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Abstract. In this paper, we represent regular functions on ternary theory in the view of

quaternion. By expressing quaternions using ternary number theory, a new form of regular

function, called E-regular, is defined. From the defined regular function, we investigate

the properties of the appropriate hyper-conjugate harmonic functions and corresponding

Cauchy-Riemann equations by pseudo-complex forms.

1. Introduction

The non-commutative four dimensional R4 of the hypercomplex numbers
have been studied by Hamilton, called quaternions with real numbers. Quater-
nions are interested in the characteristics of functions dealt with in complex
analysis from the perspective of a number system extended from complex num-
bers. In 1935, Fueter [2] has given a definition of regular quaternionic function
in R4. After then Deavours [1] and Sudbery [12] have developed a quaternion
analysis theory. K. Nôno [10] have represented quaternions to complex num-
ber forms. Koriyama and K. Nôno [6] have investigated hyperholomorphic
function and holomorphic functions in Quaternionic analysis.

Various combinations of number systems can be attempted by transform-
ing quaternions into ternaries. In particular, by transforming quaternions into
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ternary numbers, this paper examine how the form and properties of the reg-
ular function defined in ternary numbers are related to the properties of the
regular function applied in quaternions. Kim and Shon [3, 4] have investigated
quaternion variables modified with tri-complex form and properties of regular
functions of that variables. Kim [5] has given the corresponding differentiabil-
ity of functions of generalized quaternionic variables and their properties.

We consider the ternary representation of real quaternions and make pseudo-
complex number form with modified basis î. We define E-regular in R3 and
relative properties of E-regular functions.

In this paper, we introduce definitions of E-regular functions on real ternary
numbers and represent pseudo-complex number form which is a special form
of the quaternion. In section 2, we give necessary variables, functions and op-
erators. In section 3, we define dirac operators and Cauchy integral theorems
and introduce properties and corollaries by Naser [9] and Nôno [10, 11]. Also,
we find a harmonic conjugate function on R3. In section 4, we reserch two
generalized Cauchy-Riemman systems introduced in [7, 8].

2. Preliminaries

In the skew quaternion field T , let T be the set of all ternary numbers

T = {z | z = x0 + x1e1 + x2e2, x0, x1, x2 ∈ R} ⊂ T ,
where e2

1 = e2
2 = −1 and let e1e2 =

√
−1.

The element is

z = x0 + x1e1 + x2e2

= x0 +
ae1 + be2√
a2 + b2

(
ax1 + bx2√
a2 + b2

+
bx1 − ax2√
a2 + b2

e1e2

)
,

where a, b are real numbers except both zeros.
Let

î =
ae1 + be2√
a2 + b2

, z0 =
ax1 + bx2√
a2 + b2

+
bx1 − ax2√
a2 + b2

e1e2.

Then T ∼= R× C with

z = x0 + îz0 ∈ R× C , î2 = −1

called a pseudo-complex number form and

z ± w = (x0 + îz0)± (y0 + îw0)

= (x0 ± y0) + î(z0 ± w0),

zw = (x0 + îz0)(y0 + îw0)

= (x0y0 − z0w0) + î(x0w0 + z0y0),
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where z0î = îz0, w = y0 + îw0 and

w0 =

(
ay1 + by2√
a2 + b2

+
by1 − ay2√
a2 + b2

e1e2

)
.

Let z̃ be the conjugate of z

z̃ = x0 − îz0.

Then

|z|2 : = zz̃ = (x0 + îz0)(x0 − îz0)

= x2
0 + z0z0

= x2
0 + x2

1 + x2
2

and

z−1 =
z̃

|z|2
.

Consider the following differential operators:

D :=
∂

∂x0
− î ∂

∂z0
=

∂

∂x0
− e1

∂

∂x1
− e2

∂

∂x2
,

D̃ =
∂

∂x0
+ î

∂

∂z0
=

∂

∂x0
+ e1

∂

∂x1
+ e2

∂

∂x2
,

where

∂

∂z0
=

(
a√

a2 + b2
∂

∂x1
+

b√
a2 + b2

∂

∂x2

)
−
(

b√
a2 + b2

∂

∂x1
− a√

a2 + b2
∂

∂x2

)
e1e2,

∂

∂z0
=

(
a√

a2 + b2
∂

∂x1
+

b√
a2 + b2

∂

∂x2

)
+

(
b√

a2 + b2
∂

∂x1
− a√

a2 + b2
∂

∂x2

)
e1e2.

