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Abstract. We propose a three-point method for approximating a solution of nonlinear least

squares problems. The radius of convergence is determined as well as usable error estimates.

Numerical examples are also provided.

1. Introduction

In this study, we are concerned with the problem of approximating a solution
x? of the nonlinear least square problem

min
x∈Ri

1

2
F (x)TF (x), (1.1)

where, F : D ⊆ Ri → Rj is a twice continuously Fréchet-differentiable operator
((j ≥ i) are natural numbers), and D is an open convex subset of Ri.

Nonlinear least square problem can be used to formulate many problems
arising in applied sciences [4-12, 16-20]. This problem can be solved by Gauss-
Newton-type methods [4, 7, 9, 12, 16-20]. However these methods use the
derivative F ′(x) of operator F . The computation of the derivative F ′(x) is
in general very expensive. That is why we propose the alternative iterative
method

xn+1 = xn − [ATnAn]−1ATnF (xn) (n ≥ 0), (1.2)
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where, An is a linear operator, which is a divided difference or a linear com-
bination of divided differences. We shall only consider the special case, when

An = [xn, xn−1;F ] + [xn−2, xn;F ]− [xn−2, xn−1;F ] (n ≥ 0), (1.3)

where, [., ., F ] is a divided difference of order one [4], [12]. Note that case (1.3)
as well as cases

An = [xn, xn−1;F ] (n ≥ 0), (1.4)

An = [2xn − xn−1, xn−1;F ] (n ≥ 0), (1.5)

were studied in [18]. However the proof in [18] (Theorem 2) using (1.3) is not
completed (see Remark 2.4).

Here, we provide a new local convergence analysis for iterative method (1.2)
under the special choice of An given in (1.3). Numerical examples further
validating the theoretical results are also provided in this study. Note also
that a local as well as a semilocal convergence analysis of more general method

yn+1 = yn −A−1n F (yn) (n ≥ 0), (1.6)

where, F : D ⊆ B1 → B2, and B1, B2 are Banach spaces and An is given by
(1.3) can be found in [1]-[5], [8], [12], [14], [15], [20].

Throughout the paper, ‖.‖ denotes the Euclidean norm.

2. Local convergence analysis of (TPM)

We can show the main local convergence result for (TPM).

Theorem 2.1. Let F : Ri → Rj be a twice continuously differentiable mapping
defined on an open convex subset D of Ri with values in Rj.
Assume:
problem (1.1) has a solution x? ∈ D, and the inverse operator L = (AT?A?)

−1 =
[F ′(x?)TF ′(x?)]−1 exists, and

‖L‖ ≤ B; (2.1)

F has divided difference of order one and two, and for all x, y, z, v ∈ D:

‖[x, y;F ]− [x, z;F ]‖ ≤M‖y − z‖, (2.2)

‖[x, y;F ]− [x?, x?;F ]‖ ≤M0(‖x− x?‖+ ‖y − x?‖), (2.3)

and
‖[v, x, y;F ]− [z, x, y;F ]‖ ≤ N‖v − z‖; (2.4)

the following hold
‖F (x?)‖ ≤ η, (2.5)

‖F ′(x?)‖ ≤ α, (2.6)

4BM0η < 1, (2.7)
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and

U(x?, r?) = {x : ‖x− x?‖ < r?} ⊆ D, (2.8)

where, r? is the unique positive root of polynomial q given by

q(r) = B[(α+ 2(M0 +M)r)(M + 4Nr)r + 2(M0 +M)η]
+4(M0 +M)B(α+ (M0 +M)r)r − 1.

(2.9)

Then, for x−2, x−1, x0 ∈ U(x?, r?), iterative process {xn} generated by (TPM)
for An given by (1.3) is well defined, remains in U(x?, r?) for all n ≥ 0, and
converges to x?.

Moreover, the following error estimates hold for all n ≥ 0:

en+1 = ‖xn+1 − x?‖ ≤ gnδn ≤ gnδn, (2.10)

where,

gn = B
1−B[2α+M0(en+en−1)+M‖xn−xn−1‖][M0(en+en−1)+M‖xn−xn−1‖] , (2.11)

gn = B
1−B[2α+(M0+M)(en+en−1)](M0+M)(en+en−1)

, (2.12)

δn =
(
α+ (M0 +M)(en + en−1)

)
(Men +N‖xn − xn−2‖‖xn − xn−1‖)en

+(M0 +M)(en + en−1)η,
(2.13)

and

δn =
(
α+ (M0 +M)(en + en−1)

)(
Men +N(en + en−2)(en + en−1)

)
en

+(M0 +M)(en + en−1)η.
(2.14)

Proof. Polynomial q has a positive root denoted by r?, by the intermediate
value theorem applied on [0, r], for sufficiently large r > 0, and (2.7). More-
over, q′(r) ≥ 0, r ≥ 0. That is the graph of function q crosses the positive
x− axis only once.

