Nonlinear Functional Analysis and Applications Vol. 29, No. 4 (2024), pp. 991-1006 ISSN: 1229-1595(print), 2466-0973(online)

https://doi.org/10.22771/nfaa.2024.29.04.04 http://nfaa.kyungnam.ac.kr/journal-nfaa

STRONG b-METRIC SPACES AND FIXED POINT THEOREMS

Eslam Qudah¹ and Abdallah Talafhah²

¹Department of Mathematics, University of Jordan, Amman, Jordan e-mail: eslamqudah3@gmail.com

²Department of Mathematics, University of Jordan, Amman, Jordan e-mail: a.tallafha@ju.edu.jo

Abstract. In this paper, we shall give an example of a strong b-metric space which is not a b−metric space. Besides some fixed point result is proved in such spaces.

1. INTRODUCTION

There are a number of generalizations of metric spaces and Banach contraction principle. In this sequel, Bakhtin [4] and Czerwik [9] introduced b−metric spaces as a generalization of metric spaces. They proved the contraction mapping principle in b−metric space that generalized the famous Banach contraction principle in such spaces. Since then, several papers have dealt with fixed point theory or the variational principle for single-valued and multi-valued operators in b−metric space (see e.g., [2, 7, 8, 11–13]) and the references therein.

In [10] Doan define strong b−metric space which is clearly a b−metric space, but he did not give an example of a strong b−metric which is not a b−metric, the purpose of this paper is to give an example, besides proving some fixed point theorems in strong b−metric space, also we shall generalize a theorem given by Agrawal and it all $[14]$. For more studies see $[1, 5, 6, 15-20, 22, 23]$.

First, we recall some definitions from metric and b-metric spaces [9].

⁰Received October 30, 2023. Revised May 19, 2024. Accepted May 31, 2024.

⁰ 2020 Mathematics Subject Classification: 47H09, 47H10, 54E50.

⁰Keywords: Monotone operator, b-metric space, strong b-metric space, fixed point, contraction.

 0 Corresponding author: E. Qudah(eslamqudah3@gmail.com).

992 Eslam Qudah and Abdallah Talafhah

Definition 1.1. ([9]) Let X be a nonempty set and the mapping $d: X \times X \rightarrow$ \mathbb{R}^+ (\mathbb{R}^+ stands for non-negative reals) satisfies the following conditions,

- (1) $d(x, y) = 0$ if and only if $x = y$ for all $x, y \in X$,
- (2) $d(x, y) = d(y, x)$ for all $x, y \in X$,
- (3) $d(x, y) \leq d(x, z) + d(z, y)$ for all $x, y, z \in X$.

Then d is called a metric on X and (X, d) is called a metric space.

Definition 1.2. ([9]) Let X be a nonempty set and the mapping $d : X \times X \rightarrow$ \mathbb{R}^+ satisfies the following conditions,

- (1) $d(x, y) = 0$ if and only if $x = y$ for all $x, y \in X$,
- (2) $d(x, y) = d(y, x)$ for all $x, y \in X$,
- (3) there exists a real number $s \geq 1$ such that for all $x, y, z \in X$,

$$
d(x, y) \le s[d(x, z) + d(z, y)].
$$

Then d is called a b-metric on X and (X, d) is called a b-metric space with coefficient s.

Definition 1.3. (10) A strong b-metric on a nonempty set X is a function $d: X \times X \to \mathbb{R}^+$ such that for all $x, y, z \in X$:

- (1) $d(x, y) = 0$ if and only if $x = y$,
- (2) $d(x, y) = d(y, x),$
- (3) there exists a real number $s \geq 1$ such that

 $d(x, y) \leq d(x, z) + sd(z, y).$

Then d is called a strong b−metric on X and (X, d) is called a strong b−metric space with coefficient s.

Every metric space is a strong b-metric space with coefficient $s = 1$ and every strong b−metric space with coefficient s is a b−metric space with coefficient s but the converse of these facts need not be true.