Then the Laplacian operator is

∆ := DD̃ = D̃D =
∂2

∂x2
0

+
∂2

∂z0∂z0
=

∂2

∂x2
0

+
∂2

∂x2
1

+
∂2

∂x2
2

.

Let Ω be a domain in R3. We consider a function f defined on Ω and with
values in R× C:

f = u0 + u1e1 + u2e2 = u0 + îf0,

z = (x0, x1, x2) ∈ Ω 7→ f(z) = u0(x0, x1, x2) + îf0(x0, x1, x2) ∈ R× C,
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where u0, u1, u2 are real valued functions and let

v0 :=
au1 + bu2√
a2 + b2

, v1 :=
bu1 − au2√
a2 + b2

.

Then
f0 = v0 + v1e1e2 (2.1)

is an usual complex valued function.

We let G be a domain in R×C. We consider a function h defined on G and
with values in C× C:

z = (x0, z0) ∈ G 7→ h(z) = u(x0, z0) + îv(x0, z0) ∈ C× C,
where u and v are complex valued functions.

3. Properties of a E-regular function

Lemma 3.1. Let Ω be a domain in R3. Let a function f be defined on Ω and

with values in R× C. Then D̃f = 0 if and only if

∂u0

∂x0
=
∂f0

∂z0
,
∂f0

∂x0
= −∂u0

∂z0
. (3.1)

Similarly, fD̃ = 0 if and only if

∂u0

∂x0
=
∂f0

∂z0
,
∂f0

∂x0
= −∂u0

∂z0
. (3.2)

Proof. By the definitions of the operators D and D̃, we have

Df =

(
∂

∂x0
− î ∂

∂z0

)
(u0 + îf0) =

(
∂u0

∂x0
+
∂f0

∂z0

)
+ î

(
∂f0

∂x0
− ∂u0

∂z0

)
,

D̃f =

(
∂

∂x0
+ î

∂

∂z0

)
(u0 + îf0) =

(
∂u0

∂x0
− ∂f0

∂z0

)
+ î

(
∂f0

∂x0
+
∂u0

∂z0

)
,

fD = (u0 + îf0)

(
∂

∂x0
− î ∂

∂z0

)
=

(
∂u0

∂x0
+
∂f0

∂z0

)
+ î

(
∂f0

∂x0
− ∂u0

∂z0

)
,

fD̃ = (u0 + îf0)

(
∂

∂x0
+ î

∂

∂z0

)
=

(
∂u0

∂x0
− ∂f0

∂z0

)
+ î

(
∂f0

∂x0
+
∂u0

∂z0

)
.

Thus, the results are obtained. �

Referred [10] and [11], we give the following definitions:

Definition 3.2. f(z) = u0(x0, x1, x2) + îf0(x0, x1, x2) is called E1-regular
function if

(1) u0 and f0 are continuous differential functions,

(2) D̃f = 0 on Ω.
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Definition 3.3. h(z) = u(x0, z0)+ îv(x0, z0) is called LE2(RE2)-regular func-
tion if

(1) u and v are continuous differential functions,

(2) D̃h = 0 (hD̃ = 0) on Ω.

By comparing (3.1) and (3.2), we don’t need to distinguish left and right

calculation and just call E1-regular function. However, D̃h = 0 if and only if

∂u

∂x0
=

∂v

∂z0
,
∂v

∂x0
= − ∂u

∂z0
. (3.3)

Similarly, hD̃ = 0 if and only if

∂u

∂x0
=

∂v

∂z0
,
∂v

∂x0
= − ∂u

∂z0
. (3.4)

Since u and v are complex-valued functions, we have to distinguish LE2-regular

which is satisfied D̃h = 0 and RE2-regular which is satisfied hD̃ = 0 in the
above definition.

From the definitions of f0 and z0, we obtain the following equations:

∂u0

∂x0
=
∂u1

∂x1
+
∂u2

∂x2
,

∂u1

∂x2
=
∂u2

∂x1
(3.5)

and
∂u0

∂x0
=
∂u1

∂x1
+
∂u2

∂x2
,

∂u1

∂x2
=
∂u2

∂x1
. (3.6)

Equation (3.5) is equivalent to

∂u0

∂x0
=
∂f0

∂z0
, (3.7)

and Equation (3.6) is equivalent to

∂u0

∂z0
= −∂f0

∂x0
. (3.8)

Proposition 3.4. Let Ω be an open set in R3 and f be an E-regular function
on Ω. Then, we have

Df := f ′ =
∂f

∂x0
= −î ∂f

∂z0
.

