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Abstract. The purpose of this paper is to introduce a class of distance altering functions
that establish the existence and uniqueness of fixed points of v-admissible mappings that are

subject to a generalized (¢, ¢)-almost weakly contraction on a generalized ba-metric space.

1. INTRODUCTION

The concept of a 2-metric was introduced by Géahler ([4]), as a generalization
of the metric by using the concept of an area of a triangle in R? as a basis
for the formulation. The 2-metric spaces are not topologically equivalent to
the metric spaces and so there is no easy relationship between results of these
spaces ([2, 3]). In a recent paper, the authors Singh et al. introduce the
concept of a generalized 2-metric ([1, 9, 10]).

Definition 1.1. ([4]) Let X be a nonempty set and d : X x X x X — [0, 00)
be a map satisfying the following properties:
(i) For z,y,z € X such that d(z,y,z) = 0 if at least two of the three
points are the same.

YReceived December 5, 2023. Revised March 13, 2024. Accepted March 14, 2024.
02020 Mathematics Subject Classification: 47H10, 54H25.

9Keywords: Reich contraction, b, (s)-metric, monotonic.

9Corresponding author: V. Singh(singhv@ukzn.ac.za) .



886 P. Singh, S. Singh and V. Singh

(ii) For x,y € X such that = # y there exists a point z € X such that
d(z,y,z) # 0.

(iii) symmetry property: for z,y,z € X,
d(z,y,z) =d(x,z,y) =d(y,z,z) = d(y, z,x) = d(z,x,y) = d(z,y, ).
(iv) rectangle inequality:
d(z,y,z) <d(x,y,t) +d(y, z,t) + d(z, z,t)
for x,y, 2,t € X.

Then d is a 2-metric and (X, d) is a 2-metric space.

Definition 1.2. ([6]) Let X be a nonempty set and d : X x X x X — [0, 00)
be a map satisfying the following properties:

(i) For z,y,z € X such that d(z,y,2) = 0 if at least two of the three
points are the same.

(ii) For x,y € X such that = # y there exists a point z € X such that

d(z,y,2) # 0.
(iii) symmetry property: for x,y,z € X,

d(z,y,2) =d(z,z,y) =d(y,z,z) = d(y, z,x) = d(z,x,y) = d(z,y, ).
(iv) s-rectangle inequality:there exists s > 1 such that
d(z,y, z) < sld(x,y,t) + d(y, z,t) + d(z, z,t)]
for z,y, z,t € X.

Then d is a by-metric and (X, d) is a be-metric space.

If s =1, the by-metric reduces to the 2-metric.

Example 1.3. ([6]) Let X = [0,00) and define d(x,y,2) = [zy + yz + zx]P
where p > 1. it suffices to only verify property (iv) of Definition 1.2. For
x,y,z,t € X, we get by using the Jensen’s inequality,

d(z,y, z) = [vy + yz + zzx]?
1 1 1 P
=3 <3:l:y + Y2 + 32w>
< 37 (gleyl” + glyzl” + glza]”)
<3 ( [y + yt + ot]? + Lyz + 2t + Yt + 3 [zz + at + 2t)P)

It follows that d is a be-metric with s < 3P~1.
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2. MAIN RESULT

Definition 2.1. Let X be a nonempty set and d : X x X x X — [0,00) be a
map satisfying the following properties:

(i) If z,y, 2 € X such that d(x,y, z) = 0 if at least two of the three points
are the same.
(ii) For x,y € X such that x # y there exists a point z € X such that

d(z,y,2) # 0.
(iii) symmetry property: for z,y,z € X,

d(z,y,z) =d(z,z,y) =d(y,z,2z) = d(y, z,z) = d(z,z,y) = d(z,y,x).
(iv) modified rectangle inequality: there exists a, 3, > 1 such that
d(z,y,z) < ad(z,y,t) + Bd(y, z,t) + vd(z, x, t)]
for x,y, z,t € X.

Then d is a generalized be-metric and (X, d) is a generalized be- metric space.

If & = B = 7 then a generalized by-metric is a by-metric. Using the symme-
try property, it can be shown that if d is a generalized bs-metric then

d(@,y,2) < (“H552) [dlw,y,0) + d(y,2,0) + d(z,2,1)].