Example 1.4. Let $X = \{1, 2, 3\}$, define $d: X \times X \to \mathbb{R}$ by

$$
d(x,y) = d(y,x) = \begin{cases} 0, & \text{if } x = y, \\ 5, & \text{if } x = 1, y = 2, \\ 1, & \text{if } x \in \{1, 2\} \text{ and } y \in \{3\}. \end{cases}
$$

Then (X, d) is a b-metric space with coefficient $s = \frac{5}{2} > 1$ and (X, d) is a strong b−metric space with coefficient $s = 4$, but (X, d) is not a metric space as

$$
d(1,2) = 5 > 2 = d(1,3) + d(3,2).
$$

Example 1.5. Let $X = \{0, 1, \frac{1}{2}\}$ $\frac{1}{2}, \frac{1}{3}$ $\frac{1}{3}, \dots \dots$ define $d : X \times X \to \mathbb{R}$ by:

$$
d(x,y) = \begin{cases} 0, & x = y, \\ \frac{n}{2}, & \text{if one is 0 and} \\ d\left(\frac{1}{n}, \frac{1}{m}\right) = n + m, & n \neq m. \end{cases}
$$

Then (X, d) is a b-metric space with constant 2, which is not a strong b-metric space.

Definition 1.6. ([10]) Let $\{x_n\}$ be a sequence in a strong b–metric space (X, d) .

- (1) A sequence $\{x_n\}$ is called convergent if and only if there is $x \in X$ such that $\lim_{n\to\infty} d(x, x_n) = 0.$
- (2) $\{x_n\}$ is a Cauchy sequence if and only if $\lim_{n,m\to\infty} d(x_n, x_m) = 0$.
- (3) A strong b−metric space is said to be complete if and only if each Cauchy sequence in this space is convergent.

Regarding the properties of a strong b−metric space, we recall that if the limit of a convergent sequence exists, then it is unique. Also, each convergent sequence is a Cauchy sequence.

2. Fixed point theorems

Since the strong b−metric space is a b−metric, then we have the following theorem which is an analog to Banach contraction principle in strong b−metric space.

Theorem 2.1. Let (X, d) be a complete strong b−metric space with coefficient $s \geq 1$ and $f: X \to X$ be a mapping satisfying the following condition:

$$
d(fx, fy) \le \lambda d(x, y) \quad \text{for all} \quad x, y \in X,\tag{2.1}
$$

where $\lambda \in [0, \frac{1}{s}]$ $\frac{1}{s}$). Then f has a unique fixed point $u \in X$.

Theorem 2.2. Let (X, d) be a complete strong b-metric space with coefficient $s \geq 1$ and $f: X \to X$ be a mapping satisfying the following condition:

$$
d(fx, fy) \le \lambda [d(x, fx) + d(y, fy)] \,\forall \, x, y \in X,\tag{2.2}
$$

where $\lambda \in [0, \frac{1}{2}]$ $\frac{1}{2} \setminus \{\frac{1}{s}\}.$ Then f has a unique fixed point $u \in X$.

Proof. Let us first show that if f has a fixed point, then it is unique. Let $u, v \in X$ be two fixed points of f, that is, $fu = u, fv = v$. It follows from (2.2) that

$$
d(u, v) = d(fu, fv) \leq \lambda [d(u, fu) + d(v, fv)]
$$

= $\lambda [d(u, u) + d(v, v)] = 0.$

Therefore, we must have $d(u, v) = 0$, that is, $u = v$. Thus, if fixed point of f exists then it is unique. For existence of fixed point, let $x_0 \in X$ be arbitrary; set $x_n = f^n x_0$ and $d_n = d(x_n, x_{n+1})$. we can assume $d_n > 0$ for all $n \ge 0$, otherwise x_n is a fixed point of f for at least one $n \geq 0$.

