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Abstract. In this paper, we prove some coupled fixed point results within the framework of

partial metric spaces and give some consequences of the main result. We do this by focusing

on partial metric spaces. In addition, we provide some illustrations to back up the conclusion

we reached. The results that were obtained in this paper extend and generalize a number of

results that were previously published in the relevant literature.

1. Introduction

For any partially ordered set X, Bhashkar and Lakshmikantham introduced
in 2006 the concept of a “coupled fixed point” of the mapping F : X×X → X.
Coupled fixed point theorems in metric spaces have been proven by a number
of authors, including Ciric and Lakshmikantham [6], Sabetghadam et al. [15]
and Olaleru et al. [14] (see also: [10], [13]).
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A wide variety of generalizations of metric spaces have been proposed and
implemented in the literature. These overarching rules are established by uti-
lizing alternative contractive conditions or by imposing an additional condition
on the surrounding spaces. A partial metric space, which was first introduced
by Matthews in 1992 [11, 12], is one example of such a generalization. Model
building in the theory of computation relies heavily on partial metric spaces
(for examples, see [7], [14], and others). To put it another way, the distance
between two points in the self might not be zero in partial metric spaces. By
introducing the concept of partial metric space, Matthews was able to prove
the Banach fixed point theorem ([3]) in the partial metric setting.

As an extension of previous work by Sabetghadam et al. [15] and Aydi [1]
in the context of partial metric spaces, the goal of this paper is to prove some
coupled fixed point results under contractive type condition.

2. Preliminaries

In the following section, we define some terms and introduce some funda-
mental ideas regarding partial metric spaces.

Definition 2.1. ([1]) An element (x, y) ∈ X ×X is said to be a coupled fixed
point of the mapping F : X ×X → X if F (x, y) = x and F (y, x) = y.

Example 2.2. Let X = [0,+∞) and F : X×X → X defined by F (x, y) = x+y
3

for all x, y ∈ X. One can easily see that F has a unique coupled fixed point
(0, 0).

Example 2.3. Let X = [0,+∞) and F : X×X → X be defined by F (x, y) =
x+y
2 for all x, y ∈ X. Then we see that F has two coupled fixed point (0, 0)

and (1, 1), that is, the coupled fixed point is not unique.

Definition 2.4. ([12]) Let X be a nonempty set and p : X × X → R+ be a
self-mapping of X such that for all x, y, z ∈ X the followings are satisfied:

(P1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),
(P2) p(x, x) ≤ p(x, y),
(P3) p(x, y) = p(y, x),
(P4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

Then p is called a partial metric on X and the pair (X, p) is called a partial
metric space (in short PMS).

Remark 2.5. It is clear that if p(x, y) = 0, then from (P1), (P2) and (P3),
x = y. But if x = y, p(x, y) may not be 0.
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If p is a partial metric on X, then the function ps : X ×X → R+ given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y), (2.1)

is a metric on X.

Example 2.6. ([2]) Let X = R+, where R+ = [0,+∞) and p : X ×X → R+

be given by p(x, y) = max{x, y} for all x, y ∈ R+. Then (R+, p) is a partial
metric space.

Example 2.7. ([2]) Let I denote the set of all intervals [a, b] for any real
numbers a ≤ b. Let p : I × I → [0,∞) be a function such that

p
(

[a, b], [c, d]
)

= max{b, d} −min{a, c}.

Then (I, p) is a partial metric space.

Example 2.8. ([5]) Let X = R and p : X × X → R+ be given by p(x, y) =

emax{x,y} for all x, y ∈ R. Then (X, p) is a partial metric space.

Various applications of this space has been extensively investigated by many
authors (see, Künzi [9] and Valero [16] for details).

Note also that each partial metric p on X generates a T0 topology τp on X,
whose base is a family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0} where

Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε}
for all x ∈ X and ε > 0.

Similarly, closed p-ball is defined as

Bp[x, ε] = {y ∈ X : p(x, y) ≤ p(x, x) + ε}
for all x ∈ X and ε > 0.