It follows that d is a byp-metric with s = %BJ”

Example 2.2. Let X = (0,1) and define

d _]0,if at least two of the three points are the same,
(2,9, 2) = ele=yltly=zltlz=z] " otherwise.

For z,y,z € X and using Jensen’s inequality, we get
d(z,y, z) = elovlIHly==l+lz—zl
— eslt=yl+5ly—2l+glz—2| gz lz—yl+Fly—z|+Fl-—2]

1 1 1
2) 2 lz—yl o 2 ly—= 4 2 |z—=
e e e
‘ {2 T3 i }

1 . _ _ 1. _ _ 1,,_ _ _
ez{eu ul+y—tiHi—al o Lolemyitly—titit—zl | L el etttz

IN

IN
V)

= ad(z,y,t) + Bd(z,y,t) + vd(z, x,t),

where o = %62 >1, 8 = %62 >1and v = %62 > 1. It follows that d is a

generalized bo-metric but not a by-metric.
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Example 2.3. Let X = [0, 00) and define a mapping d : X x X x X — [1,00)
by
0, if at least two of the three points are the same,
= n
d(w,y,2) ‘\ﬂc —y 4y — 2+ |z — $|§‘ , otherwise.
for z,y,z € X and real number £, > 1.

Properties (i)-(iii) of Definition 1.2 can be easily verified. We shall show
property (iv) of Definition 1.2. For z,y, z, using Jensen’s inequality, we get

n
d(@,y,2) = [l = 9l + |y = 2 + |z - alf|

1 1 1 K
=513l yl+ gl = o+ gl af]

< 3n-1 []a; — oy 4y — 2+ |2 — x‘fn]

<377 [[lo =yl + ly =t + -l
+|ly =21+ 1z =t + =y

]

=37 d(z,y,t) +d(y, z,t) + d(z,z,1)].

It follows that d is a by-metric but a special generalized bs-metric with o =
B=y=3""1

+(\z—xyf+yx—t\f+\t—z\5

Definition 2.4. Let (X,d) be a generalized be-metric space. Let z,y € X
and € > 0. Then the subset

B.(z,y) ={z € X;d(z,y,2) < e}

of X is called a generalized bo-ball centered at x,y with radius . A topology
can be generated on X by taking the collection of all generalized by-balls as a
subbasis, which we call the generalized bo-metric topology and is denoted by
7. Thus (X, 7) is a generalized be-metric topological space. Members of 7 are
called bo-open sets. From the property of the metric, it can easily be seen that
B.(z,y) = B:(y,x) for € > 0.

Definition 2.5. ([6]) Let {z,},y be a sequence in a generalized by-metric
space (X, d).
(1) the sequence {x,}, .y is convergent to x € X, if for all { € X,

nlin;o d(xp,z,€) = 0.
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(2) the sequence {z,}, .y is Cauchy in X, if for all { € X,

lim d(xp,2m, &) = 0.

n,Mm—00

In this paper we have amended the space of altering distance functions found
in [5], to establish existence and uniqueness of fixed points for v-admissible
mappings subject to a generalized almost weakly (1), p)-contraction type.

Definition 2.6. Let § denote the class of all functions ¢ : [0,00) — [0, 1),
where 8 > 1, satisfying the following condition:

(i) the function v is continuous and non-decreasing,
(ii) if the function () =0 = ¢t =0.

Definition 2.7. ([8, 11]) Let (X, d) be a complete generalized ba-metric space.
Assume that T : X — X and v : X x X x X :— [0,00) are functions. The
function 7' is an v-admissible mapping if v(z,y,&) > 1 for z,y,& € X implies
that v(Tx, Ty, &) > 1.

In [7], the author used a similar definition for a generalized (v, ¢)-almost
weakly contractive mapping.