For any $n \in \mathbb{N}$, it follows from (2.2) that

$$
d_n = d(x_n, x_{n+1}) = d(fx_{n-1}, fx_n)
$$

\n
$$
\leq \lambda [d(x_{n-1}, fx_{n-1}) + d(x_n, fx_n)]
$$

\n
$$
= \lambda [d(x_{n-1}, x_n) + d(x_n, x_{n+1})]
$$

\n
$$
= \lambda [d_{n-1} + d_n],
$$

it implies that

$$
(1 - \lambda)d_n \leq \lambda d_{n-1}.
$$

Therefore, $d_n \leq \mu d_{n-1}$, where $\mu = \frac{\lambda}{1-\lambda} \in [0,1)$. On repeating this process, we obtain

$$
d_n \leq \mu^n d_0.
$$

Therefore, $\lim_{n \to \infty} d_n = 0$.

Now we shall show that $\{x_n\}$ is a Cauchy sequence, it follows from (2.2) that for $m, n \in \mathbb{N}$

$$
d(x_n, x_m) = d(f^nx_0, f^mx_0) = d(fx_{n-1}, fx_{m-1})
$$

\n
$$
\leq \lambda [d(x_{n-1}, fx_{n-1}) + d(x_{m-1}, fx_{m-1})]
$$

\n
$$
= [d(x_{n-1}, x_n) + d(x_{m-1}, x_m)]
$$

\n
$$
= \lambda [d_{n-1} + d_{m-1}].
$$

This implies that

$$
\lim_{n,m \to \infty} d(x_n, x_m) = 0.
$$

By completeness of (X, d) , there exists $u \in X$ such that

$$
\lim_{n \to \infty} d(x_n, u) = 0. \tag{2.3}
$$

We shall show that u is a fixed point of f. For any $n \in \mathbb{N}$, it follows from (2.4) that

$$
d(u, fu) \le d(u, x_{n+1}) + sd(x_{n+1}, fu)
$$

= $d(u, x_{n+1}) + sd(fx_n, fu)$
 $\le d(u, x_{n+1}) + s\lambda [d(x_n, fx_n) + d(u, fu)],$

that is,

$$
d(u, fu) \le d(u, x_{n+1}) + s\lambda d(x_n, fx_n) + s\lambda d(u, fu),
$$

it implies that

$$
(1-s\lambda)d(u, fu) \le d(u, x_{n+1}) + s\lambda d(x_n, fx_n).
$$

Hence, we have

$$
d(u, fu) \le \frac{1}{(1 - s\lambda)} d(u, x_{n+1}) + \frac{s\lambda}{(1 - s\lambda)} d(x_n, x_{n+1}).
$$

Note that $\lambda \neq \frac{1}{s}$ $\frac{1}{s}$, therefore, it follows from (2.3) and the above inequality that $d(u, fu) = 0$, that is, $fu = u$. Thus u is a unique fixed point of f. \square

Theorem 2.3. Let (X,d) be a strong b-metric space with coefficient $s \geq 1$ and $f: X \to X$ be a mapping satisfying:

$$
d(fx, fy) \le \lambda \max\{d(x, y), d(x, fx), d(y, fy)\}\tag{2.4}
$$

for all $x, y \in X$, where $\lambda \in [0, \frac{1}{s}]$ $\frac{1}{s}$). Then f has a unique fixed point $u \in X$.

Proof. Let us first show that if fixed point of f exists, then it is unique. Let $u, v \in X$ be two fixed points of f, that is, $fu = u, fv = v$, if $d(u, v) \neq 0$. It follows from (2.4) that

$$
d(u, v) = d(fu, fv)
$$

\n
$$
\leq \lambda \max\{d(u, v), d(u, fu), d(v, fv)\}
$$

\n
$$
= \lambda \max\{d(u, v), d(u, u), d(v, v)\}
$$

\n
$$
= \lambda d(u, v),
$$

which implies $\lambda \geq 1$, which is a contradiction. Therefore, we must have $d(u, v) = 0$, that is, $u = v$. Thus, if fixed point of f exists then it is unique.

