$$\sqrt{\frac{x+1}{4}} \ge \sqrt{\frac{y+1}{4}},$$

which implies that

$$\nu(Tx, Ty, \xi) = e^{\frac{1}{4}\sqrt{\frac{x+1}{4}} - \frac{1}{4}\sqrt{\frac{y+1}{4}}} \ge 1$$

Thus we conclude that T is a ν -admissible function. Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence in X such that $x_n \to x = \frac{1+\sqrt{17}}{8}$ as $n \to \infty$ and $x_n \ge x_{n+1}$ for all $n \in \mathbb{N}$. Then by the definition of ν , we get $\nu(x_n, x_{n+1}, \xi) = e^{\frac{1}{4}x_n - \frac{1}{4}x_{n+1}} \ge 1$ and $\nu(x, Tx, \xi) = e^{\frac{x}{4} - \frac{1}{4}\sqrt{\frac{x+1}{4}}} = e^0 = 1$. Using the Mean value theorem for [x, y], we get

$$\left| \sqrt{\frac{x+1}{4}} - \sqrt{\frac{y+1}{4}} \right| \le \frac{1}{4} |x-y|$$

and inequality $\left|\xi - \sqrt{\frac{y+1}{4}}\right| \le |\xi - y|$, we conclude that

$$e^{\left|\sqrt{\frac{x+1}{4}} - \sqrt{\frac{y+1}{4}}\right| + \left|\sqrt{\frac{y+1}{4}} - \xi\right| + \left|\xi - \sqrt{\frac{x+1}{4}}\right|} \le e^{|x-y| + |y-\xi| + |\xi-x|}.$$

For $x, y, \xi \in X$, we obtain that

$$\begin{split} &\beta\nu(x,Tx,\xi)\nu(y,Ty,\xi)\psi(d(Tx,Ty,\xi))\\ &=\beta e^{\frac{x}{4}-\frac{1}{4}\sqrt{\frac{x+1}{4}}}e^{\frac{y}{4}-\frac{1}{4}\sqrt{\frac{y+1}{4}}}\psi\left(\frac{e^{\left|\sqrt{\frac{x+1}{4}}-\sqrt{\frac{y+1}{4}}\right|+\left|\sqrt{\frac{y+1}{4}}-\xi\right|+\left|\xi-\sqrt{\frac{x+1}{4}}\right|}}{\gamma}\right)\\ &\leq\beta\psi\left(\frac{e^{|x-y|+|y-z|+|z-x|}}{\gamma}\right)\\ &\leq\beta\psi\left(\max\left\{d(x,y,\xi),\frac{d(x,Tx,\xi)d(y,Ty,\xi)}{1+d(x,y,\xi)},\frac{d(x,Tx,\xi)d(y,Ty,\xi)}{1+d(Tx,Ty,\xi)}\right\}\right), \end{split}$$

since $\frac{x}{4} - \frac{1}{4}\sqrt{\frac{x+1}{4}} \le 0$. Taking $f(t) = \frac{1}{\beta} < 1$ and define

$$\psi(t) = \begin{cases} \frac{t}{\beta^2}, & 0 \le t \le 1, \\ \frac{1}{\beta^2}, & t > 1, \end{cases}$$
(2.21)

then $\psi \in \mathfrak{F}$ and

$$\beta\nu(x,Tx,\xi)\nu(y,Ty,\xi)\psi(d(Tx,Ty,\xi))$$

$$\leq \frac{1}{\beta}\max\left\{d(x,y,\xi),\frac{d(x,Tx,\xi)d(y,Ty,\xi)}{1+d(x,y,\xi)},\frac{d(x,Tx,\xi)d(y,Ty,\xi)}{1+d(Tx,Ty,\xi)}\right\}$$

$$\leq \frac{1}{\beta}.$$

Since $0 \le d(x, y, \xi) \le 1$ and $\frac{d(x, Tx, \xi)d(y, Ty, \xi)}{1+d(x, y, \xi)} \le 1$. It follows from Theorem 2.9, that T has a unique fixed point in X.