Definition 2.9. ([11]) Let (X, p) be a partial metric space. Then

(1) a sequence {an} in (X, p) is said to be convergent to a point a ∈ X if
and only if p(a, a) = limn→∞ p(an, a);

(2) a sequence {an} is called a Cauchy sequence if limm,n→∞ p(am, an)
exists and is finite;

(3) (X, p) is said to be complete if every Cauchy sequence {an} in X
converges to a point a ∈ X with respect to τp. Furthermore,

lim
m,n→∞

p(am, an) = lim
n→∞

p(an, a) = p(a, a);

(4) a mapping g : X → X is said to be continuous at a0 ∈ X if for every

ε > 0, there exists α > 0 such that g
(
Bp(a0, α)

)
⊂ Bp

(
g(a0), ε

)
.

Lemma 2.10. ([1, 11, 12]) Let (X, p) be a partial metric space. Then
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(a) a sequence {an} in (X, p) is a Cauchy sequence if and only if it is a
Cauchy sequence in the metric space (X, ps),

(b) a partial metric space (X, p) is complete if and only if the metric space
(X, ps) is complete, furthermore, limn→∞ p

s(an, a) = 0 if and only if

p(a, a) = lim
n→∞

p(an, a) = lim
n,m→∞

p(an, am). (2.2)

Lemma 2.11. ([8]) Let (X, p) be a partial metric space.

(i) If for all a, b ∈ X, p(a, b) = 0, then a = b;
(ii) If a 6= b, then p(a, b) > 0.

Sabetghadam et al. [15] obtained the following.

Theorem 2.12. Let (X, d) be a complete cone metric space. Suppose that the
mapping F : X × X → X satisfies the following contractive condition for all
x, y, u, v ∈ X

d(F (x, y), F (u, v)) ≤ kd(x, u) + ld(y, v), (2.3)

where k, l are nonnegative constants with k + l < 1. Then F has a unique
coupled fixed point.

Recently, Aydi [1] obtained the following results in a partial metric space.

Theorem 2.13. ([1]) Let (X, p) be a complete partial metric space. Suppose
that the mapping F : X × X → X satisfies one of the following contractive
conditions (Υ1), (Υ2), (Υ3):

(Υ1) for all x, y, u, v ∈ X and nonnegative constants k, l with k + l < 1,

p(F (x, y), F (u, v)) ≤ kp(x, u) + lp(y, v), (2.4)

(Υ2) for all x, y, u, v ∈ X and nonnegative constants k, l with k + l < 1,

p(F (x, y), F (u, v)) ≤ kp(F (x, y), x) + lp(F (u, v), u), (2.5)

(Υ3) for all x, y, u, v ∈ X and nonnegative constants k, l with k + 2l < 1,

p(F (x, y), F (u, v)) ≤ kp(F (x, y), u) + lp(F (u, v), x). (2.6)

Then F has a unique coupled fixed point.

3. Main results

Within the context of partial metric spaces, we will demonstrate some spe-
cific coupled fixed point theorems that are unique to this section.
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Theorem 3.1. Let (X, p) be a complete partial metric space. Suppose that
the mapping F : X ×X → X satisfies the following contractive condition for
all x, y, u, v ∈ X,

p(F (x, y), F (u, v)) ≤ a1p(x, u) + a2p(y, v) + a3p(F (x, y), x)

+ a4p(F (u, v), u) + a5p(F (x, y), u)

+ a6p(F (u, v), x), (3.1)

where a1, a2, . . . , a6 are nonnegative constants with a1+a2+a3+a4+a5+2a6 <
1. Then F has a unique coupled fixed point.

Proof. Choose x0, y0 ∈ X and set x1 = F (x0, y0) and y1 = F (y0, x0). Re-
peating this process, set xn+1 = F (xn, yn) and yn+1 = F (yn, xn). Then, from
equation (3.1) and using (P3), (P4), we have

p(xn, xn+1) = p(F (xn−1, yn−1), F (xn, yn))

≤ a1p(xn−1, xn) + a2p(yn−1, yn) + a3p(F (xn−1, yn−1), xn−1)

+ a4p(F (xn, yn), xn) + a5p(F (xn−1, yn−1), xn)

+ a6p(F (xn, yn), xn−1)

= a1p(xn−1, xn) + a2p(yn−1, yn) + a3p(xn, xn−1)

+ a4p(xn+1, xn) + a5p(xn, xn) + a6p(xn+1, xn−1)

≤ a1p(xn−1, xn) + a2p(yn−1, yn) + a3p(xn, xn−1)

+ a4p(xn+1, xn) + a5p(xn, xn+1)

+ a6p(xn, xn+1) + a6p(xn, xn−1). (3.2)