By hypothesis, x−2, x−1, x0 ∈ U(x?, r?). Using (2.1), (2.3), (2.6), and the
definition of r?, we obtain in turn:

‖I − LAT0A0‖ = ‖L[AT0 (A0 −A?) + (A0 −A?)TA?]‖
≤ B(‖AT0 ‖‖A0 −A?‖+ ‖(A0 −A?)T ‖‖A?‖)
= B(‖A0‖+ ‖A?‖)‖A0 −A?‖
≤ B(‖A?‖+ ‖A0 −A?‖+ ‖A?‖)‖A0 −A?‖
≤ B

(
2α+M0(‖x0 − x?‖+ ‖x−1 − x?‖) +M‖x0 − x−1‖

)
×
(
M0(‖x0 − x?‖+ ‖x−1 − x?‖) +M‖x0 − x−1‖

)
≤ 4(M0 +M)B(α+ (M0 +M)r?)r?
= 1−B[(α+ 2(M0 +M)r)(M + 4Nr)r + 2(M0 +M)η]
< 1.

(2.15)
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Let us define functions g, and p by

g(r) = B
1−4B(M0+M)(α+(M0+M)r)r , (2.16)

and

p(r) = g(r)[(α+ 2(M0 +M)r)(M + 4Nr)r + 2(M0 +M)η]. (2.17)

It then follows from (2.15), and the Banach lemma on invertible operators [4],
[12] that (AT0A0)

−1 exists, and

‖(AT0A0)
−1‖ ≤ g0 ≤ g(r?). (2.18)

Consequently, the iterate x1 is well defined.
Next, we will show x1 ∈ U(x?, r?). Using the fact AT? F (x?) = 0, (TPM),

(2.1), (2.2), (2.4), (2.5), (2.18), the definition of r?, and the approximation

[xk, x
?;F ]−Ak = [xk, x

?;F ]− [xk, xk;F ] + [xk, xk;F ]− [xk, xk−1;F ]
−([xk−2, xk;F ]− [xk−2, xk−1;F ])

= ([xk, x
?;F ]− [xk, xk;F ]) + ([xk, xk, xk−1;F ]

−[xk−2, xk, xk−1;F ])(xk − xk−1)
(2.19)

for k = 0, we get

‖x1 − x?‖ = ‖ − (AT0A0)
−1(AT0 F (x0)−AT0A0(x0 − x?)

)
‖

= ‖(AT0A0)
−1AT0

(
F (x0)− F (x?) + F (x?)−A0(x0 − x?)

)
‖

≤ ‖(AT0A0)
−1‖‖(AT0 −AT? +AT? )

(
([x0, x

?;F ]−A0)(x0 − x?)
+F (x?)

)
‖

≤ g0‖(A0 −A?)T
(
([x0, x

?;F ]−A0)(x0 − x?) + F (x?)
)

+AT?
(
([x0, x

?;F ]−A0)(x0 − x?)
)
‖

≤ g0
(
(‖A0 −A?‖+ ‖A?‖)‖A0 − [x0, x

?;F ]‖‖x0 − x?‖
+‖A0 −A?‖‖F (x?)‖

)
≤ g0[

(
α+M0(‖x0 − x?‖+ ‖x−1 − x?‖) +M‖x0 − x−1‖

)
×(M‖x0 − x?‖+N‖x0 − x−2‖‖x0 − x−1‖)‖x0 − x?‖
+
(
M0(‖x0 − x?‖+ ‖x−1 − x?‖) +M‖x0 − x−1‖

)
η]

< g(r?)[(α+ 2(M0 +M)r?)(M + 4Nr?)r? + 2(M0 +M)η]r?
= p(r?)r? = r?,

(2.20)
which shows x1 ∈ U(x?, r?), and estimate (2.10) holds for n = 0.