Definition 2.8. Let (X,d) be a generalized by-metric space. A mapping
T:X — X is a generalized (1, p)-almost weakly contractive type mapping if
there exists ¢ > 0, 8 > 1 such that

BY(d(Tz, Ty, §))
< f(d(z, 5,69 (max {d(z,,€), LLrM0L0) drlrOdyTue )
d(z,Tz,8)d(y,Ty,e) d(z,Txe)d(y,TyE
— @ (max {d(iE) Y, 5)7 ( 1+d()$fj§)y )7 (1+d(T)I§1:“Uy75 ) })
+ i (min {d(x, Tz, §), d(z, Ty, §), d(y, Ty, §), d(y, Tz, §)}) (2.1)

for all x,y,£ € X and ¥, ¢, f € §.

In [8], the authors have proved a similar result in a partially ordered bs-
metric space for mappings subject to an almost generalized (1), ¢)-contraction.

Theorem 2.9. Let (X,d) be a complete generalized by-metric space, T : X —
X be a self-mapping and v : X x X x X — [0,00) be a function such that T
s an v-admissible mapping. Suppose that
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(i) For all x,y,§ € X and f,,p € F,

Buv(x, Tz, vy, Ty, O (d(Tz, Ty, §))
< fld(a.y.©)v (max {d(r. &), LT GO )
d(x,Tx,£)d(y,Ty,,) d(x,Tz,£)d(y,Ty,E
— @ (max {d(fﬂ’ Y, 5) ( 1+d()m7(?j{§)y )’ (l—i—d(T)m,(YZ{y,S ) })
+ pp (min{d(z, Tz, §), d(x, Ty, §), d(y, Ty, §), d(y, Tz, §)}) . (2.2)

(ii) If {xn},cn is a sequence such that x, — x, V(Zn, Tny1,€) > 1, then
v(z,Tz,£) > 1.

If v(zo,Txo,&) > 1 for some xg € X, then T has a unique fized point in X.
Proof. Let xo € X such that v(zo,Txo,&) > 1. Define a sequence {z,}, oy in
X by

Tp =Txn 1
for all n € N. Since T is v-admissible mapping and v(xg, Txg,&) > 1, it follows

that v(zy, Tx1, &) = v(Txo, T?x0,€) > 1. By continuing with the process, we
get v(xy, Txp, &) > 1 for alln =0,1,2,--- . Then it follows that the product

V(Tp, Tan, v (xn—1,Ten_1,&) > 1

foralln=1,2,---.
We shall now show that the sequence {d(xpn,Zni1,£)},cy 15 a decreasing
sequence of real numbers. By (2.2), we get

B (d($na Tn+1, 5))
= Y (d(Txp—1,Tan,§))
< BV(CUnfla Txp—1, f)V(xn, Txn, §)¢ (d(Txnfla Txy, 5))

< f(d(ll?n,b T, 5))¢ (HlaX {d(xnfla L, 5)7 d(ﬂfn—lig(xjgx—:ﬁ)gp(i:”gx"’é) ’

d(zyn—1,TTn—1,£)d(xn,TTN,E)
11+d(xn1_1,xn,§) }) (23)

d(@n—1,TTn—1,§)d(Tn,TTn,
—cp(max{d(ﬂ?nfl,l‘mg)a L 1:_d(xT$:7§1)7jg§n’§)x E)’

d(fﬂnf 1,TTn 1 ,§)d(:ﬂn Txy 75)
1+d(mn—1 ’znvé)

+ /.,L'l/)(mln{d(%n_l, Txn’ S)a d(l‘n, Tl'n, 5)7 d(fEn_l, TiUn_l, é-)a d(l‘n, T.I'n_l, 5)}) .
It follows that

d(@n—1,TTn—-1,6)d(@n,TTn,§) d(xn—1,TTn—1,8)d(Tn,TTn,E)
max {d(l'nfla Tn, 5)7 1+d(Tzn_1,12n,E) ) 14d(@n_1,2n,8) }

< max{d(xnfl,xn,ﬁ),d(l‘n,xn+1,£)} (2'4)




(1), p)-weakly contractive mappings 891

and

min {d(zp—1,TTn, &), d(xn, Tn, &), d(xp_1,Txn_1,&),d(xn, TTH_1,)}

= min {d(l’n_l, Tn+1, g)a d(l’n, Tn+1, 5)7 d(xn—la LTy 5)7 d(.ﬁUn, T, ‘E)}

= 0. (2.5)
Using (2.4) and (2.5), inequality (2.3) reduces to

B¢d(xn7 Tn+1, 5)
< fld(zn-1,2n, §))Y (max {d(zn—1, ¥y, &)

yd(Tn, Tng1,€)})
- (max {d(gjn_l, Tn, f), d(l'n; Ln+1, f)})