Similarly, we have

p(yn, yn+1) = p(F (yn−1, xn−1), F (yn, xn))

≤ a1p(yn−1, yn) + a2p(xn−1, xn) + a3p(F (yn−1, xn−1), yn−1)

+ a4p(F (yn, xn), yn) + a5p(F (yn−1, xn−1), yn)

+ a6p(F (yn, xn), yn−1)

= a1p(yn−1, yn) + a2p(xn−1, xn) + a3p(yn, yn−1)

+ a4p(yn+1, yn) + a5p(yn, yn) + a6p(yn+1, yn−1)

≤ a1p(yn−1, yn) + a2p(xn−1, xn) + a3p(yn, yn−1)

+ a4p(yn+1, yn) + a5p(yn, yn+1)

+ a6p(yn, yn+1) + a6p(yn, yn−1). (3.3)

Therefore, by setting

Dn = p(xn, xn+1) + p(yn, yn+1), (3.4)
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we have

Dn = p(xn, xn+1) + p(yn, yn+1)

≤ a1p(xn−1, xn) + a2p(yn−1, yn) + a3p(xn, xn−1)

+ a4p(xn+1, xn) + a5p(xn, xn+1)

+ a6p(xn, xn+1) + a6p(xn, xn−1)

+ a1p(yn−1, yn) + a2p(xn−1, xn) + a3p(yn, yn−1)

+ a4p(yn+1, yn) + a5p(yn, yn+1)

+ a6p(yn, yn+1) + a6p(yn, yn−1)

= (a1 + a2 + a3 + a6)p(xn−1, xn) + (a1 + a2 + a3 + a6)p(yn−1, yn)

+ (a4 + a5 + a6)p(xn, xn+1) + (a4 + a5 + a6)p(yn, yn+1)

= (a1 + a2 + a3 + a6)Dn−1 + (a4 + a5 + a6)Dn.

Hence, we have

(1− a4 − a5 − a6)Dn ≤ (a1 + a2 + a3 + a6)Dn−1

or

Dn ≤
(a1 + a2 + a3 + a6

1− a4 − a5 − a6

)
Dn−1

= µDn−1. (3.5)

Since by hypothesis a1 + a2 + a3 + a4 + a5 + 2a6 < 1, µ =
(
a1+a2+a3+a6
1−a4−a5−a6

)
< 1.

Consequently, for each n ∈ N, we obtain

Dn ≤ µDn−1 ≤ µ2Dn−2 ≤ · · · ≤ µnD0. (3.6)

If D0 = 0, then p(x0, x1) + p(y0, y1) = 0. Hence, from Remark 2.5, we get
x0 = x1 = F (x0, y0) and y0 = y1 = F (y0, x0), means that (x0, y0) is a coupled
fixed point of F . Now, we assume that D0 > 0. For each n ≥ m, where
n,m ∈ N, we have, by using condition (P4)

p(xn, xm) ≤ p(xn, xn−1) + p(xn−1, xn−2) + · · ·+ p(xm+1, xm)

−p(xn−1, xn−1)− p(xn−2, xn−2)− · · · − p(xm+1, xm+1)

≤ p(xn, xn−1) + p(xn−1, xn−2) + · · ·+ p(xm+1, xm). (3.7)

Similarly, we have

p(yn, ym) ≤ p(yn, yn−1) + p(yn−1, yn−2) + · · ·+ p(ym+1, ym)

−p(yn−1, yn−1)− p(yn−2, yn−2)− · · · − p(ym+1, ym+1)

≤ p(yn, yn−1) + p(yn−1, yn−2) + · · ·+ p(ym+1, ym). (3.8)
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Thus,

p(xn, xm) + p(yn, ym) ≤ Dn−1 +Dn−2 + · · ·+Dm

≤ (µn−1 + µn−2 + · · ·+ µm)D0

≤ µm

1− µ
D0. (3.9)

By definition of metric ps, we have ps(x, y) ≤ 2p(x, y), therefore for any n ≥ m

ps(xn, xm) + ps(yn, ym) ≤ 2p(xn, xm) + 2p(yn, ym)

≤ 2µm

1− µ
D0, (3.10)

which implies that {xn} and {yn} are Cauchy sequences in (X, ps) because
0 ≤ µ < 1, where µ = a1 + a2 + a3 + a4 + a5 + 2a6. Since the partial metric
space (X, p) is complete, by Lemma 2.10, the metric space (X, ps) is complete,
so there exist u′, v′ ∈ X such that

lim
n→∞

ps(xn, u
′) = lim

n→∞
ps(yn, v

′) = 0. (3.11)