Corollary 2.11. Let (X, d) be a complete generalized b₂-metric space, $T : X \to X$ be a self-mapping and $\nu : X \times X \times X \to [0, \infty)$ be a function such that T is an ν -admissible mapping. Suppose that

$$\beta\nu(x, Tx, \xi)\nu(y, Ty, \xi)d(Tx, Ty, \xi) \\ \leq \frac{1}{\beta} \max\left\{ d(x, y, \xi), \frac{d(x, Tx, \xi)d(y, Ty, \xi)}{1 + d(x, y, \xi)}, \frac{d(x, Tx, \xi)d(y, Ty, \xi)}{1 + d(Tx, Ty, \xi)} \right\}$$
(2.22)

for all $x, y, \xi \in X$. If there exists $x_0 \in X$ such that $\nu(x_0, Tx_0, \xi) \ge 1$, then T has a unique fixed point.

Proof. Follows from theorem 2.9, by setting $\psi(t) = t$, $\mu = 0$ and $\varphi(t) = 0$. \Box

Corollary 2.12. Let (X, d) be a complete generalized b_2 -metric space, $T : X \to X$ be a self-mapping and $\nu : X \times X \times X \to [0, \infty)$ be a function such that T is an ν -admissible mapping. Suppose that

$$\nu(x, Tx, \xi)\nu(y, Ty, \xi)d(Tx, Ty, \xi)
\leq \frac{1}{\beta} \max\left\{ d(x, y, \xi), \frac{d(x, Tx, \xi)d(y, Ty, \xi)}{1 + d(x, y, \xi)}, \frac{d(x, Tx, \xi)d(y, Ty, \xi)}{1 + d(Tx, Ty, \xi)} \right\}$$
(2.23)

for all $x, y, \xi \in X$. If there exists $x_0 \in X$ such that $\nu(x_0, Tx_0, \xi) \ge 1$, then T has a unique fixed point.

Proof. Follows from theorem 2.9, by setting $\psi(t) = \beta t$, $\mu = 0$ and $\varphi(t) = 0$. \Box

References

- K. H. Alam, Y. Rohen, S. S. Singh, K. M. Devi and L. Bishwakumar, New best proximity point results for different types of nonself proximal contractions with an application, Nonlinear Funct. Anal. Appl., 29 (2) (2024), 581-596.
- [2] T.V. An, N.V. Dung and V.T. Le Hang, General Fixed Point Theorems on Metric Spaces and 2-metric Spaces, Filomat, 28(10) (2014), 2037-2045.
- [3] N.V. Dung, N.T. Hieu, N.T.T. Ly and V.D. Thinh, Remarks on the fixed point problem of 2-metric spaces, Fixed Point Theory Appl., 2013(167) (2013), 1-6.
- [4] V.S. G\u00e4hler, 2-metrische R\u00e4ume und ihre topogische Struktur, Math. Nachr., 26 (1963), 115–118.
- [5] M.S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc., 30 (1984), 1–9.
- [6] Z. Mustafa, V. Parvaneh, J.R. Roshan and Z. Kadelburg, b₂-Metric spaces and some fixed point theorems, Fixed Point Theory Appl., 2014(144) (2014), 1–23.
- [7] J.R. Roshan, V. Parvanesh, S. Sedghi, N Shobkolaei and W. Shatanawi, Common fixed points of almost generalized (ψ, φ)_s-constructive mappings in ordered b-metric spaces, Fixed point theory Appl., **159** (2013).
- [8] R.J. Shahkoohi and Z. Bagheri, Rational Geraphty Contractive Mappings and Fixed Point Theorems in Ordered b₂-metric Spaces, Sahand Commu. Math. Anal., 13(1) (2019), 179-212.
- [9] P. Singh, S. Singh and V. Singh, The Reich type contraction in a weighted $b_{\nu}(\alpha)$ -metric space, Nonlinear Funct. Anal. Appl., **28** (4) (2023), 1087-1095.
- [10] P. Singh, V. Singh and S. Singh, Some fixed points results using (ψ, φ)- generalized weakly contractive map in a generalized 2-metric space, Adv. Fixed Point Theory, 13(21) (2023), 1-11.
- [11] F. Zhang, H. Wang, S. Wu and L. Zhao, Fixed-Point Theorems for α-Admissible Mappings with ω-Distance and Applications to Nonlinear Integral Equations, Hindawi Math. Prob. Eng., 2020 (2020), 7 pages, Article ID 2804802.