In particular, we obtain

Dnf =
∂n

∂xn0
f
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and

Dnf = (−1)
n
2

∂n

∂z
n
2
0 ∂z0

n
2

f, if n is even,

î(−1)
n+1
2

∂n

∂z
n−1
2

0 ∂z0
n+1
2

f, if n is odd.

Proof. By the definition of a E-regular function on Ω and [11],

Df =

(
∂u0

∂x0
+
∂f0

∂z0

)
+ î

(
∂f0

∂x0
− ∂u0

∂z0

)
=
∂u0

∂x0
+ î

∂f0

∂x0
=

∂

∂x0
f

and

D2f =
∂

∂x0

( ∂

∂x0
f
)

=
∂2f

∂x2
0

.

By continuing calculations, we have

Dnf =
∂nf

∂xn0
.

Similarly,

Df =
∂f0

∂z0
− î ∂u0

∂z0
= −î2∂f0

∂z0
− î ∂u0

∂z0

= −î
(
∂

∂z0
îf0 +

∂

∂z0
u0

)
= −î ∂

∂z0
f

and by continuing the operator D calculations, we get

Dnf = (−1)
n
2

∂n

∂z
n
2
0 ∂z0

n
2

f, if n is even,

î(−1)
n+1
2

∂n

∂z
n−1
2

0 ∂z0
n+1
2

f, if n is odd.

�

Example 3.5. Let f(z) = zn = (x0 + îz0)n. Then if f is an E-regular function
on Ω in R3, then

Dnf(z) =
∂nf(z)

∂xn0
= n!

and hence

f(z) =
1

n!

∂nf(z)

∂xn0
zn.

Similarly,

f(z) = (−î)n 1

n!

∂nf(z)

∂zr10 ∂z0
r2
zn,
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where r1 and r2 are integers with r1 ≤ r2 and r1 + r2 = n.

Proposition 3.6. Let Ω be an open set in R3 and f and g be E-regular
functions on Ω. Then

(1) αf is E-regular on Ω, if α is any real constant,
(2) fα is E-regular on Ω, if α is any ternary constant,
(3) f ± g is E-regular on Ω.

Proof. It is sufficient to show the second condition of the Definition 3.2.
(1) We have

D̃(αf) =

(
∂

∂x0
+ î

∂

∂z0

)
(a0u0 − α0f0) + î(a0f0 + u0α0)

=a0

(
∂u0

∂x0
− ∂f0

∂z0

)
−
(
α0
∂f0

∂x0
+
∂u0

∂z0
α0

)
+ î

{
a0

(
∂f0

∂x0
+
∂u0

∂z0

)
+

(
∂u0

∂x0
α0 − α0

∂f0

∂z0

)}
.

If α is any real constant, D̃(αf) = 0.

(2) Let α be a ternary constant, α = a0 + îα0, where a0 is real and

α0 =
c1a1 + c2a2√

c2
1 + c2

2

+
c2a1 − c1a2√

c2
1 + c2

2

e1e2,

where c1, c2, a1 and a2 are real numbers. Then

D̃(fα) =

(
∂

∂x0
+ î

∂

∂z0

)
{(u0a0 − f0α0) + î(u0α0 + f0a0)}

=

(
∂u0

∂x0
a0 −

∂f0

∂x0
α0 −

∂u0

∂z0
α0 −

∂f0

∂z0
a0

)
+ î

(
∂u0

∂x0
α0 +

∂f0

∂x0
a0 +

∂u0

∂z0
a0 −

∂f0

∂z0
α0

)
= 0.

(3) Since f, g is E-regular functions on Ω,

D̃(f ± g) =

(
∂

∂x0
+ î

∂

∂z0

)
{(u0 ± v0) + î(f0 ± g0)}

=

(
∂u0

∂x0
± ∂v0

∂x0
− ∂f0

∂z0
∓ ∂g0

∂z0

)
+ î

(
∂u0

∂z0
± ∂v0

∂z0
+
∂f0

∂x0
a0 ±

∂g0

∂x0

)
=0.