Again, from Lemma 2.10, we obtain

p(u′, u′) = lim
n→∞

p(xn, u
′) = lim

n→∞
p(xn, xn) (3.12)

and

p(v′, v′) = lim
n→∞

p(yn, v
′) = lim

n→∞
p(yn, yn). (3.13)

But, from condition (P2) and equation (3.6), we have

p(xn, xn) ≤ p(xn, xn+1) ≤ Dn ≤ µnD0 (3.14)

and since 0 ≤ µ < 1, hence letting n → ∞, we get limn→∞ p(xn, xn) = 0. It
follows that

p(u′, u′) = lim
n→∞

p(xn, u
′) = lim

n→∞
p(xn, xn) = 0. (3.15)

Similarly, we obtain

p(v′, v′) = lim
n→∞

p(yn, v
′) = lim

n→∞
p(yn, yn) = 0. (3.16)
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Therefore, using equation (3.1) and by (P3), (P4), we have

p(F (u′, v′), u′) ≤ p(F (u′, v′), xn+1) + p(xn+1, u
′)− p(xn+1, xn+1),

≤ p(F (u′, v′), xn+1) + p(xn+1, u
′)

= p(F (u′, v′), F (xn, yn)) + p(xn+1, u
′)

= p(F (xn, yn), F (u′, v′)) + p(xn+1, u
′)

≤ a1p(xn, u′) + a2p(yn, v
′) + a3p(F (xn, yn), xn)

+ a4p(F (u′, v′), u′) + a5p(F (xn, yn), u′)

+ a6p(F (u′, v′), xn) + p(xn+1, u
′)

= a1p(xn, u
′) + a2p(yn, v

′) + a3p(xn+1, xn)

+ a4p(F (u′, v′), u′) + a5p(xn+1, u
′)

+ a6p(F (u′, v′), xn) + p(xn+1, u
′). (3.17)

Letting n→∞ in equation (3.17) and using equations (3.15), (3.16), we obtain

p(F (u′, v′), u′) ≤ (a4 + a6)p(F (u′, v′), u′)

≤ (a1 + a2 + a3 + a4 + a5 + 2a6)p(F (u′, v′), u′)

< p(F (u′, v′), u′),

which is a contradiction. Hence, we have

p(F (u′, v′), u′) = 0,

so F (u′, v′) = u′.
Similarly, we can prove that F (v′, u′) = v′. This shows that (u′, v′) is a

coupled fixed point of F .
Now, we will prove the uniqueness. If (u1, v1) is another coupled fixed point

of F , that is, F (u1, v1) = u1 and F (v1, u1) = v1 such that (u′, v′) 6= (u1, v1),
then

p(u′, u1) = p(F (u′, v′), F (u1, v1))

≤ a1p(u′, u1) + a2p(v
′, v1) + a3p(F (u′, v′), u′)

+ a4p(F (u1, v1), u1) + a5p(F (u′, v′), u1)

+ a6p(F (u1, v1), u
′)

= a1p(u
′, u1) + a2p(v

′, v1) + a3p(u
′, u′)

+ a4p(u1, u1) + a5p(u
′, u1) + a6p(u1, u

′). (3.18)
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Similarly, we have

p(v′, v1) = p(F (v′, u′), F (v1, u1))

≤ a1p(v′, v1) + a2p(u
′, u1) + a3p(F (v′, u′), v′)

+ a4p(F (v1, u1), v1) + a5p(F (v′, u′), v1)

+ a6p(F (v1, u1), v
′)

= a1p(v
′, v1) + a2p(u

′, u1) + a3p(v
′, v′)

+ a4p(v1, v1) + a5p(v
′, v1) + a6p(v1, v

′). (3.19)

Now from (3.18) and (3.19) and using equations (3.15), (3.16) and condition
(P3) in equation (3.17), we get

p(u′, u1) + p(v′, v1) ≤ a1p(u′, u1) + a2p(v
′, v1) + a3p(u

′, u′)

+ a4p(u1, u1) + a5p(u
′, u1) + a6p(u1, u

′)

+ a1p(v
′, v1) + a2p(u

′, u1) + a3p(v
′, v′)