For the existence of fixed point, let $x_0 \in X$ be arbitrary and define a sequence $\{x_n\}$ by $x_{n+1} = fx_n$ for all $n \geq 0$. Then, we may assume $d(x_{n+1}, x_n) >$ 0, $\forall n$, otherwise x_n is a fixed point of f.

Now, for any *n* we obtain from (2.6) that
 $d(x, y, x) = d(x, y)$

$$
d(x_{n+1}, x_n) = d(fx_n, fx_{n-1})
$$

\n
$$
\leq \lambda \max \left\{ d(x_n, x_{n-1}), d(x_n, fx_n), d(x_{n-1}, fx_{n-1}) \right\}
$$

\n
$$
= \lambda \max \left\{ d(x_n, x_{n-1}), d(x_n, x_{n+1}), d(x_{n-1}, x_n) \right\}
$$

\n
$$
= \lambda \max \left\{ d(x_n, x_{n-1}), d(x_n, x_{n+1}) \right\}.
$$

If max $\{d(x_n, x_{n-1}), d(x_n, x_{n+1})\} = d(x_n, x_{n+1}),$ then we obtain from the above inequality

 $d(x_{n+1}, x_n) \leq \lambda d(x_n, x_{n+1}) \leq d(x_n, x_{n+1}),$

which is a contradiction. Therefore, we must have

$$
\max\{d(x_n, x_{n-1}), d(x_n, x_{n+1})\} = d(x_n, x_{n-1}),
$$

and then from the above inequality we obtain

$$
d(x_{n+1},x_n) \leq \lambda d(x_n,x_{n-1}).
$$

By repeating this process, we obtain

$$
d(x_{n+1}, x_n) \le \lambda^n d(x_1, x_0) \text{ for all } n \ge 0. \tag{2.5}
$$

For $m, n \in \mathbb{N}$ with $m > n$, we obtain

$$
d(x_n, x_m) \le d(x_n, x_{n+1}) + sd(x_{n+1}, x_m)
$$

\n
$$
\le d(x_n, x_{n+1}) + s[d(x_{n+1}, x_{n+2}) + sd(x_{n+2}, x_m)].
$$

So we have,

$$
d(x_n, x_m) \le d(x_n, x_{n+1}) + sd(x_{n+1}, x_{n+2})
$$

+ $s^2d(x_{n+2}, x_{n+3}) + s^3d(x_{n+3}, x_{n+4})$
+ $\cdots + s^{m-n-1}d(x_{m-1}, x_m)$
 $\le d(x_n, x_{n+1}) + sd(x_{n+1}, x_{n+2})$
+ $s^2d(x_{n+2}, x_{n+3}) + s^3d(x_{n+3}, x_{n+4})$
+ $\cdots + s^{m-1}d(x_{m-1}, x_m)$.

Using (2.5) in the above inequality, we have

$$
d(x_n, x_m) \leq \lambda^n d(x_1, x_0) + s\lambda^{n+1} d(x_1, x_0)
$$

+ $s^2 \lambda^{n+2} d(x_1, x_0) + s^3 \lambda^{n+3} d(x_1, x_0)$
+ $\cdots + s^{m-1} \lambda^{m-1} d(x_1, x_0)$
 $\leq \lambda^n d(x_1, x_0) + s\lambda^{n+1} [1 + s\lambda$
+ $s^2 \lambda^2 + s^3 \lambda^3 + \cdots] d(x_1, x_0)$
 $\leq \lambda^n d(x_1, x_0) + \frac{s\lambda^{n+1}}{1 - s\lambda} d(x_1, x_0)$
= $\left(\lambda^n + \frac{s\lambda^{n+1}}{1 - s\lambda}\right) d(x_1, x_0)$
= $\frac{\lambda^n}{1 - s\lambda} d(x_1, x_0).$

As $\lambda \in [0, \frac{1}{s}]$ $\frac{1}{s}$ and $s > 0$, it follows from the above inequality

$$
\lim_{n,m \to \infty} d(x_n, x_m) = 0.
$$

Thus $\{x_n\}$ is a Cauchy sequence in X. By completeness of (X, d) there exists $u \in X$ such that

$$
\lim_{n \to \infty} d(x_n, u) = \lim_{n, m \to \infty} d(x_n, x_m)
$$

$$
= d(u, u)
$$

$$
= 0.
$$
 (2.6)

So, we have $\lim_{n \to \infty} x_n = u$.