Let us assume xn ∈ U(x?, r?) for n = 0, 1, . . . , k, and estimate (2.10) holds
for n = 0, 1, . . . , k−1, and k ≥ 1 is an integer. We shall show: xk+1 ∈ U(x?, r?),
and estimate (2.10) holds for n = k.
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By simply replacing above x−1, x0 by xk−1, xk, respectively, we get

‖I − LATkAk‖ ≤ B(‖Ak‖+ ‖A?‖)‖Ak −A?‖
≤ B(2‖A?‖+ ‖Ak −A?‖)‖Ak −A?‖
≤ B

(
2α+M0(‖xk − x?‖+ ‖xk−1 − x?‖) +M‖xk − xk−1‖

)
×
(
M0(‖xk − x?‖+ ‖xk−1 − x?‖) +M‖xk − xk−1‖

)
≤ 4(M0 +M)B(α+ (M0 +M)r?)r? < 1.

(2.21)
Hence, again (ATkAk)

−1 exists, and

‖(ATkAk)−1‖ ≤ gk ≤ g(r?). (2.22)

That is, iterate xk+1 is well defined. Moreover, as in (2.20) we obtain in turn:

‖xk+1 − x?‖ = ‖(ATkAk)−1ATk
(
F (xk)− F (x?) + F (x?)−Ak(xk − x?)

)
‖

≤ gk‖(ATk −AT? +AT? )
(
([xk, x

?;F ]−Ak)(xk − x?) + F (x?)
)
‖

≤ gk
(
(‖Ak −A?‖+ ‖A?‖)‖[xk, x?;F ]−Ak‖‖xk − x?‖

+‖Ak −A?‖‖F (x?)‖
)

≤ gk[
(
α+M0(‖xk − x?‖+ ‖xk−1 − x?‖) +M‖xk − xk−1‖

)
×(M‖xk − x?‖+N‖xk − xk−2‖‖xk − xk−1‖)‖xk − x?‖
+
(
M0(‖xk − x?‖+ ‖xk−1 − x?‖) +M‖xk − xk−1‖

)
η]

< g(r?)[(α+ 2(M0 +M)r?)(M + 4Nr?)r? + 2(M0 +M)η]r?
= p(r?)r? = r?,

(2.23)
which shows xk+1 ∈ U(x?, r?), and estimate (2.10) holds for n = k.

By induction, iterative process {xn} generated by (TPM) for An given by
(1.3) is well defined, remains in U(x?, r?) for all n ≥ 0, and estimate (2.10)
holds for all n ≥ 0.

Next, we shall show xn → x? as n→∞.
Define functions a, and b on [0, r?] by:

a(r) = [(α+ 2(M0 +M)r)(M + 4Nr)r + (M0 +M)η]g(r), (2.24)

and

b(r) = (M0 +M)ηg(r). (2.25)

By the choice of r?, we get

a(r?) ≥ 0, b(r?) ≥ 0, a(r?) + b(r?) = 1. (2.26)

Using estimate (2.10), the definition of the C’ constants and functions a, b,
we obtain for n ≥ 0

en+1 ≤ a(r?)en + b(r?)en−1. (2.27)

On the other hand, for the real number r? > 0, and initial points x0, x−1
belong to U(x?, r?), there must exist a real number r′, such that 0 < r′ < r?,
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x0, x−1 ∈ U(x?, r′), and all estimates about {xn} above will be true if r? is
replaced by r′. Specially, we get from (2.27) for n ≥ 0:

en+1 ≤ aen + ben−1, (2.28)

where,

a = a(r′), b = b(r′). (2.29)

Clearly we also have

a ≥ 0, b ≥ 0, a+ b < a(r?) + b(r?) = 1. (2.30)

Define sequences {θn} and {ρn} as:

θn =
en
r′
, n = −1, 0, 1, . . . , (2.31)

ρ−1 = θ−1, ρ0 = θ0, ρn+1 = aρn + bρn−1, n = 0, 1, 2, . . . . (2.32)

Dividing two sides of inequality (2.28) by r′ gives

θn+1 ≤ aθn + bθn−1, n = 0, 1, 2, . . . . (2.33)

By the definition of sequence {ρn}, we get

0 ≤ θn ≤ ρn, n = −1, 0, 1, . . . . (2.34)

Moreover, it is known that an explicit formula of sequence {ρn} can be given
by:

ρn = ω1λ
n
1 + ω2λ

n
2 , n = −1, 0, 1, . . . , (2.35)

where,

λ1 =
a−
√
a2 + 4b

2
, λ2 =

a+
√
a2 + 4b

2
, (2.36)

and

ω1 =
λ−12 ρ0 − ρ−1
λ−12 − λ

−1
1

, ω2 =
ρ−1 − λ−11 ρ0

λ−12 − λ
−1
1

. (2.37)

Note that

0 ≤ |λ1| ≤ |λ2| <
a+

√
a2 + 4(1− a)

2
=
a+ 2− a

2
= 1. (2.38)

Using (2.34) and (2.38), we deduce that {θn} → 0, (n → ∞), that is, xn →
x?, (n→∞). That completes the proof of the Theorem 2.1. �

In the case of zero residual (η = 0), we have the special case of Theorem
2.1.
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Theorem 2.2. Let F : Ri → Rj be a continuously differentiable mapping
defined on an open convex subset D of Ri with values in Rj.
Assume:
the problem (1.1) has a solution x? ∈ D, and the inverse operator L exists,
and

‖L‖ ≤ B;

F has divided differences of order one and two, and for all x, y, z, v ∈ D:

‖[x, y;F ]− [x, z;F ]‖ ≤M‖y − z‖,

‖[x, y;F ]− [x?, x?;F ]‖ ≤M0(‖x− x?‖+ ‖y − x?‖),
and

‖[v, x, y;F ]− [z, x, y;F ]‖ ≤ N‖v − z‖;
the following hold

‖F ′(x?)‖ ≤ α,

4BM0η < 1,

and

U(x?, r?) ⊆ D,
where, r? is the unique positive root of polynomial q given by

q(r)=B[(α+2(M0+M)r)(M+4Nr)r]+4(M0 +M)B(α+(M0+M)r)r−1.

Then, for x−2, x−1, x0 ∈ U(x?, r?), iterative process {xn} generated by (TPM)
for An given by (1.3) is well defined, remains in U(x?, r?) for all n ≥ 0, and
converges to x?.

Moreover, the following error estimates hold for all n ≥ 0:

en+1 ≤ gnζn ≤ gnζn, (2.39)

en+1 ≤ Cen−2en−1en, (2.40)

where, ζn, ζn are obtained from δn, δn, respectively by letting η = 0 in (2.13)
and (2.14), and C > 0.

Furthermore, the order of convergence of (TPM) is 1.839 . . ..

Proof. All claims but (2.40) have been established in Theorem 2.1.
In view of (2.39), there exists a natural number N0, and constant C > 0 such

that (2.40) holds for all n ≥ N0. This shows that the R−order of convergence
of (TPM) is equal to the unique positive root of equation

t3 − t2 − t− 1 = 0, (2.41)

which is 1.839 . . .. That completes the proof of the Theorem 2.2. �



138 I. K. Argyros and Hongmin Ren

Remark 2.3. (a) Hypotheses (2.2) and (2.3) can be replaced by the stronger
but popular condition (yet not needed in the proof of Theorem 2.1 and 2.2)

‖[x, y;F ]− [u, v;F ]‖ ≤ K(‖x− u‖+ ‖y − v‖).
Note however that

M ≤ K,
M0 ≤ K,

hold in general and K
M and K

M0
can be arbitrarily large [3 ], [4].

(b) A popular choice for the divided difference is given by

[x, y;F ] =

∫ 1

0
F ′(y + t(x− y))dt.

Remark 2.4. A similar result was given in [18, Theorem 2]. However, the
proof is not complete. Indeed, they arrive at the estimate

‖xn+1 − x?‖ < ‖xn−1 − x?‖ < R?,

which obviously shows xn+1 ∈ U(x?, R?). However, it is not shown that
xn → x? as n→∞.

Remark 2.5. We arrived at estimate (2.21) using only (2.2), and (2.3). In-
stead, if we use (2.2), (2.3), and (2.5), we get

‖Ak −A?‖ = ‖[x?, x?;F ]− [xk, x
?;F ] + [xk−2, x

?;F ]− [xk−2, xk;F ]
+[xk, x

?;F ]− [xk, xk−1;F ]− [xk−2, x
?;F ] + [xk−2, xk−1;F ]‖

= ‖([x?, x?;F ]− [xk, x
?;F ]) + ([xk−2, x

?;F ]− [xk−2, xk;F ])
+([xk, x

?, xk−1;F ]− [xk−2, x
?, xk−1;F ])(x? − xk−1)‖

≤ (M0 +M)‖xk − x?‖+N‖xk − xk−2‖‖xk−1 − x?‖.
Define

ξk = (M0 +M)ek +N‖xk − xk−2‖ek−1,
ξk = (M0 +M)ek +N(ek + ek−2)ek−1,
ξ(r) = (M0 +M + 2Nr)r,
Gk = B

1−B(2α+ξk)ξk
,

Gk = B
1−B(2α+ξk)ξk

,

G(r) = B
1−B(2α+ξ(r))ξ(r) .