+ a4p(v1, v1) + a5p(v
′, v1) + a6p(v1, v

′)

= (a1 + a2 + a5 + a6)p(u
′, u1)

+ (a1 + a2 + a5 + a6)p(v
′, v1)

= (a1 + a2 + a5 + a6)(p(u
′, u1) + p(v′, v1))

≤ (a1 + a2 + a3 + a4 + a5 + 2a6)(p(u
′, u1) + p(v′, v1))

< p(u′, u1) + p(v′, v1),

which is a contradiction. Hence, we obtain p(u′, u1) + p(v′, v1) = 0, and so
u′ = u1 and v′ = v1. Thus the coupled fixed point of the mapping F is unique.
This completes the proof. �

Theorem 3.2. Let (X, p) be a complete partial metric space. Suppose that
the mapping F : X ×X → X satisfies the following contractive condition for
all x, y, u, v ∈ X,

p(F (x, y), F (u, v)) ≤ α

2
[p(x, u) + p(y, v)] +

β

2
[p(x, F (x, y))

+ p(u, F (u, v)) + p(y, F (y, x)) + p(v, F (v, u))]

+ γ∆((x, y), (u, v)), (3.20)

where α, β, γ are nonnegative constants with α+ 2β + γ < 1 and

∆((x, y), (u, v))) = min
{ p(u, F (u, v))

1 + p(x, F (x, y))
,

p(v, F (v, u))

1 + p(y, F (y, x))

}
. (3.21)

Then F has a unique coupled fixed point.
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Proof. Let x0, y0 ∈ X and set x1 = F (x0, y0) and y1 = F (y0, x0). Repeating
this process, set xn+1 = F (xn, yn) and yn+1 = F (yn, xn). Then, from equation
(3.20), (3.21) and using (P3), (P4), we have

p(xn, xn+1) = p(F (xn−1, yn−1), F (xn, yn))

≤ α

2
[p(xn−1, xn) + p(yn−1, yn)]

+
β

2
[p(xn−1, F (xn−1, yn−1))

+ p(xn, F (xn, yn)) + p(yn−1, F (yn−1, xn−1))

+ p(yn, F (yn, xn))] + γ∆((xn−1, yn−1), (xn, yn))

=
α

2
[p(xn−1, xn) + p(yn−1, yn)] +

β

2
[p(xn−1, xn)

+ p(xn, xn+1) + p(yn−1, yn) + p(yn, yn+1)]

+ γ∆((xn−1, yn−1), (xn, yn)), (3.22)

where

∆((xn−1, yn−1), (xn, yn)) = min
{ p(xn, F (xn, yn))

1 + p(xn−1, F (xn−1, yn−1))
,

p(yn, F (yn, xn))

1 + p(yn−1, F (yn−1, xn−1))

}

= min
{ p(xn, xn+1)

1 + p(xn−1, xn)
,

p(yn, yn+1)

1 + p(yn−1, yn)

}
. (3.23)

• If ∆((xn−1, yn−1), (xn, yn)) = p(xn,xn+1)
1+p(xn−1,xn)

, then from equation (3.22), we

obtain

p(xn, xn+1) ≤
α

2
[p(xn−1, xn) + p(yn−1, yn)] +

β

2
[p(xn−1, xn)

+ p(xn, xn+1) + p(yn−1, yn) + p(yn, yn+1)]

+ γ
( p(xn, xn+1)

1 + p(xn−1, xn)

)
≤ α

2
[p(xn−1, xn) + p(yn−1, yn)] +

β

2
[p(xn−1, xn)

+ p(xn, xn+1) + p(yn−1, yn) + p(yn, yn+1)]

+ γp(xn, xn+1). (3.24)
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Similarly, we have

p(yn, yn+1) = p(F (yn−1, xn−1), F (yn, xn))

≤ α

2
[p(yn−1, yn) + p(xn−1, xn)]

+
β

2
[p(yn−1, F (yn−1, xn−1))

+ p(yn, F (yn, xn)) + p(xn−1, F (xn−1, yn−1))

+ p(xn, F (xn, yn))] + γ∆((yn−1, xn−1), (yn, xn))

=
α

2
[p(yn−1, yn) + p(xn−1, xn)] +

β

2
[p(yn−1, yn)

+ p(yn, yn+1) + p(xn−1, xn) + p(xn, xn+1)]

+ γ∆((yn−1, xn−1), (yn, xn)), (3.25)

where

∆((yn−1, xn−1), (yn, xn)) = min
{ p(yn, F (yn, xn))

1 + p(yn−1, F (yn−1, xn−1))
,

p(xn, F (xn, yn))

1 + p(xn−1, F (xn−1, yn−1))

}

= min
{ p(yn, yn+1)

1 + p(yn−1, yn)
,

p(xn, xn+1)

1 + p(xn−1, xn)

}
.

