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Abstract. In this paper, we propose a Halpern regularization method and prove its strong

convergence to a common element of the set of solutions of a quasi-equilibrium problem

and a common zero of a finite family of monotone operators in Hadamard spaces. Finally,

numerical experiments of our result are presented to further show its applicability.

1. Introduction

Let X be a metric space and C ⊆ X be a nonempty, closed and convex set
and K(·) be a multivalued mapping from C into itself such that for all x ∈ C,
K(x) is a nonempty, closed and convex subset of C, and let f :X ×X → R be
a bifunction. The quasi-equilibrium problem QEP (f,K) consists of finding
x∗ ∈ K(x∗), that is, a fixed point x∗ of K(·), such that

f(x∗, y) ≥ 0, ∀ y ∈ K(x∗). (1.1)
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The set of all solutions of QEP (f,K) is denoted by S(f,K). Also, the set of all
fixed points of K is denoted by F (K). The associated Minty quasi-equilibrium
problem is to find x∗ ∈ K(x∗) such that

f(y, x∗)≤0, ∀ y∈K(x∗).

If K(x)=C for all x∈C, the quasi-equilibrium problem QEP (f,K) becomes
a classical equilibrium problem EP (f, C), also the associated Minty quasi-
equilibrium problem becomes a classical Minty equilibrium problem (see [12]).

An example of a quasi-equilibrium problem is a quasi-variational inequality
problem. Let K(·) be a multivalued mapping from C into itself such that for
all x∈C, K(x) is a nonempty, closed and convex subset of C, consider a map
T : X → E∗ and define f(x, y) = 〈T (x), y − x〉, where 〈·, ·〉 : X∗ × X → R
denotes the duality pair, that is, 〈z, x〉 = z(x). Then QEP (f,K) is equivalent
to the quasi-variational inequality problem QV IP (T,K), consisting of finding
a point x∗ ∈ K(x∗) such that 〈T (x∗), x− x∗〉 ≥ 0 for all x ∈ K(x∗).

The theory of equilibrium problems (and, in particular, VIP) has permitted
the general and unified study of a large number of problems in mathemati-
cal economics, optimization and operational research. Some important prob-
lems such as scalar and vector optimization problems, saddle-point (minimax)
problems, variational inequalities, Nash equilibria problems, complementarity
problems and fixed point problems can be formulated in the form of EP. Equi-
librium problems have been studied extensively in Hilbert, Banach as well as
in topological vector spaces by many authors e.g.([5, 7, 8, 14, 17, 18, 19, 20,
28, 29, 31]).

The quasi-equilibrium problem (and, in particular, quasi-variational in-
equality) have a number of important applications, for example, in economics,
engineering, and operations research, see ([15, 16, 27, 37]). Quasi-quilibrium
problems with monotone and pseudo-monotone bifunctions were studied ex-
tensively in Hilbert, Banach as well as in topological vector spaces by many
authors (for example, [11, 34]).
Very recently, Khatibzadeh and Ranjbar [24] generalized monotone operators
and their resolvents to Hadamard spaces by using the duality theory intro-
duced in [22]. Reich and Salinas [32] established metric convergence theorems
for infinite products of possibly discontinuous operators defined on Hadamard
spaces (see also [31, 35]).

Inspired by the [34], in this paper we perform some modifications on the
Halpern regularization method in order to introduce and analyze the Halpern
regularization method with linesearch for finding a common element of the set
of solutions of a quasi-equilibrium problem and a common zero of a finite family
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of monotone operators in Hadamard spaces under rather mild assumptions (see
also [1, 25]).

The paper is organized as follows. In Section 2, we give a brief introduction
of Hadamard spaces and some some preliminary material related to the geome-
try of Hadamard spaces that we need to prove the main result. In Section 3, we
introduce and analyze the Halpern regularization method with linesearch for
finding a common element of the set of solutions of a quasi-equilibrium prob-
lem and a common zero of a finite family of monotone operators in Hadamard
spaces, and we prove the strong convergence of the generated sequence to a
common element of the set of solutions of a quasi-equilibrium problem and
a common zero of a finite family of monotone operators. Also, we will illus-
trate some applications for our algorithm. Finally, in Section 4, a numerical
example for validity our main theorem will be exposed.

2. Preliminaries

Let us present some concepts and facts regarding Hadamard spaces (for
more detail, see [2, 36]).

Let (X, d) be a metric space and x, y ∈ X. A geodesic path connecting points
x and y is an isometry c : [0, d(x, y)] → X such that c(0)=x, c(l)=y, where
l := d(x, y) and d(c(t), c(t′))=|t−t′| for all t, t′∈[0, l]. The set c([0, l]) ⊂ X is
denoted by [x, y] and is called a geodesic segment (or geodesic) with the ends
x and y. Metric space (X, d) is called a geodesic space if any two points of X
can be connected by a geodesic, and it is called a uniquely geodesic space if
for any two points from X there exists exactly one geodesic connecting them.
Let X be a uniquely geodesic metric space, for each x, y ∈ X and for each
t∈[0, 1], there exists a unique point z∈[x, y] such that d(x, z)=(1 − t)d(x, y)
and d(y, z)=td(x, y). We will use the notation tx ⊕ (1 − t)y for denoting the
unique point z satisfying the above statement.