�
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Corollary 3.7. Let Ω be an open set of R3 and f, g be continuously differential
on Ω. Then the following equations are satisfied:

D(fg) = (Df)g + f
∂g

∂x0
− îf ∂g

∂z0
,

D̃(fg) = (D̃f)g + f
∂g

∂x0
+ îf

∂g

∂z0
.

Proof. By the definitions of D and D̃, we have

D(fg) = D(u0v0 + îf0v0 + îu0g0 − f0g0)

=
∂

∂x0
(u0v0) +

∂

∂x0
î(f0v0) +

∂

∂x0
î(u0g0)− ∂

∂x0
(f0g0)

+ î
∂

∂z0
(u0v0)− ∂

∂z0
(f0v0) + î

∂

∂z0
(u0g0)− î ∂

∂z0
(f0g0)

=

(
∂u0

∂x0
+ î

∂f0

∂x0
+ î

∂u0

∂z0
− ∂f0

∂z0

)
(v0 + îg0) + f

∂g

∂x0
− îf ∂g

∂z0

= (Df)g + f
∂g

∂x0
− îf ∂g

∂z0
.

Similarly, by expanding D̃(fg) and rearranging each term, we obtain the fol-
lowing equation.

D̃(fg) = (D̃f)g + f
∂g

∂x0
+ îf

∂g

∂z0
.

�

Proposition 3.8. Let Ω be an orientable smooth surface with boundary in
R3, and γ : R2 → R3, γ(x, y) = (x0, x1, x2) be a smooth such that γ(U) = Ω
and γ(bU) = bΩ. Let f = (u0, u1, u2) be an E-regular on Ω, where ui : R3 →
R (i = 0, 1, 2). Then ∮

bΩ
f · dγ = 0,

where f = (u0,−u1,−u2) and · is usual inner product.

Proof. We define

G1 = f · ∂γ
∂x

, G2 = f · ∂γ
∂y
.

Then ∮
bΩ
f · dγ =

∮
bΩ
u0dx0 + u1dx1 + u2dx2 =

∫
bU
G1dx+G2dy,

by Greens’ Theorem,∫
bU
G1dx+G2dy =

∫ ∫
bU
∇× f ·

(
∂γ

∂x
× ∂γ

∂y

)
dxdy,
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where × is usual outer product. Since f is an E-regular on Ω,

∇× f = 0

and hence ∮
bΩ
f · dγ = 0.

�

Referred [9] and [11], we define harmonic function on Ω in T:

Definition 3.9. Let Ω be an open set in T. A function f = u0 + îf0 is said
to be harmonic on Ω if the component u0 and f0 are each harmonic on Ω.

Proposition 3.10. Let Ω be an open set in T. If a function f = u0 + îf0 is
E-regular on Ω. Then f is harmonic on Ω.

Proof. Since f is an E-regular function on Ω,

DD̃f =

(
∂

∂x0
− î ∂

∂z0

){(
∂u0

∂x0
− ∂f0

∂z0

)
+ î

(
∂f0

∂x0
+
∂u0

∂z0

)}
=

(
∂2u0

∂x2
0

+
∂2u0

∂z0∂z0

)
+ î

(
∂2f0

∂x2
0

+
∂2f0

∂z0∂z0

)
=

(
∂

∂x0

∂u0

∂x0
− ∂

∂z0

∂f0

∂x0

)
+ î

(
− ∂

∂x0

∂u0

∂z0
+

∂

∂z0

∂u0

∂x0

)
= 0.

We obtain a harmonic function on Ω. �

Proposition 3.11. Let G be an open set in T. If a function u(x0, z0) is

harmonic on G, then there exists v(x0, z0) such that h = u+ îv is hL(Rh)-E-
regular.

Proof. Since u is harmonic on G,

∂2u

∂x2
0

+
∂2u

∂z0∂z0
= 0

and then,
∂

∂x0

∂u

∂x0
= − ∂

∂z0

∂u

∂z0
.

Let
∂v

∂z0
=

∂u

∂x0
,
∂v

∂x0
= − ∂u

∂z0
.

Then, we have v which satisfied that h = u+ îv is hL(Rh)-E-regular on G. �
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Theorem 3.12. Let Ω be an open set in R3. If a function u0(x0, x1, x2)

is harmonic on Ω, then there exists f0(x0, x1, x2) such that f = u0 + îf0 is
E-regular.