(3.26)

• If ∆((yn−1, xn−1), (yn, xn)) = p(yn,yn+1)
1+p(yn−1,yn)

, then from equation (3.25), we

obtain

p(yn, yn+1) ≤
α

2
[p(yn−1, yn) + p(xn−1, xn)] +

β

2
[p(yn−1, yn)

+ p(yn, yn+1) + p(xn−1, xn)

+ p(xn, xn+1)] + γ
( p(yn, yn+1)

1 + p(yn−1, yn)

)
≤ α

2
[p(yn−1, yn) + p(xn−1, xn)] +

β

2
[p(yn−1, yn)

+ p(yn, yn+1) + p(xn−1, xn) + p(xn, xn+1)]

+ γp(yn, yn+1). (3.27)

Hence, by setting

Hn = p(xn, xn+1) + p(yn, yn+1), (3.28)



940 R. Jain, G. S. Saluja and H. G. Hyun

we have

Hn = p(xn, xn+1) + p(yn, yn+1)

≤ α

2
[p(xn−1, xn) + p(yn−1, yn)] +

β

2
[p(xn−1, xn)

+ p(xn, xn+1) + p(yn−1, yn) + p(yn, yn+1)]

+ γp(xn, xn+1) +
α

2
[p(yn−1, yn) + p(xn−1, xn)]

+
β

2
[p(yn−1, yn) + p(yn, yn+1) + p(xn−1, xn)

+ p(xn, xn+1)] + γp(yn, yn+1)

= (α+ β)p(xn−1, xn) + (α+ β)p(yn−1, yn)

+ (β + γ)p(xn, xn+1) + (β + γ)p(yn, yn+1)

= (α+ β)[p(xn−1, xn) + p(yn−1, yn)]

+ (β + γ)[p(xn, xn+1) + p(yn, yn+1)]

= (α+ β)Hn−1 + (β + γ)Hn.

Hence, we have

(1− β − γ)Hn ≤ (α+ β)Hn−1

or

Hn ≤
( α+ β

1− β − γ

)
Hn−1

= δHn−1, (3.29)

where δ =
(

α+β
1−β−γ

)
< 1, since by hypothesis α+ 2β + γ < 1.

• Similarly, if we consider ∆((xn−1, yn−1), (xn, yn)) = p(yn,yn+1)
1+p(yn−1,yn)

and

∆((yn−1, xn−1), (yn, xn)) = p(xn,xn+1)
1+p(xn−1,xn)

, then we get the same result as in

equation (3.29). Thus, we have

Hn ≤ δHn−1, (3.30)

where 0 ≤ δ =
(

α+β
1−β−γ

)
< 1.

Consequently, for each n ∈ N, we obtain

Hn ≤ δHn−1 ≤ δ2Hn−2 ≤ · · · ≤ δnH0. (3.31)

If H0 = 0, then p(x0, x1) + p(y0, y1) = 0. Hence, from Remark 2.5, we get
x0 = x1 = F (x0, y0) and y0 = y1 = F (y0, x0), means that (x0, y0) is a coupled
fixed point of F . Now, we assume that H0 > 0. Rest of the proof follows from
Theorem 3.1. This completes the proof. �
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From Theorem 3.1, we obtain the following results.

Corollary 3.3. ([1, Theorem 2.1]) Let (X, p) be a complete partial metric
space. Suppose that the mapping F : X ×X → X satisfies the following con-
tractive condition for all x, y, u, v ∈ X,

p(F (x, y), F (u, v)) ≤ kp(x, u) + lp(y, v),

where k, l are nonnegative constants with k + l < 1. Then F has a unique
coupled fixed point.

Proof. Follows from Theorem 3.1, by taking a1 = k, a2 = l and a3 = a4 =
a5 = a6 = 0. �

Corollary 3.4. ([1, Theorem 2.4]) Let (X, p) be a complete partial metric
space. Suppose that the mapping F : X ×X → X satisfies the following con-
tractive condition for all x, y, u, v ∈ X,

p(F (x, y), F (u, v)) ≤ kp(F (x, y), x) + lp(F (u, v), u),

where k, l are nonnegative constants with k + l < 1. Then F has a unique
coupled fixed point.