We shall show that u is a fixed point of f . For any $n \in \mathbb{N}$, we have

$$
d(u, fu) \le d(u, x_{n+1}) + sd(x_{n+1}, fu)
$$

= $d(u, x_{n+1}) + sd(fx_n, fu)$
 $\le d(u, x_{n+1}) + s[\lambda \max \{d(x_n, u), d(x_n, fx_n), d(u, fu)\}].$

Using (2.8) this implies

$$
d(u, f(u)) \le d(u, u) + s\lambda d(u, fu).
$$

Hence, we obtain $d(u, fu) = 0$, that is, $fu = u$. Thus u is a fixed point of f, and it is a unique fixed point of f .

The following theorem is given by Reich [21].

Theorem 2.4. Let (X,d) be a complete metric space and $f: X \to X$ be a mapping with the following property:

$$
d(fx, fy) \le ad(x, fx) + bd(y, fy) + cd(x, y)
$$

for all $x, y \in X$, where a, b, c are non-negative and satisfy $a + b + c < 1$. Then f has a unique fixed point.

We have extended the a bove theorem to the strong b−metric space.

Theorem 2.5. Let (X, d) be a complete strong b−metric space with coefficient $s \geq 1$ and $f: X \to X$ be a mapping with the following:

$$
d(fx, fy) \le ad(x, fy) + bd(y, fx) + cd(x, y)
$$

for all $x, y \in X$, where a, b, c are non-negative real numbers and satisfy $a +$ $c + bs < 1$. Then f has a unique fixed point.

Proof. Let $x_0 \in X$ and $\{x_n\}$ be a sequence in X such that

$$
x_n = f x_{n-1} = f^n x_0.
$$

Now

$$
d(x_{n+1}, x_n) = d(fx_n, fx_{n-1})
$$

\n
$$
\leq ad(x_n, fx_{n-1}) + bd(x_{n-1}, fx_n) + cd(x_n, x_{n-1})
$$

\n
$$
= ad(x_n, x_n) + bd(x_{n-1}, x_{n+1}) + cd(x_n, x_{n-1}).
$$

So, we have

$$
d(x_{n+1}, x_n) \le bd(x_{n-1}, x_{n+1}) + cd(x_n, x_{n-1})
$$

$$
\le b[d(x_{n-1}, x_n) + sd(x_n, x_{n+1})] + cd(x_n, x_{n-1}).
$$

Hence

$$
d(x_{n+1}, x_n) \leq bd(x_{n-1}, x_n) + sbd(x_n, x_{n+1}) + cd(x_n, x_{n-1}),
$$

it implies that

$$
(1 - bs)d(x_{n+1}, x_n) \le (b + c)d(x_n, x_{n-1}).
$$

Therefore, we have

$$
d(x_{n+1}, x_n) \leq \frac{(b+c)}{(1-bs)} d(x_n, x_{n-1})
$$

= $\lambda d(x_n, x_{n-1}),$

that is,

$$
d(x_{n+1},x_n) < \lambda d(x_n,x_{n-1}).
$$

Continuing this process we can easily show that

$$
d(x_{n+1}, x_n) \le \lambda^n d(x_1, x_0). \tag{2.7}
$$

For $m, n \in \mathbb{N}$ with $m > n$, we obtain

$$
d(x_n, x_m) \leq d(x_n, x_{n+1}) + sd(x_{n+1}, x_m)
$$

\n
$$
\leq d(x_n, x_{n+1}) + s \left[d(x_{n+1}, x_{n+2}) + sd(x_{n+2}, x_m) \right]
$$