. (2.6)
Inequality (2.6) further reduces, if we assume that
max {d(xnfla L, 5)7 d(l‘n, Tn+1, 5)} = d(wn*b Tn, 5)
Thus, we get
1
ﬂ¢((d(l’n,l‘n+1,f)) < B"b((d(mn*lammg)) (27)

Since 8 > 1, we obtain
Y((d(zn, Tnt1,€)) < ;zlb((d(wn—l,wmﬁ)) < Y((d(@n-1,20,€)).  (2.8)

It follows that from the property of the altering function that {d(zy, Tnt1,£)},en
is decreasing that is bounded from below and thus converges.

Suppose that lim,, o d(zp, Znt1,£) = r, where r > 0 then taking limit as
n — oo in inequality (2.7), we get

1
By(r) < Ewm, (2.9)
which leads to a contradiction unless r = 0, that is,,
h_>m d(x’na Tn+1, 6) =0. (210)

In the case, we assume that
max {d(xn—h .’En, 5)7 d(xTw x'rl-l-l? g)} = d<$n+17 x'rzu {)7

we get

B((d(n, T, €)) < ;w«d(scmxm,f)) < G((d(n nsr.6)), (211)

which leads to a contradiction.
Next we shall prove that {x,}, oy is a Cauchy sequence in X.
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Using inequality (2.2), we get
UJ(d("Em Tm, f))
= @Z)(d(Tl‘n,l, T"L‘mfb 5))
< By(l‘nfla Twy 1, g)lj(wm,l, Twpm-1, 5)1,[1((1(1—':13”,1, Twpm—1, 5))
< B(fld(@n-1,2m-1,§))
X w ( max {d(xn—la Tm—1, 6)7 d(xn_117_{2&:;5_)?7(;;”;17557”_1,5) 3

d($n71 7Txn71 7§)d($mf 1 7T$m71 7&)
1+d($n71 3 Tm—1 ’g)

d n— 7T n—1, d m— 7T m—1,
— ng(max {d(xnfla Tm—1, g)a (= 11+2(T;n£—)1,(;$mi1,g) ! é)’

d(xn—1,T2n-1,)d(@m-1,TTm—1,§)
1+d($n— 1,Tm—1 ’g)

+ ,mb(min{d(a:n,l, T‘Tnfla 5)7 d(iﬂn,l, TCCmfl, 5)7 d(xmfla Tﬁn,h 5)7
d(.’l?mfl, Txmflv 6)}) (212)
Since f(t) < %, we obtain that

w(d(.%'n, Lm, f)) = ¢(d(TCCn—17 Trm-1, f))
S 5V(xn—17 Txn—lv §)V(33m—1, Tfl?m_l, g)w(d(Txn—la Txm—h f))
< o (max {d(wn-1, w1, €), Lot 1 O Lo 1 ©)

d(xn—l7T33n—17§)d(mm—17Txm—17§)
1+d(xn71 3 Tm—1 aE)

d(@n_1,TTn1,)d(@m—1,TTm_1,
B (e {d(n1, 51, €), AT Qs T )

d(xn—l 7Txn— 1 7£)d(xm—1 aTxm—l 75)
1+d($n7 1, Tm—1 15)

+ /va(min{d(xn—ly Txn—ly 5)) d(xn—la Txm—l: 5)7
d(xm—lvTxn—lyg)ad(xm—thm—l:f)})' (213)

Taking m,n — oo and using (2.10), we get,

. d(I‘n_17TIn—l7£)d(xm—17Txm—l7£)
m}yllri)loo max {d(a%fly Tm-1,&), 1+d(Tzn-1,TTm_1,8) )
d(xn—1,T2n-1,)d(Tm-1,TTm—1,§)
1+d(xn—17xm—1y£)

_ : d(l’nfhl’nvf)d(xmflvxmvg)
= m max {d(x"‘l’ Tm-1,8); Trd(@nam€)

d(-z’n— 1,Zn 7€)d(5’7m—1 sy Tm 7&)
1+d(mn71 s Tm—1 75)