Proof. Since u0 is harmonic on Ω,

∂2u0

∂x2
0

+
∂2u0

∂x2
1

+
∂2u0

∂x2
2

= 0.

We put

∂u0

∂x0
=
∂u1

∂x1
+
∂u2

∂x2
,

∂u0

∂x1
= −∂u1

∂x0
,
∂u0

∂x2
= −∂u2

∂x0
.

Then from u0, we have u1 and u2, satisfied Cauchy-Riemann equations for
E-regular on Ω, such that

u0 + e1u1 + e2u2 = u0 + îf0,

where f0 is represented by (2.1). Hence we obtain f0 by u0. �

The following proposition is Cauchy integral formula for E-regular functions
which is based on [7] and [8].

Example 3.13. Let f(z) be a function such that

f(z) =
x0 − îz0

(x2
0 + z0z0)

3
2

.

A function f(z) is composed of

u0(x0, z0) =
x0

(x2
0 + z0z0)

3
2

and f0(x0, z0) = − z0

(x2
0 + z0z0)

3
2

.

Since u0 and f0 are continuous differential functions and the function f(z)
satisfies

∂u0

∂x0
=
∂f0

∂z0
and

∂u0

∂z0
= −∂f0

∂x0
,

f is E-regular on R3.

Example 3.14. Let f(z) be a function such that

f(z) =
1

|ζ − z|2
,

where ζ is a real number. Then Df is expressed(
∂u0

∂x0
+
∂f0

∂z0

)
+ î

(
∂f0

∂x0
− ∂u0

∂z0

)
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and satisfies Equations (3.7) and (3.8). Thus, the function f is E-regular on
R3.

4. Generalizations of Cauchy-Riemann equations

We consider two generalizations of Cauchy-Riemann equations to the 3-
dimensional Euclidean space. The first one, obtained by the Dirac operator,
is given by

∂u0

∂x0
− ∂u1

∂x1
− ∂u2

∂x2
= 0, (4.1)

∂u2

∂x1
=
∂u1

∂x2
, (4.2)

∂u1

∂x0
= −∂u0

∂x1
,
∂u2

∂x0
= −∂u0

∂x2
. (4.3)

The second one is given by

x2

(
∂u0

∂x0
− ∂u1

∂x1
− ∂u2

∂x2

)
+ u2 = 0, (4.4)

∂u2

∂x1
=
∂u1

∂x2
, (4.5)

∂u1

∂x0
= −∂u0

∂x1
,
∂u2

∂x0
= −∂u0

∂x2
. (4.6)

The second system can be considered as a non-Euclidean version of the
former one.

Lemma 4.1. In T, we have that the first one, called the system (R), is
∂u0

∂x0
=
∂f0

∂z0
,

∂f0

∂x0
= −∂u0

∂z0
,

(4.7)

and the second one, called the system (H), is
z0

(
∂u0

∂x0
− ∂f0

∂z0

)
+ f0 = 0,

∂f0

∂x0
= −∂u0

∂z0
.

(4.8)

In particular, a function f = u0 + îf0 from an open set Ω in T into T sat-
isfying (R) is called E-regular or monogenic and satisfying (H) is H-solution.
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Proof. From the definition of operator ∂
∂z0

, ∂
∂z0

and complex-valued function

f0, we obtain the replacing systems. That is, we can replace (4.1) and (4.2) to

∂u0

∂x0
=
∂f0

∂z0
.

Also, we can replace (4.3) to

∂f0

∂x0
= −∂u0

∂z0
.

Similarly, we can replace (4.4) to

z0

(
∂u0

∂x0
− ∂f0

∂z0

)
+ f0 = 0.

�

Let z = x0 + îz0 in T. By induction, we have

zm =
m∑
k=0

k:even

(
m

k

)
xm−k0 (−1)

k
2 z

k
2
0 z0

k
2 + î

m∑
k=1
k:odd

(
m

k

)
xm−k0 (−1)

k−1
2 z

k+1
2

0 z0
k−1
2 ,

where k = 0, 1, 2, · · · . More simply,

zm =

m∑
k=0

(
m

k

)
c(k)xm−k0 z

[ k+1
2 ]

0 z0
[ k2 ],

where

c(k) =

{
(−1)

k
2 if k is even,

(−1)
k−1
2 î if k is odd.