\n
$$
\leq d(x_n, x_{n+1}) + sd(x_{n+1}, x_{n+2})
$$

\n
$$
+ s^2 d(x_{n+2}, x_{n+3}) + s^3 d(x_{n+3}, x_{n+4})
$$

\n
$$
+ \cdots + s^{m-n-1} d(x_{m-1}, x_m)
$$

\n
$$
\leq d(x_n, x_{n+1}) + sd(x_{n+1}, x_{n+2})
$$

\n
$$
+ s^2 d(x_{n+2}, x_{n+3}) + s^3 d(x_{n+3}, x_{n+4})
$$

\n
$$
+ \cdots + s^{m-1} d(x_{m-1}, x_m).
$$

Using (2.7) in the above inequality, we have

$$
d(x_n, x_m) \leq \lambda^n d(x_1, x_0) + s\lambda^{n+1} d(x_1, x_0)
$$

+ $s^2 \lambda^{n+2} d(x_1, x_0) + s^3 \lambda^{n+3} d(x_1, x_0)$
+ $\cdots + s^{m-1} \lambda^{m-1} d(x_1, x_0)$
 $\leq \lambda^n d(x_1, x_0) + s\lambda^{n+1} [1 + s\lambda + s^2 \lambda^2 + s^3 \lambda^3 + \cdots] d(x_1, x_0)$
 $\leq \lambda^n d(x_1, x_0) + \frac{s\lambda^{n+1}}{1 - s\lambda} d(x_1, x_0)$
= $\left(\lambda^n + \frac{s\lambda^{n+1}}{1 - s\lambda}\right) d(x_1, x_0).$

Hence

$$
d(x_n, x_m) \leq \frac{\lambda^n}{1 - s\lambda} d(x_1, x_0).
$$

Taking limit as $n, m \to \infty$, we get

$$
\lim_{n,m \to \infty} d(x_n, x_m) = 0.
$$

Therefore, $\{x_n\}$ is a cauchy sequence in X. Since X is complete, we consider that $\{x_n\}$ converges to u.

Now, we show that u is a fixed point of f . We have

$$
d(u, fu) \le d(u, x_n) + sd(x_n, fu)
$$

= $d(u, x_n) + sd(fx_{n-1}, fu)$
 $\le d(u, x_n) + s[ad(x_{n-1}, fu) + bd(u, fx_{n-1}) + cd(x_{n-1}, u)],$

and so, we have

$$
d(u, fu) \leq d(u, x_n) + sad(x_{n-1}, fu)
$$

$$
+ sbd(u, x_n) + scd(x_{n-1}, u).
$$

Hence,

$$
d(u, fu) \leq (1+sb)d(u, x_n) + sad(x_{n-1}, fu) +scd(x_{n-1}, u).
$$

Taking limit as $n \to \infty$, we get

$$
\lim_{n \to \infty} d(u, fu) = 0,
$$

that is $f(u) = u$. Thus, u is the fixed point of f.

Now, for the uniqueness of fixed point. Let u and v be two fixed point of f. Then

$$
u = f(u), \ v = f(v)
$$

1000 Eslam Qudah and Abdallah Talafhah

and

$$
d(u, v) = d(f(u), f(v))
$$

\n
$$
\leq ad(u, f(v)) + bd(v, f(u)) + cd(u, v)
$$

\n
$$
= ad(u, v) + bd(v, u) + cd(u, v)
$$

\n
$$
= (a + b + c)d(u, v) = kd(u, v).
$$

So, we have

$$
d(u, v) \leq kd(u, v),
$$

which is a contradiction. The proof is complete. \Box

Now, we shall generalized the theorem given by Agrawal and et al. [3] in b−metric space.