= lim d(zp—1,Tm-1,€) (2.14)
m,n—o0
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and

hIE min{d(xnflaTxnfbg)vd(l'nfbTmmflag)ad(xmflaTxnflag)a
d(xmflaTmmflag)}
= hIE min{d($n7171‘m£)ad(mnflaxm7£)7d($mflaxnaf)ad(xmfla$ma£)}

= 0. (2.15)
Taking m,n — oo in (2.13), using (2.14) and (2.15), we get

lim  (d(zn, Tm, &) < P( lim  d(zp—1, Tm-1,&))

m.n—o0 m,n—0o0

_580( lim d(xnflaxmflag))' (216)

m,n—00

Suppose that limy, p—se0 d(Zpn, Zm, &) = 7 with > 0. Then, since v is con-
tinuous, Y (d(xn, Tm,§)) — ¥(r) as n,m — oo and that 0 < ¥(r) < %, we
get

Y(r) S o(r) = Be(r) < o(r), (2.17)
which leads to a contradiction, unless ¢ (r) = 0, which implies that

lim  d(xp, xm, &) = 0.

m,n— o0

Thus {z,},cy is a Cauchy sequence in X. Since (X,d) is complete, there
exists 2/ € X such that limy, ;00 d(2p, 2, &) = 0.

We now show that ' € X is a fixed point of 7. Using (2.2) and from
assumption (ii), v(a/, T2’ &) > 1, we get

P(d(2', Ta',€))

< lim FU(d(Te €, 2000))

<p liﬁ\m v(xp, Ty, Ev(d', T, &)d(T €, Txy)

S nh_)ng() [f(d(l'ny iU,, §))¢ ( max {d(xna xla ‘5)7 d(xqf&?ilfgfx;?;f £) )

d(rn 7T55n7§)d(73/ 7Txl7€)
1+d(zn,x’ ,£)

/ d(xn,Tmn,ﬁ)d(x/,T:p’,ﬁ) d(mmT:cm{)d(x’,Tm’,ﬁ)
- e ) ey Tttt

+ pap (min{d(fvn, T2, &), d(x', Ty, &), d(xy, Tay, €),d(d, T, 5)})} (2.18)
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(1 1oy d@nT2n,&)d(@ Ta' &) d(wn,Tan &)d( Ta' )
< lim [Ew (maX {d(xn,:c S PR (ki R e v ey })

! d(.’L‘n7T:Cn,£)d(QEI,T:L‘/7£) d(iEn,Txn,é)d(Z/,Ta?/,{)
- <maX {d(ffm ', §), 1+d(Txn, Tz ,E) I+d(zn,2" ) })

+ (min {d(mn, T, €),d(x, Tan, €), d(xn, Top, §),d(x’, T, 5)}) ] .

Since

. / d(zy,Txn,)d(x', T2 &) d(xn,Txn,)d(x' Tx' E) |
Jm max {d(x”’x &) T AT T )0 Tl ) }_ 0

and

lim min {d(mn, T, €),d(x', Tan, €), d(xn, Top, ), d(x/,Tx',f)} =0.

n—oo
We conclude from (2.18) that ¢ (d(2’, Ta’,£)) < 0 which implies that
d(z', T2',6) =0
and since £ is arbitrary, we get T2’ = x'.

To prove uniqueness of 2/, we assume that z” is a fixed point of T such that

¥ # 2 and v(2/, T2’ &) > 1, v(2”,T2",€) > 1. From inequality (2.2), we
obtain

By (d(a’,2”,£))
< Br(@, T2, (2", Tx", )v(d(Ta', Tz", £))

1 roon d(z', Tz £)d(z"  Tz" ,£) d(z', Tz’ ,£)d(z" ,Tx" &)
=Y <maX{d(x ) T T 0 Tra(Te T ))

1o d(@’ Tz’ £)d(z" Tx"§) d(x' Tz’ §)d(x" Tz"¢g)
— @ (maX {d(l' , L ,f), 1_J'_d(m/7m//7 ) 3 1+d(Tx’,Tx”,§) ))