Definition 2.1. ([10]) A geodesic space X is called CAT (0) space if for all
x, y, z∈X and t∈[0, 1] it holds that

d2(tx⊕ (1− t)y, z)≤td2(x, z)+(1− t)d2(y, z)−t(1−t)d2(x, y). (2.1)

A complete CAT (0) space is called an Hadamard space.

Remark 2.2. Important examples of CAT (0) spaces are Euclidean spaces,
R−trees, Hadamard manifolds (complete connected Riemannian manifolds of
nonpositive curvature) and Hilbert ball with hyperbolic metrics [2, 6, 36].

Berg and Nikolaev in [3, 4] introduced the concept of quasi-linearization as

follows. Let us formally denote a pair (a, b)∈X×X as
−→
ab and call it a vector.
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Then quasi-linearization is characterized as a map 〈·, ·〉:(X×X)× (X×X)→R
defined by

〈
−→
ab,
−→
cd〉 =

1

2

(
d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)

)
, a, b, c, d ∈ X. (2.2)

It is easy to see that 〈
−→
ab,
−→
cd〉 = 〈

−→
cd,
−→
ab〉, 〈

−→
ab,
−→
cd〉 = −〈

−→
ba,
−→
cd〉 and 〈−→ax,

−→
cd〉 +

〈
−→
xb,
−→
cd〉 = 〈

−→
ab,
−→
cd〉 for all a, b, c, d, x∈X. We say that X satisfies the Cauchy-

Schwarz inequality if 〈
−→
ab,
−→
cd〉≤d(a, b)d(c, d) for all a, b, c, d∈X. It is known

(Corollary 3 of [4]) that a geodesically connected metric space is a CAT (0)
space if and only if it satisfies the Cauchy-Schwarz inequality.

Let (X, d) be an Hadamard space and {xn} be a bounded sequence in X.
Take x∈X. Let r(x, {xn})= lim sup

n→∞
d(x, xn). The asymptotic radius of {xn}

is given by:

r({xn})= inf{r(x, {xn}) : x∈X},
and the asymptotic center of {xn} is the set

AC({xn})={x∈X : r(x, {xn})=r({xn})}.
It is known that in an Hadamard space, AC({xn}) consists exactly one point.

Definition 2.3. ([26]) A sequence {xn} in an Hadamard space (X, d) is 4-
convergent to x∈X if AC({xnk

})={x}, for each subsequence {xnk
} of {xn}.

We denote 4-convergence in X by
4−→ and the metric convergence by → .

Now, we present a known result related to the notion of 4-convergence.

Lemma 2.4. ([26]) Let X be an Hadamard space. Then, every bounded, closed
and convex subset of X is 4-compact, that is, every bounded sequence in it
has a 4-convergent subsequence.

Lemma 2.5. ([10]) Let (X, d) be a CAT (0) space. Then, for all x, y, z∈X
and t∈[0, 1], it holds that

d(tx⊕ (1− t)y, z) ≤ td(x, z) + (1− t)d(y, z).

Definition 2.6. Let (X, d) be an Hadamard space and C⊂X. The projection
on C,PC :X→C, by taking PC(x) as the u∈C such that

d(u, x) = inf{d(z, x) : z ∈ C}. (2.3)

It is well known that if C⊂X is nonempty, closed and convex, then for any
x∈X there exists a unique u∈C which satisfies (2.3).

We give next a characterization of the projection.
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Proposition 2.7. ([9]) Let C be a nonempty convex subset of a CAT (0) space
X, x∈X and u∈C. Then u=PC(x) if and only if

〈−→yu,−→xu〉 ≤ 0, ∀ y ∈ C.

Kakavandi and Amini [22] have introduced the concept of dual space of an
Hadamard space X, based on a work of Berg and Nikolaev [4], as follows.
Consider the map Θ : R×X ×X → C(X,R) defined by:

Θ(t, a, b)(x) = t〈
−→
ab,−→ax〉, (a, b, x ∈ X, t ∈ R),

where C(X,R) is the space of all continuous real-valued functions on R×X×
X. Then the Cauchy-Schwarz inequality implies that Θ(t, a, b) is a Lipschitz
function with Lipschitz semi-norm L(Θ(t, a, b)) = |t|d(a, b), for all t ∈ R and

a, b ∈ X, where L(ϕ) = sup{ϕ(x)− ϕ(y)

d(x, y)
;x, y ∈ X, x 6= y} is the Lipschitz

semi-norm for any function ϕ : X → R. A pseudometric D on R ×X ×X is
defined by:

D((t, a, b), (s, c, d)) = L(Θ(t, a, b)−Θ(s, c, d)), (a, b, c, d ∈ X, t, s ∈ R).

For an Hadamard space (X, d), the pseudometric space (R×X×X,D) can be
considered as a subspace of the pseudometric space of all real-valued Lipschitz
functions (Lip(X,R), L). By ([22], Lemma 2.1), D((t, a, b), (s, c, d)) = 0 if and

only if t〈
−→
ab,−→xy〉 = s〈

−→
cd,−→xy〉 for all x, y ∈ X. Thus, D induces an equivalence

relation on R×X ×X where the equivalence class of (t, a, b) is

[t
−→
ab] = {s

−→
cd; t〈

−→
ab,−→xy〉 = s〈

−→
cd,−→xy〉, ∀ x, y ∈ X}.

The set X∗ := {[t
−→
ab]; (t, a, b) ∈ R × X × X} is a metric space with metric

D([t
−→
ab], [s

−→
cd]) := D((t, a, b), (s, c, d)), which is called the dual space of (X, d).