Then, as in (2.21) we arrive at

‖I − LATkAk‖ ≤ B(2α+ ξk)ξk
≤ B(2α+ ξk)ξk.

Moreover, define

q(r) = B[(α+ ξ(r))(M + 4Nr) + (M0 +M + 2Nr)η] +B(2α+ ξ(r))ξ(r)− 1.
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Then, with the above changes the conclusions of Theorem 2.1 hold in this
setting. Let us call the new result Theorem 2.1′. We shall use in practice
both results to obtain the largest radius of convergence, and the finer error
estimates on the distances ‖xn − x?‖.

Not however that clearly, if

g(r) < G(r), (2.42)

then Theorem 2.1 provides a larger convergence radius and finer error estimate
than Theorem 2.1′.

If equality holds in (2.42), the results provide the same information. Oth-
erwise Theorem 2.1′ is better than Theorem 2.1.

3. Numerical example

In this section, we give an example to show the application of our results.

Example 3.1. Consider function F : D = R ⊆ R→ R2 given by:

F (x) =

(
x+ 1

λx2 + x− 1

)
, (3.1)

where λ ∈ R is a parameter. It follows that

F ′(x) =

(
1

2λx+ 1

)
, (3.2)

F ′′(x) =

(
0

2λ

)
, (3.3)

and x? = 0 is a solution of function

F ′(x)TF (x) =
(

1 2λx+ 1
)( x+ 1

λx2 + x− 1

)
= x+ 1 + (2λx+ 1)(λx2 + x− 1).

(3.4)

That is, x? = 0 is a solution of problem (1.1). In view of

F (x?) =

(
1
−1

)
, (3.5)

F ′(x?) =

(
1
1

)
, (3.6)

and

F ′(x?)TF ′(x?) =
(

1 1
)( 1

1

)
= 2, (3.7)

we can set constants B, η, and α in Theorem 2.1 as follows:

B =
1

2
, η =

√
2, α =

√
2. (3.8)
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Moreover, using (3.2) and (3.3), we can get for all x, y ∈ D ⊆ R:

‖F ′(x)− F ′(y)‖ = ‖
(

0
2λ(x− y)

)
‖ = 2|λ||x− y|, (3.9)

and

‖F ′′(x)− F ′′(y)‖ = ‖
(

0
0

)
‖ = 0|x− y|. (3.10)

Using divided difference of order [x, y;F ] as given in Remark 2.3 (b) (see also
[14]), we can get for all x, y, u, v ∈ D ⊆ R:

‖[x, y;F ]− [u, v;F ]‖ = ‖
∫ 1
0

(
F ′(tx+ (1− t)y)dt− F ′(tu+ (1− t)v)

)
dt‖

≤
∫ 1
0 2|λ||t(x− u) + (1− t)(y − v)|dt

≤ |λ|(|x− u|+ |y − v|).
(3.11)

That is, we can set constant M = M0 = |λ| and N = 0 in Theorem 2.1. Hence,
the function q(r) can be given by:

q(r) = B[(α+ 2(M0 +M)r)(M + 4Nr)r + 2(M0 +M)η]
+4(M0 +M)B(α+ (M0 +M)r)r − 1

= 1
2(
√

2 + 4|λ|r)(|λ|r) + 2
√

2|λ|+ 4(
√

2 + 2|λ|r)(|λ|r)− 1

= 10(|λ|r)2 + 9
√
2

2 |λ|r + 2
√

2|λ| − 1,

(3.12)

which has a unique positive root r?:

r? =

√
322− 320

√
2|λ| − 9

√
2

40|λ|
. (3.13)

If we choose parameter λ such that

0 < |λ| <
√

2

4
, (3.14)

then 4BMη = 2
√

2|λ| < 1, and U(x?, r?) ⊆ D. Therefore, all conditions in
Theorem 2.1 are satisfied, and Theorem 2.1 applies.
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