+ g min {d(m', T2, €),d(2', Tx",€),d(2", T2, &), d(z", Ta", 5)} . (2.19)
It follows that

(5 - ;) ¥(d@@',2",€)) < =By (', 2",€)) <0 (2.20)

is a contradiction unless ¥ (d(z, 2", &)) = 0 which implies that d(a’, 2", &) = 0,
and it follows that ' = 2. O

Example 2.10. Let X = [O, H'T‘/ﬁ} and define a generalized bs-metric by

p 0, if at least two of the three points are the same,
(z,y,2) = e\z—y\+\y7—5\+\s—z|7 otherwise,
where v = SUD, 4 X elz=yl+ly—¢[+|€—=|
Define T : X — X by

Txr =

r+1
i
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Since 0 < 2 < ST it follows that 1 < \/3643 < L /11T <1
If > y then 171V > 1. Define
1 1
e1""dY x>y,
V(x7y7£) = { - Yy

0, otherwise.

It follows that for z >y

\/x+1> y+1,
4 =V 4

1 1 +1
v(Tx,Ty,§) —eZV —aVi > 1.

Thus we conclude that 7" is a v-admissible function. Let {x,}, .y be a sequence

which implies that

inXsuchthatxn%x:H'T‘/ﬁasn%ooandxnZ:J;n+1 for all n € N.
Then by the definition of v, we get v(zy,Tnt+1,&) = e1Tn=3Tn+1 > 1 and

[z+1
T =% = 1. Using the Mean value theorem for [z, y],

\/x +1 \/y +1
4 4
. . [y+1
and inequality ‘f —\/ &=
NIV e aeiaviea
For x,y,& € X, we obtain that
Bu(z, Tz, Ov(y, Ty, )¢ (d(Tz, Ty, ¢§))
’ [ei1_ [yl
4 4
_ i |

v(z, Tz, £) = et 1
we get

1

< Zlp —
_4|x Y|

< |€ —y|, we conclude that

+‘\/yTTf£M£f\/”TT

5
(ex yl+Hy—z+]z— :v|)
<B
d(z,T2,£)d(y,Ty.E) d(z,T2E)d(y,Ty.E)
<5 ( d(2,9,€), " Ty 0 LrdToTye) })
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since £ — 4, /2t < 0. Taking f(t) = % < 1 and define

t<1,
o] (2.21)

then ¢ € § and

Bv(z, Tz, v(y, Ty, §)v(d(Tz, Ty, §))

d(w, T, €)d(y, Ty, &) d(z,Tx,&)d(y, Ty, )
max{d(w’y’@’ L+ d@,y,8) ' 1+d(Te,Ty,€) }

<

IN

D= -

Since 0 < d(z,y,£) < 1 and % < 1. It follows from Theorem 2.9,

that T has a unique fixed point in X.

Corollary 2.11. Let (X,d) be a complete generalized by-metric space, T :
X — X be a self-mapping and v : X x X x X — [0,00) be a function such
that T is an v-admissible mapping. Suppose that

pv(x, Tz, §)v(y, Ty, §)d(Tx, Ty, &)

d(x,Tr,f)d( T ,E) d(l’,Tm,.f)d( T ,5)
{d@”yvf)’ Thile ) Trd(Ta.Tod) }

< i max
-8
(2.22)

for all z,y,& € X. If there exists xy € X such that v(xo,Txo,&) > 1, then T
has a unique fixed point.

Proof. Follows from theorem 2.9, by setting ¢(t) =¢, u = 0 and ¢(¢t) =0. O
Corollary 2.12. Let (X,d) be a complete generalized by-metric space, T :

X — X be a self-mapping and v : X x X x X — [0,00) be a function such
that T is an v-admissible mapping. Suppose that

vz, Tz, vy, Ty, §)d(Tx, Ty, §)
< ;max {d(%% ), daTdw.Ty.0 d(x,Tx,»s)d(y,Ty,a)} (2.23)

1+d(z,y,) » 1+d(Tz,Ty,€)

for all x,y,& € X. If there exists xg € X such that v(xg, Txo,&) > 1, then T
has a unique fized point.

Proof. Follows from theorem 2.9, by setting ¢(t) = ft, u = 0 and p(t) = 0. O
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