It is clear that [−→aa] = [
−→
bb] for all a, b ∈ X. Fix o ∈ X, we write 0 = [−→oo] as the

zero of the dual space. Note that X∗ acts on X ×X by:

〈x∗,−→xy〉 = t〈
−→
ab,−→xy〉, (x∗ = [t

−→
ab] ∈ X∗, x, y ∈ X).

Let X be an Hadamard space with dual X∗ and let A:X⇒X∗ be a multi-
valued operator with domain D(A):={x∈X,Ax 6=∅}, range R(A):=

⋃
x∈X Ax,

A−1(x∗)={x∈X,x∗∈Ax} and graph

grap(A) := {(x, x∗)∈X ×X∗, x∈D(A), x∗∈Ax}.

Definition 2.8. Let X be an Hadamard space with dual X∗. The multivalued
operator A : X⇒X∗ is said to be monotone if the inequality 〈x∗ − y∗,−→yx〉≥0
holds for every (x, x∗), (y, y∗)∈grap(A).
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Definition 2.9. Let X be an Hadamard space with dual X∗, λ>0 and let
A:X⇒X∗ be a multivalued operator. The resolvent of A of order λ is the mul-

tivalued mapping JAλ :X⇒X, defined by JAλ (x):=
{
z∈X, [ 1

λ
−→zx]∈Az

}
. Indeed

JAλ = (
−→
oI + λA)−1 ◦

−→
oI,

where o is an arbitrary member of X and
−→
oI(x):=[−→ox]. It is obvious that this

definition is independent of the choice of o.

Let C be a nonempty subset of an Hadamard space X and T : C→C be a
mapping. The fixed point set of T is denoted by F (T ), that is, F (T )={x∈C :
x=Tx}.

Definition 2.10. The mapping T : C→C is called quasi-nonexpansive when-
ever F (T ) 6=∅ and d(p, Tx)6d(p, x) for all p ∈ F (T ), x ∈ C.

Definition 2.11. Suppose that K : C→2C is a multivalued mapping such
that for every x∈C, K(x) is nonempty, closed and convex. K is called quasi-
nonexpansive whenever the mapping T (·) := PK(·)(·) is quasi-nonexpansive
where P is the projection mapping.

Theorem 2.12. ([24]) Let X be a CAT (0) space with dual X∗ and let A :
X⇒X∗ be a multivalued mapping. Then

(i) for any λ>0, R(JAλ )⊂D(A), F (JAλ )=A−1(0),

(ii) if A is monotone, then JAλ is a single-valued on its domain and

d2(JAλ x, J
A
λ y)≤〈

−−−−−→
JAλ xJ

A
λ y,
−→xy〉, ∀ x, y∈D(JAλ ),

in particular JAλ is a nonexpansive mapping.

(iii) if A is monotone and 0<λ≤µ, then d2(JAλ x, J
A
µ x)≤µ−λ

µ+λ
d2(x, JAµ x),

which implies that d(x, JAλ x)≤2d(x, JAµ x).

It is well known that if T is a nonexpansive mapping on a subset C of a
CAT (0) space X, then F (T ) is closed and convex. Thus, if A is a mono-
tone operator on a CAT (0) space X, then, by parts (i) and (ii) of Theorem
2.12, A−1(0) is closed and convex. Also using part (ii) of this theorem for all
u∈F (JAλ ) and x∈D(JAλ ), we have

d2(JAλ x, x) ≤ d2(u, x)− d2(u, JAλ x). (2.4)

Definition 2.13. The mapping K : C→2C is called demiclosed, whenever we

have xk
4−→ x and lim

k→∞
d(xk,K(xk))=0, then x∈F (K).
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Lemma 2.14. ([10]) Let C be a closed and convex subset of an Hadamard
space X, T : C→C be a nonexpansive mapping and {xn} be a bounded sequence

in C such that lim
n→∞

d(xn, Txn)=0 and xn
∆→ x. Then x=Tx.

Lemma 2.15. ([30]) Let (X, d) be an Hadamard space and {xn} be a sequence
in X. If there exists a nonemty subset C of X satisfying:

(i) for every z∈C, lim
n→∞

d(xn, z) exists,

(ii) if a subsequence {xnj} of {xn} is 4-convergent to x∈X, then x∈C.
Then, there exists p∈C such that {xn} is 4-convergent to p in X.

In order to prove the strong convergence result by algorithm in the next sec-
tion, we need an intermediate result which establishes an elementary property
of real sequences.

Lemma 2.16. ([33]) Let {sn} be a sequence of nonnegative real numbers,

{αn} be a sequence of real numbers in (0, 1) with
∞∑
n=1

αn = ∞ and {tn} be a

sequence of real numbers. Suppose that

sn+1 ≤ (1− αn)sn + αntn, for all n ≥ 1.

If lim sup
k→∞

tnk
≤0, then for every subsequence {snk

} of {sn} satisfying

lim inf
k→∞

(snk+1
−snk

)≥0,

it holds lim
k→∞

sn = 0.

We introduce now some conditions on the bifunction f and the multivalued
mapping K which are needed in the convergence analysis.

B1: f(x, x)=0 for all x∈X.
B2: f(x, ·) : X→R is convex and lower semicontinuous for all x∈X.
B3: f(·, y) is 4-upper semicontinuous for all y∈X.
B4: f is Lipschitz-type continuous, that is, there exist two positive con-

stants c1 and c2 such that

f(x, y) + f(y, z) ≥ f(x, z)− c1d
2(x, y)− c2d

2(y, z), ∀ x, y, z ∈ X.