Also, we have

∂

∂z0
z0

=

{
∂

∂x1

(
a√

a2 + b2
− b√

a2 + b2

√
−1

)
+

∂

∂x1

(
b√

a2 + b2
+

a√
a2 + b2

√
−1

)}
×
{(

a√
a2 + b2

+
b√

a2 + b2

√
−1

)
x1 +

(
b√

a2 + b2
− a√

a2 + b2

√
−1

)
x2

}
=1 + 1 = 2.

Similarly, we obtain

∂

∂z0
z0 = 2 ,

∂

∂z0
z0 =

∂

∂z0
z0 = 0,

∂n

∂zn0
zm0 = 2n

m!

(m− n)!
zm−n0 ,

∂n

∂z0
n z0

m = 2n
m!

(m− n)!
z0

m−n,
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where a and b are real numbers both nonzero and m is a positive integer.

Theorem 4.2. In the system (H), the function zm is an H-solution, but it is
not an E-regular function.

Proof. We have

∂u0

∂x0
=

∂

∂x0

m∑
k=0

k:even

(
m

k

)
xm−k0 (−1)

k
2 z

k
2
0 z0

k
2

=
m∑
k=0

k:even

(
m

k

)
(m− k)xm−k−1

0 (−1)
k
2 z

k
2
0 z0

k
2 ,

∂f0

∂z0
=

∂

∂z0

m∑
k=1
k:odd

(
m

k

)
xm−k0 (−1)

k−1
2 z

k+1
2

0 z0
k−1
2

=
m∑
k=1
k:odd

(
m

k

)
xm−k0 (−1)

k−1
2 (k + 1)z

k−1
2

0 z0
k−1
2 ,

∂f0

∂x0
=

∂

∂x0

m∑
k=1
k:odd

(
m

k

)
xm−k0 (−1)

k−1
2 z

k+1
2

0 z0
k−1
2

=
m∑
k=1
k:odd

(
m

k

)
(m− k)xm−k−1

0 (−1)
k−1
2 z

k+1
2

0 z0
k−1
2 ,

∂u0

∂z0
=

∂

∂z0

m∑
k=0

k:even

(
m

k

)
xm−k0 (−1)

k
2 z

k
2
0 z0

k
2

=
m∑
k=2

k:even

(
m

k

)
xm−k0 (−1)

k
2 z

k
2
0 kz0

k
2
−1.

Substituting the above terms into (H)-system satisfies the definition of (H)-
solution, we obtain the theorem. �

Theorem 4.3. The function Dnzm+n, m ≥ n, is an H-solution for any
positive integer n.

Proof. Generalizing Dn by the definition of D, we obtain the following formula:
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Dn =

n∑
k=0

k:even

(
n

k

)
∂n−k

∂xn−k0

(−1)
k
2

∂k

∂z
k
2
0 z0

k
2

+ î
n∑

k=1
k:odd

(
n

k

)
∂n−k

∂xn−k0

(−1)
k+1
2

∂k

∂z
k−1
2

0 z0
k+1
2

.

To further simplify this and apply

Dn =

n∑
k=0

(
n

k

)
c∗(k)

∂n−k

∂xn−k0

∂k

∂z
[ k2 ]
0 z0

[ k+1
2 ]

,

where

c∗(k) =

{
(−1)

k
2 if k is even,

(−1)
k+1
2 î if k is odd,

to zm+n, we get the following formula:

Dnzm+n =
(m+ n)!

m!

m∑
j=0

(
m

j

)
c(j)xm−j0 z

[ j+1
2 ]

0 z0
[ j2 ], (4.9)

where

c(j) =

{
(−1)

j
2 if j is even,

(−1)[
j
2 ]î if j is odd.

Since the equation (4.9) is satisfied Equation (4.8), the result is obtained. �

5. Conclusion

In order to express quaternions as ternary numbers, we propose a pseudo-
complex form by defining a pseudo-basis of î. The form of the function suitable
for the new number system is specified and a regular function named E-Regular
function is defined. Considering the properties of regular functions in the
existing quaternion form, we define the form of a ternary regular function.
This preserves the properties of regular functions in quaternion form. Hyper-
conjugate harmonic functions are defined from regular functions that deal
with the number system based on ternary numbers, and their relationship
with regular functions is specified. In addition, by defining Cauchy-Riemann
equations suitable for the ternary number form and investigating its properties,
it is possible to expect the use of regular functions in the ternary number
system.
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