Proof. Follows from Theorem 3.1, by taking a3 = k, a4 = l and a1 = a2 =
a5 = a6 = 0. �

Corollary 3.5. ([1, Theorem 2.5]) Let (X, p) be a complete partial metric
space. Suppose that the mapping F : X ×X → X satisfies the following con-
tractive condition for all x, y, u, v ∈ X,

p(F (x, y), F (u, v)) ≤ kp(F (x, y), u) + lp(F (u, v), x),

where k, l are nonnegative constants with k + 2l < 1. Then F has a unique
coupled fixed point.

Proof. Follows from Theorem 3.1, by taking a5 = k, a6 = l and a1 = a2 =
a3 = a4 = 0. �

It is worth noting that when the constants in Corollary 3.3 are equal, we
have the following result.

Corollary 3.6. ([1, Corollary 2.2]) Let (X, p) be a complete partial metric
space. Suppose that the mapping F : X ×X → X satisfies the following con-
tractive condition for all x, y, u, v ∈ X,

p(F (x, y), F (u, v)) ≤ k

2
[p(x, u) + p(y, v)],

where 0 ≤ k < 1 is a constant. Then F has a unique coupled fixed point.
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When the constants in Corollary 3.4 and Corollary 3.5 are equal, we get the
following results.

Corollary 3.7. ([1, Corollary 2.6]) Let (X, p) be a complete partial metric
space. Suppose that the mapping F : X ×X → X satisfies the following con-
tractive condition for all x, y, u, v ∈ X,

p(F (x, y), F (u, v)) ≤ k

2
[p(F (x, y), x) + p(F (u, v), u)],

where 0 ≤ k < 1 is a constant. Then F has a unique coupled fixed point.

Corollary 3.8. ([1, Corollary 2.7]) Let (X, p) be a complete partial metric
space. Suppose that the mapping F : X ×X → X satisfies the following con-
tractive condition for all x, y, u, v ∈ X,

p(F (x, y), F (u, v)) ≤ k

2
[p(F (x, y), u) + p(F (u, v), x)],

where 0 ≤ k < 2/3 is a constant. Then F has a unique coupled fixed point.

Proof. The condition 0 ≤ k < 2/3 follows from the hypothesis on k and l given
in Corollary 3.5. �

Remark 3.9. Theorem 3.1 and Theorem 3.2 extend the results of Sabet-
ghadam et al. [15] from cone metric space to the setting of partial metric
space.

Remark 3.10. Theorem 3.1 and Theorem 3.2 also generalize the results of
Aydi [1].

Now, we give some examples in support of the results.

Example 3.11. Let X = [0,+∞) endowed with the usual partial metric p
defined by p : X ×X → [0,+∞) with p(x, y) = max{x, y}. The partial metric
space (X, p) is complete because (X, ps) is complete. Indeed, for any x, y ∈ X,

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y)

= 2 max{x, y} − (x+ y)

= |x− y|. (3.32)

Thus, (X, ps) is the Euclidean metric space which is complete. Consider the
mapping F : X×X → X defined by F (x, y) = x+y

6 . Now, for any x, y, u, v ∈ X,
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we have

p(F (x, y), F (u, v)) =
1

6
max{x+ y, u+ v}

≤ 1

6
[max{x, u}+ max{y, v}]

=
1

6
[p(x, u) + p(y, v)], (3.33)

which is the contractive condition of Corollary 3.6 for k = 1/3. Therefore, by
Corollary 3.6, F has a unique coupled fixed point, which is (0, 0). Note that
if the mapping F : X × X → X is given by F (x, y) = x+y

2 , then F satisfies
contractive condition of Corollary 3.6 for k = 1, that is,

p(F (x, y), F (u, v)) =
1

2
max{x+ y, u+ v}

≤ 1

2
[max{x, u}+ max{y, v}]

=
1

2
[p(x, u) + p(y, v)]. (3.34)

In this case (0, 0) and (1, 1) are both coupled fixed points of F , and hence, the
coupled fixed point of F is not unique. This shows that the condition k < 1
in Corollary 3.6, and hence k + l < 1 in Corollary 3.3 cannot be omitted in
the statement of the aforesaid results.