B5: f is pseudo-monotone, that is, whenever f(x, y)≥0 with x, y∈X, it
holds that f(y, x)≤0.

B6: Kj : C→2C , (1≤j≤M) are quasi-nonexpansive and demiclosed map-
pings with nonempty, closed and convex values.
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In order to well definedness and boundedness of the generated sequences by
our algorithm in this paper, we assume that

S∗ =
{
x ∈

M⋂
j=1

Kj(x) ∩
N⋂
i=1

A−1
i (0) : f(x, y) ≥ 0, ∀ y ∈ C

}
6= ∅.

Note that under B1 − B6, S∗ is closed and convex. It is easy to see that

S∗ ⊂ Ω, where Ω :=

N⋂
i=1

A−1
i (0) ∩ S(f,

M⋂
j=1

Kj).

3. Halperns regularization method

In this section, we assume that C⊂X is a nonempty, closed and convex
set of an Hadamard space X. Let the bifunction f :X×X→R satisfies B1−B5
and let Kj :C→2C for all 1≤j≤M be multivalued quasi-nonexpansive mapping
and satisfy in B6. Let Ai:X⇒X∗ for all 1≤i≤N be multi-valued monotone
operators. We introduce the following algorithm for finding a common element
of the set of solutions of a quasi-equilibrium problem and a common zero of a
finite family of monotone operators.

Algorithm 3.1. Initialization: Choose v0, u∈C and for sequences {λn},
{βn}, {γin} and {αn} such that

(H1) {λn} ⊂ [a, b] ⊂
(

0,
{

min{ 1

2c1
,

1

2c2

})
,

(H2) {βn} ⊂ [c, d] ⊂ (0, 1),
(H3) {γin} ⊂ (0,∞) and lim inf

n→∞
γin>0 for i = 1, 2, · · · , N,

(H4) {αn} ⊂ (0, 1), lim
n→∞

αn = 0 and
∑∞

n=0 αn =∞.

Step 0: Set n = 0 and go to Step 1.

Step 1: Compute tn = JAN

γNn
o · · · oJA1

γ1n
(vn).

Step 2: Compute wn = PKM (tn)o · · · oPK1(tn)(tn).

Step 3: Compute xn = βnvn ⊕ (1− βn)wn.

Step 4: Solve the following minimization problem and let yn be the solution of

it, that is, yn = argminy∈C{f(xn, y) +
1

2λn
d2(xn, y)}.

Step 5: Solve the following minimization problem and let zn be the solution of

it, that is, zn = argminy∈C{f(yn, y) +
1

2λn
d2(xn, y)}.

Step 6: Compute vn+1 = αnu⊕ (1− αn)zn.

Step 7: Put n := n+ 1 and go to Step 1.
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Remark 3.2. The sequences generated by the Algorithm 3.1 are well defined.

The following lemma will be useful in the proof of the main theorem.

Lemma 3.3. Let {tn}, {wn}, {xn}, {yn}, {zn} and {vn} be sequences gener-
ated by Algorithm 3.1 and x∗∈S∗. Then

d2(zn, x
∗) ≤ d2(vn, x

∗)− βn(1− βn)d2(vn, wn)

− (1− 2c1λn)d2(xn, yn)− (1− 2c2λn)d2(yn, zn).

Proof. By the definition of zn, we have

f(yn, zn)+
1

2λn
d2(xn, zn)≤f(yn, y)+

1

2λn
d2(xn, y), ∀ y ∈ C.

Substituting y = tzn⊕(1−t)x∗ into the last inequality and using B2, we have

f(yn, zn)+
1

2λn
d2(xn, zn)

≤ f(yn, tzn⊕(1−t)x∗)+ 1

2λn
d2(xn, tzn⊕(1−t)x∗)

≤ tf(yn, zn)+(1− t)f(yn, x
∗)

+
1

2λn

{
td2(xn, zn)+(1− t)d2(xn, x

∗)−t(1− t)d2(zn, x
∗)
}
.

Since f is pseudo-monotone, we have f(yn, x
∗)≤0. Hence, we get

f(yn, zn)+
1

2λn
d2(xn, zn)

≤ tf(yn, zn)+
1

2λn

{
td2(xn, zn)+(1− t)d2(xn, x

∗)−t(1− t)d2(zn, x
∗)
}
,

therefore,

(1− t)f(yn, zn)≤ 1

2λn

{
(1−t)d2(xn, x

∗)−t(1−t)d2(zn), x∗)− (1−t)d2(xn, zn)
}
.

Then, we obtain

f(yn, zn) ≤ 1

2λn

{
d2(xn, x

∗)−d2(xn, zn)−td2(zn, x
∗)
}
.

Taking the limit in the last inequality as t→1−, we obtain

f(yn, zn)≤ 1

2λn

{
d2(xn, x

∗)−d2(xn, zn)−d2(zn, x
∗)
}
. (3.1)

By the definition of yn, we have

f(xn, yn)+
1

2λn
d2(xn, yn)≤f(xn, y)+

1

2λn
d2(xn, y), ∀ y ∈ C.
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Substituting y = tyn⊕(1−t)zn into the last inequality and using B2, we have

f(xn, yn) +
1

2λn
d2(xn, yn)

≤ f(xn, tyn⊕(1−t)zn)+
1

2λn
d2(xn, tyn⊕(1−t)zn)

≤ tf(xn, yn)+(1− t)f(xn, zn)

+
1

2λn

{
td2(xn, yn)+(1− t)d2(xn, zn)−t(1− t)d2(yn, zn)

}
.