Example 3.12. Let X = [0,+∞) endowed with the usual partial metric p
defined by p : X ×X → [0,+∞) with p(x, y) = max{x, y}. The partial metric
space (X, p) is complete because (X, ps) is complete. Indeed, for any x, y ∈ X,

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y)

= 2 max{x, y} − (x+ y)

= |x− y|.

Thus, (X, ps) is the Euclidean metric space which is complete. Consider the

mapping F : X ×X → X defined by F (x, y) = 2x+3y
15 .

(1) Let α, β, γ be nonnegative real numbers satisfying α, β, γ ≥ 0 with
α + 2β + γ < 1, and denote by L and R, respectively, the left-hand and
right-hand side of contractive condition (3.20). It is easy to check that all the
conditions of Theorem 3.2 are satisfied for α, β, γ ≥ 0 with α+ 2β+γ < 1 and
that (0, 0) is a unique coupled fixed point of F .

Consider the example

L ≤ 2x+ 3y

15
≤ α

2
[p(x, u) + p(y, v)] ≤ R.
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For example, if (x, y) = (1, 2), (u, v) = (2, 3) for all (x, y), (u, v) ∈ X ×X and
assume that x ≤ y, u ≤ v, x ≤ u and y ≤ v, then

L = p(F (x, y), F (u, v)) = p
(2x+ 3y

15
,
2u+ 3v

15

)
= p
( 8

15
,
13

15

)
= max

{ 8

15
,
13

15

}
=

13

15
;

R =
α

2
[p(x, u) + p(y, v)] +

β

2
[p(x, F (x, y)) + p(u, F (u, v))

+p(y, F (y, x)) + p(v, F (v, u))] + γ∆((x, y), (u, v)).

Suppose α = 1
15 , β = 15

36 , γ = 0, then α, β, γ ≥ 0 with α + 2β + γ < 1, we

get R = 9
10 . This implies that L ≤ R and the given contractive condition is

satisfied.

(2) Now, we discuss the inequality (3.1) of Theorem 3.1. Let a1, . . . , a6 be
nonnegative real numbers satisfying a1, a2, a3, a4, a5, a6 ≥ 0 with a1+a2+a3+
a4 + a5 + 2a6 < 1. It is easy to check that all the conditions of Theorem 3.1
are satisfied for a1, a2, a3, a4, a5, a6 ≥ 0 with a1 + a2 + a3 + a4 + a5 + 2a6 < 1
and that (0, 0) is a unique coupled fixed point of F .

If we take (x, y) = (1, 2), (u, v) = (2, 3) for all (x, y), (u, v) ∈ X × X and
assume that x ≤ y, u ≤ v, x ≤ u and y ≤ v, then from L.H.S. of inequality
(3.1), we have

L.H.S. = p(F (x, y), F (u, v)) = p
(2x+ 3y

15
,
2u+ 3v

15

)
= p
( 8

15
,
13

15

)
= max

{ 8

15
,
13

15

}
=

13

15

and

R.H.S. = 2a1 + 3a2 + a3 + 2a4 + 2a5 + 3a6.

Thus, we have

13

15
≤ 2a1 + 3a2 + a3 + 2a4 + 2a5 + 3a6.

The above inequality is satisfied for (i) a1 = a2 = a4 = 1
15 , a3 = a5 = 2

15 and

a6 = 0, (ii) a1 = a2 = a3 = a6 = 1
15 , a4 = 2

15 and a5 = 0 and (iii) a1 = a2 =

a6 = 1
15 , a3 = a5 = 2

15 and a4 = 0 etc. with a1 + a2 + a3 + a4 + a5 + 2a6 < 1.
Thus all the conditions of Theorem 3.1 are satisfied for a1, a2, a3, a4, a5, a6 ≥ 0
with a1 +a2 +a3 +a4 +a5 + 2a6 < 1. This implies that L.H.S. ≤ R.H.S. and
that (0, 0) is a unique coupled fixed point of F .
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4. Conclusion

In this paper, we establish a number of unique coupled fixed point theorems
within the context of complete partial metric spaces, and we provide a number
of corollaries to these main results. In addition, we provide some illustrations
to illustrate the findings. In this paper, we obtain results that generalize and
extend several results from the previous literature. In particular, our findings
generalize and expand upon the related findings of Sabetghadam et al. [15]
and Aydi [1].
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