Taking the limit in the last inequality as t→1−, we obtain

f(xn, yn)− f(xn, zn) ≤ 1

2λn

{
d2(xn, zn)−d2(xn, yn)−d2(yn, zn)

}
. (3.2)

Since f is Lipschitz-type continuous with constants c1 and c2, we have

f(xn, yn) + f(yn, zn) ≥ f(xn, zn)− c1d
2(xn, yn)− c2d

2(yn, zn),

therefore, we obtain

f(yn, zn) ≥ f(xn, zn)− f(xn, yn)− c1d
2(xn, yn)− c2d

2(yn, zn). (3.3)

Combining (3.1), (3.2) and (3.3), we obtain

d2(xn, x
∗)− d2(zn, x

∗) ≥ (1− 2c1λn)d2(xn, yn) + (1− 2c2λn)d2(yn, zn). (3.4)

Note that xn := βnvn⊕(1−βn)wn, then we have

d2(xn, x
∗) =d2(βnvn⊕(1−βn)wn, x

∗)

≤βnd2(vn, x
∗) + (1−βn)d2(wn, x

∗)− βn(1− βn)d2(vn, wn). (3.5)

Since x∗∈S∗, this implies that x∗∈
M⋂
j=1

Kj(x
∗).

Note that wn=PKM (tn)o · · · oPK1(tn)(tn) and Kj for all 1≤j≤M are quasi
nonexpansive mappings, therefore we have

d(wn, x
∗) ≤ d(tn, x

∗). (3.6)

From (3.5) and (3.6), we get

d2(xn, x
∗) ≤ βnd2(vn, x

∗) + (1−βn)d2(tn, x
∗)− βn(1− βn)d2(vn, wn). (3.7)

Combining (3.4) and (3.7), we obtain

d2(zn, x
∗) ≤ βnd2(vn, x

∗) + (1−βn)d2(tn, x
∗)− βn(1− βn)d2(vn, wn)

− (1− 2c1λn)d2(xn, yn)− (1− 2c2λn)d2(yn, zn). (3.8)

Since x∗∈S∗, this implies that x∗∈
N⋂
i=1

A−1
i (0).
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Note that tn = JAN

γNn
o · · · oJA1

γ1n
(vn), Ai are monotone mappings and JAi

γin
for

all 1≤i≤N are nonexpansive mappings, therefore we have

d(tn, x
∗) ≤ d(vn, x

∗). (3.9)

This together with (3.8) completes the proof. �

Now, we are ready for the main result of this section.

Theorem 3.4. Suppose that Conditions B1 − B6 hold and S∗ 6= ∅. Then the
sequence {xn} generated by Algorithm 3.1 converges strongly to PS∗u.

Proof. Let x∗ = PS∗u. First we show that the sequence {vn} generated by
Algorithm 3.1 is bounded. From the definition of vn+1 and Lemmas 2.5, 3.3,
we have

d(vn+1, x
∗) =d (αnu⊕ (1− αn)zn, x

∗)

≤αnd(u, x∗) + (1− αn)d(zn, x
∗)

≤αnd(u, x∗) + (1− αn)d(vn, x
∗)

≤max {d(u, x∗), d(vn, x
∗)}

...

≤max {d(u, x∗), d(v0, x
∗)} . (3.10)

Hence the sequence {vn} is bounded and by Lemma 3.3, the sequence {zn} is
bounded too. On the other hand, from (2.1) and Lemma 3.3, we obtain

d2(vn+1, x
∗) ≤ αnd2(u, x∗) + (1− αn)d2(zn, x

∗)− αn(1− αn)d2(u, zn)

≤ αnd2(u, x∗) + (1− αn)d2(vn, x
∗)− αn(1− αn)d2(u, zn).

Now we show that d2(vn, x
∗) → 0. To do this using Lemma 2.16, it is

sufficient to show that

lim sup
(
d2(u, x∗)− (1− αnk

)d2(u, znk
)
)
≤ 0,

for every subsequence {d2(vnk
, x∗)} of {d2(vn, x

∗)} that satisfies,

lim inf
(
d2(vnk+1

, x∗)− d2(vnk
, x∗)

)
≥ 0, (3.11)
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therefore, we have

0 6 lim inf
(
d2(vnk+1

, x∗)− d2(vnk
, x∗)

)
≤ lim inf

(
αnk

d2(u, x∗) + (1− αnk
)d2(znk

, x∗)− d2(vnk
, x∗)

)
= lim inf

(
αnk

(
d2(u, x∗)− d2(znk

, x∗)
)

+ d2(znk
, x∗)− d2(vnk

, x∗)
)

≤ lim sup
(
αnk

(
d2(u, x∗)− d2(znk

, x∗)
) )

+ lim inf
(
d2(znk

, x∗)− d2(vnk
, x∗)

)
= lim inf

(
d2(znk

, x∗)− d2(vnk
, x∗)

)
≤ lim sup

(
d2(znk

, x∗)− d2(vnk
, x∗)

)
≤ 0.

This implies that

lim
k→∞

d2(znk
, x∗)− d2(vnk

, x∗) = 0. (3.12)

Since lim infn→∞ βn(1 − βn) > 0 and lim infn→∞(1 − 2ciλn) > 0 for i = 1, 2,
replacing n by nk in Lemma 3.3, we have

lim inf d2(znk
, x∗) ≤ lim inf d2(vnk

, x∗)− βnk
(1− βnk

)d2(vnk
, wnk

)

− (1− 2c1λnk
)d2(xnk

, ynk
)− (1− 2c2λnk

)d2(ynk
, znk

),

this implies that

lim d2(xnk
, ynk

) = lim d2(ynk
, znk

) = lim d2(vnk
, wnk

) = 0. (3.13)

Replacing n by nk in (3.1) and (3.4), taking limit and using (3.13), we get

lim
k→∞

f(ynk
, znk

) = 0. (3.14)

There exists subsequence {znkt
} of {znk

} such that znkt

∆→ p ∈ C and since

d2(u, .) is 4-lower semicontinuous, we have

lim sup(d2(u, x∗)−(1−αnk
)d2(u, znk

))=lim sup(d2(u, x∗)−(1−αnkt
)d2(u, znkt

))

≤ d2(u, x∗)− d2(u, p). (3.15)

By the definition of zn, we have

f(yn, zn) +
1

2λn
d2(xn, zn) ≤ f(yn, z) +

1

2λn
d2(xn, z), ∀ z ∈ C.
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Substituting z := tzn⊕ (1− t)y into the last inequality and using B2, we have

f(yn, zn) +
1

2λn
d2(xn, zn)

≤ f(yn, tzn ⊕ (1− t)y) +
1

2λn
d2(xn, tzn ⊕ (1− t)y)

≤ tf(yn, zn) + (1− t)f(yn, y)

+
1

2λn

(
td2(xn, zn) + (1− t)d2(xn, y)− t(1− t)d2(zn, y)

)
,

therefore,

f(yn, zn)− f(yn, y) ≤ 1

2λn

(
d2(xn, y)− d2(xn, zn)− td2(zn, y)

)
.

Taking the limit in the last inequality as t→1−, we obtain

f(yn, y)− f(yn, zn) ≥ 1

2λn

(
d2(xn, zn) + d2(zn, y)− d2(xn, y)

)
≥ 1

2λn

(
d2(zn, y)− d2(xn, y)

)
=

1

2λn
(d(zn, y)− d(xn, y)) (d(zn, y) + d(xn, y))

≥ −1

2λn
d(xn, zn)

(
d(zn, y) + d(xn, y)

)
. (3.16)

Therefore, we have

f(yn, y)− f(yn, zn) ≥ −1

2λn
d(xn, zn)

(
d(zn, y) + d(xn, y)

)
. (3.17)

On the other hand, since znk

∆→ p and using (3.13) we obtain that ynk

∆→ p.
Replacing nk with nkt in (3.17), considering the limsup and using (3.14), we
obtain that

0 ≤ lim sup f(ynkt
, y), ∀ y ∈ C.

Now, since f(·, y) is 4-upper semicontinuous, we get

f(p, y) ≥ 0, ∀ y ∈ C. (3.18)

Note that xnkt

∆→ p therefore from (3.13), we have vnkt

∆→ p and wnkt

∆→ p.

Since Kj for 1≤j≤M are demiclosed, thus p∈
⋂M
j=1Kj(p). (3.18) implies that

p ∈ S(f,
⋂M
j=1Kj) hence d(u, x∗) ≤ d(u, p). Therefore from (3.17) we have

lim sup
k→∞

(
d2(u, x∗)− (1− αnk

)d2(u, znk
)
)
≤ 0. (3.19)

This together with Lemma 2.16 implies that

d2(vn, x
∗)→ 0. (3.20)
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Next, we have to show that p∈
⋂N
i=1A

−1
i (0). From Lemma 3.3, we have

d2(zn, x) ≤ d2(vn, x
∗).

Note that Ω=
⋂N
i=1A

−1
i (0)∩S(f,

⋂M
j=1Kj) 6= ∅ and suppose that x∗ ∈ PΩu.

From nonexpansivity of JAi

γin
for all i = 1, 2, · · · , N, we have

d(tn, x
∗) =d(JAN

γNn
o · · · oJA1

γ1n
(vn), x∗)

≤d(J
AN−1

γN−1
n

o · · · oJA1

γ1n
(vn), x∗)

...

≤d(vn, x
∗).

Using Lemma 3.3, we have

d(wn, x
∗) ≤ d(tn, x

∗) ≤ d(vn, x
∗). (3.21)

This together with (3.10) implies that {tn} and {wn} are bounded.
On the other hand, from definition of vn+1 and Lemma 3.3 we have

d2(vn+1, x
∗) = d2 (αnu⊕ (1− αn)zn, x

∗)

≤ αnd2(u, x∗) + (1− αn)d2(zn, x
∗)− αn(1− αn)d2(u, zn)

≤ αnd2(u, x∗) + (1− αn)d2(vn, x
∗)− αn(1− αn)d2(u, zn)

= (1− αn)d2(vn, x
∗) + αn

(
d2(u, x∗)− (1− αn)d2(u, zn)

)
.

Now we show that d2(vn, x
∗) → 0. To do this using Lemma 2.16, it is

sufficient to show that

lim sup
(
d2(u, x∗)− (1− αn)d2(u, zn)

)
≤ 0,

for every subsequence
{
d2(vnk

, x∗)
}

of
{
d2(vn, x

∗)
}

that satisfies,

lim inf
{
d2(vnk+1

, x∗)− d2(vnk
, x∗)

}
≥ 0. (3.22)

We define for all 1≤i≤N,

Sin := JAi

γin
o . . . oJA1

γ1n
.

So tn = SNn zn and assume that S0 = I where I is the identity operator. Since

JAi

γin
for all 1 ≤ i ≤ N are nonexpansive mappings and using (3.21), we have

d2(tn, x
∗)− d2(zn, x

∗) = d2(SNn vn, x
∗)− d2(vn, x

∗)

≤ d2(Sinvn, x
∗)− d2(vn, x

∗)

≤ d2(vn, x
∗)− d2(vn, x

∗)

= 0.
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We deduce that

lim sup
n→∞

(
d2(Sinvn, x

∗)− d2(vn, x
∗)
)
≤ 0, i = 1, 2, . . . N. (3.23)

By definition of vn+1, we have

d2(vn+1, x
∗) = d2 (αnu⊕ (1− αn)zn, x

∗)

≤ αnd2(u, x∗) + (1− αn)d2(zn, x
∗)− αn(1− αn)d2(u, zn)

≤ αnd2(u, x∗) + d2(zn, x
∗)− αnd2(zn, x

∗)− αn(1− αn)d2(u, zn).

Therefore

d2(vn+1, x
∗)− d2(vn, x

∗) ≤αn
(
d2(u, x∗)− d2(zn, x

∗)− (1− αn)d2(u, zn)
)

+ d2(zn, x
∗)− d2(vn, x

∗).

Note that limn→∞ αn = 0. Replacing n with nk into the last inequality and
from (3.11), we have

0 ≤ lim inf
(
d2(Sink

vnk
, x∗)− d2(vnk

, x∗)
)
.

This together with (3.23) implies that

lim
n→∞

(
d2(Sink

vnk
, x∗)− d2(vnk

, x∗)
)

= 0. (3.24)

Applying (2.4), we obtain

d2(Sink
vnk

, Si−1
nk

vnk
) = d2

(
JAi

γin
(Si−1
nk

vnk
), Sink

vnk

)
≤ d2(Si−1

nk
xnk

, x∗)− d2(Si−1
nk

xnk
, x∗)

≤ d2(xnk
, x∗)− d2(Si−1

nk
xnk

), x∗),

using (3.24), we get

lim d2(Sink
vnk

, Si−1
nk

vnk
) = 0. (3.25)

Indeed, we have

d(vnk
, Sink

vnk
) ≤ d(vnk

, S1
nk
xnk

) + · · ·+ d(Si−1
nk

xnk
, Sink

xnk
),

taking the limit in the last inequality as k →∞, we obtain that

lim
k→∞

d(vnk
, Sink

vnk
) = 0. (3.26)

Since lim infn→∞ γ
i
n > 0, there exists γ ∈ R such that γin ≥ γ > 0 for all n ∈ N

and 1 ≤ i ≤ N. Now using inequality (2.4), we have

d
(
JAi
γ (Si−1

nk
vnk

), Sink
vnk

)
≤ d

(
JAi
γ (Si−1

nk
vnk

), Si−1
nk

vnk

)
+ d

(
Si−1
nk

vnk
, Sink

vnk

)
≤ 2d

(
JAi

γink

(Si−1
nk

vnk
), Si−1

nk
vn

)
+ d

(
Si−1
nk

vnk
, Sink

vnk

)
≤ 3d

(
Sink

vnk
, Si−1

nk
vnk

)
.
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Taking the limit in the last inequality as k → ∞ and using (3.26), we obtain
that

lim
k→∞

d
(
JAi
γ (Si−1

nk
vnk

), Sink
vnk

)
= 0. (3.27)

Now for every 1 ≤ i ≤ N, we have

d
(
JAi
γ vnk

, vnk

)
≤ d

(
JAi
γ vnk

, JAi
γ (Si−1

nk
vnk

)
)

+ d
(
JAi
γ (Si−1

nk
vnk

), Sink
vnk

)
+ d(Sink

vnk
, vnk

)

≤ d(Sink
vnk

, vnk) + d
(
JAi
γ (Si−1

nk
vnk

), Sink
vnk

)
+ d(Sink

vnk
, vnk

).

Taking the limit in the last inequality as k → ∞ and using (3.27), we obtain
that

lim
k→∞

d
(
JAi
γ vnk

, vnk

)
= 0. (3.28)

Let {vnkt
} be a subsequence of {vnk

} such that vnkt

∆→ p. By Lemma 2.14 and

(3.28), we get p ∈ A−1
i (0). Therefore p∈

⋂N
i=1A

−1
i (0). �

4. Application

We will start with definition and some properties of subdifferential mapping.

Definition 4.1. Let X be an Hadamard space with dual X∗ and
let g:X→(−∞,+∞] be a proper function with effective domain D(g):={x :
g(x)<+∞}. Then, the subdifferential of g is the multivalued mapping ∂g:X⇒X∗

defined by:

∂g(x) =
{
x∗∈X∗ : g(z)− g(x) ≥ 〈x∗,−→xz〉, z ∈ X

}
,

when x∈D(g) and ∂g(x)=∅, otherwise.

Theorem 4.2. ([22]) Let g:X→(−∞,+∞] be a proper, convex and lower
semicontinuous function on an Hadamard space X with dual X∗. Then

(i) g attains its minimum at x∈X if and only if 0 ∈ ∂g(x),
(ii) ∂g:X⇒X∗ is a monotone operator,

(iii) for any y∈X and α>0, there exists a unique point x∈X such that
[α−→xy] ∈ ∂g(x).

Part (iii) of Theorem 4.2 shows that the subdifferential of a convex, proper
and lower semicontinuous function satisfies the range condition.
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Lemma 4.3. ([24]) Let g:X→(−∞,+∞] be a proper, convex and lower semi-
continuous function on an Hadamard space X with dual X∗. Then

J∂gλ (x) = argminy∈X{g(y) +
1

2λ
d2(y, x)}

for all λ>0 and x∈X.

Note that, C⊂X is a nonempty, closed and convex set of an Hadamard
space X. Let the bifunction f :X×X→R satisfies B1−B5 and let Kj : C→2C

for all 1 ≤ j ≤ M be multivalued quasi-nonexpansive mapping and satisfy in
B6. Let gi : X⇒X∗ for all 1 ≤ i ≤ N be proper functions.

We introduce the following algorithm and corollary.

Algorithm 4.4. Initialization: Choose z0 ∈ C, 0 < α ≤ λn ≤ β <

min{ 1

2c1
,

1

2c2
}, 0 < γ < βn < σ < 1, γin ⊂ (0,∞) and lim inf

n→∞
γin > 0.

Step 0: Set n = 0 and go to Step 1.

Step 1: Compute tn = J∂gN
γNn

o · · · oJ∂g1
γ1n

(vn).

Step 2: Compute wn = PKM (tn)o · · · oPK1(tn)(tn).

Step 3: Compute xn = βnvn ⊕ (1− βn)wn.

Step 4: Solve the following minimization problem and let yn be the solution of

it, that is. yn = argminy∈C{f(xn, y) +
1

2λn
d2(xn, y)}.

Step 5: Solve the following minimization problem and let zn+1 be the solution

of it, that is, zn = argminy∈C{f(yn, y) +
1

2λn
d2(xn, y)}.

Step 6: Compute vn+1 = αnu ⊕ (1 − αn)zn. If vn+1=vn, then stop and xn is

solution. Otherwise, put n := n+ 1 and go to Step 1.

Therefore, we have the following corollary.

Corollary 4.5. Suppose that Conditions B1 − B6 hold. Then, the sequence
{xn} generated by the Algorithm 4.4, is convergent to a point of

Ω:=

N⋂
i=1

argminy∈Cgi(y)∩S(f,

M⋂
j=1

Kj).

5. Numerical examples

Now, we provide a numerical experiment to validate our obtained results in
an Hadamard space.
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Example 5.1. Let X = R2 be endowed with a metric defined by

dH(x, y) =
√

(x1 − y1)2 + (x2
1 − x2 − y2

1 + y2)2,

where x = (x1, x2) and y = (y1, y2). So (R2, dH) is an Hadamard space (see
[13, Example 5.2]). with the geodesic joining x to y given by

γx,y(t) = ((1− t)x1 + ty1, ((1− t)x1 + ty1)2 − (1− t)(x2
1 − x2)− t(y2

1 − y2)).

Let g1 : R2 → R and g2 : R2 → R be two functions defined by

g1(x1, x2) = 100
(
(x2 + 1)− (x1 + 1)2

)2
+ x2

1, g2(x1, x2) = 100x2
1.

It follows from [13, Example 5.2] that g1 is a proper, convex and lower semi-
continuous function in (R2, dH) but not convex in the classical sense. Let
f : X ×X → R be a function defined by

f(x, y) = d2
H(y, 0)− d2

H(x, 0).

It is obvious that f satisfies B1−B5 and c1 = c2 =
1

4
. Letting N = 2, A1 = ∂g1

and A2 = ∂g2. Now, let C = {x = (x1, x2) ∈ R2 : x1, x2 ≥ 0}, M = 1 and
K(·) : C → 2C be defined by

K(x) =
{
x ∈ C : d(0, z) ≤ 2 +

1

2

√
x2

1 + (x2
1 − x2)2

}
, ∀ x ∈ C.

It can be shown that K(·) : C → 2C is a multivalued mapping with nonempty,
closed and convex values, which is quasi-nonexpansive and demiclosed. Hence
B6 is satisfied and we have S 6= ∅. In this case, Algorithm 4.4 takes the
following form

hn = argminy∈C{g1(y) +
1

2γ1
n

d2
H(y, vn)},

tn = argminy∈C{g2(y) +
1

2γ2
n

d2
H(y, hn)},

wn = PK(tn)(tn),

xn = βnvn ⊕ (1− βn)wn,

yn = argminy∈C{f(xn, y) +
1

2λn
d2(xn, y)},

zn = argminy∈C{f(yn, y) +
1

2λn
d2(xn, y)},

vn+1 = αnu⊕ (1− αn)zn.

Now, take αn = βn =
1

2
, λn =

1

2
+

1

n+ 2
, γ1

n = γ2
n = 2n for every n ∈ N and

the initial point v1 = (1, 2), u = (1, 1). Now, we have numerical results in Fig
1 and Fig 2.
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Figure 1. Plotting of dH(xn, 0)

Figure 2. Plotting of dH(vn, vn−1)
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