Theorem 2.6. Let (X, d) be a complete strong b−metric space with coefficient $s \geq 1$. Let $f : X \to X$ be a mapping such that

$$
d(fx, fy) \le a \max \{d(x, f(x)), d(y, f(y)), d(x, y)\} + b\{d(x, fy) + d(y, fx)\},
$$
 (2.8)

where $a, b > 0$ such that $a + b + bs < 1$ for all $x, y \in X$. Then f has a unique fixed point.

Proof. Let $x_0 \in X$ and $\{x_n\}$ be a sequence in X such that

$$
x_n = fx_{n-1} = f^n x_0, \quad n = 1, 2, 3, 4, \cdots.
$$
 (2.9)

By (2.8) and (2.9) we obtain that

$$
d(x_{n+1}, x_n) = d(fx_n, fx_{n-1})
$$

\n
$$
\le a \max \left\{ d(x_n, x_{n-1}), d(x_{n-1}, f(x_{n-1})), d(x_n, f(x_n)) \right\}
$$

\n
$$
+ b \left\{ d(x_{n-1}, f(x_n)) + d(x_n, f(x_{n-1})) \right\},
$$

\n
$$
d(fx_n, fx_{n-1}) \le a \max \left\{ d(x_n, x_{n-1}), d(x_{n-1}, x_n), d(x_n, x_{n+1}) \right\}
$$

\n
$$
+ b \left\{ d(x_{n-1}, x_{n+1}) + d(x_n, x_n) \right\},
$$

\n
$$
d(fx_n, fx_{n-1}) \le a \max \left\{ d(x_n, x_{n-1}), d(x_n, x_{n+1}) \right\}
$$

\n
$$
+ b \left\{ d(x_{n-1}, x_{n+1}) \right\}
$$

and

$$
d(x_{n+1}, x_n) \le a \max \left\{ d(x_n, x_{n-1}), d(x_n, x_{n+1}) \right\} + b \left\{ d(x_{n-1}, x_n) + sd(x_n, x_{n+1}) \right\}.
$$

Hence, we have

$$
d(x_{n+1}, x_n) \le aM_1 + b\Big\{d(x_{n-1}, x_n) + sd(x_n, x_{n+1})\Big\},\tag{2.10}
$$

where $M_1 = \max \{d(x_{n-1}, x_n), d(x_n, x_{n+1})\}.$

Now two cases arise:

Case 1: Suppose that $M_1 = d(x_n, x_{n+1})$, we have

$$
d(x_{n+1}, x_n) \leq ad(x_n, x_{n+1}) + b\Big\{d(x_{n-1}, x_n) + sd(x_n, x_{n+1})\Big\},\
$$

this implies that

$$
(1 - a - bs)d(x_{n+1}, x_n) \le bd(x_{n-1}, x_n).
$$

Hence

$$
d(x_{n+1}, x_n) \le \left(\frac{b}{1-a-bs}\right) d(x_{n-1}, x_n)
$$

$$
\le \left(\frac{a+b}{1-bs}\right) d(x_{n-1}, x_n).
$$

Let $K = \frac{a+b}{1-bs} < 1$. Then we have

$$
d(x_{n+1},x_n) \leq Kd(x_{n-1},x_n).
$$

Therefore,

$$
d(x_{n+1}, x_n) \le K^2 d(x_{n-2}, x_{n-1}).
$$

Continuing this process, we get

$$
d(x_n, x_{n+1}) \le k^n d(x_0, x_1).
$$
 (2.11)

Case 2: Suppose that $M_1 = d(x_n, x_{n-1})$. Then we have

$$
d(x_{n+1},x_n) \leq ad(x_n,x_{n-1}) + b\{d(x_{n-1},x_n) + sd(x_n,x_{n+1})\},\,
$$

this implies that

$$
(1 - bs)d(x_{n+1}, x_n) \le (a + b)d(x_{n-1}, x_n).
$$

Hence

$$
d(x_{n+1}, x_n) \le \left(\frac{a+b}{1-bs}\right) d(x_{n-1}, x_n).
$$

Let $k = \frac{a+b}{1-bs} < 1$. Then we have

$$
d(x_{n+1},x_n) \leq kd(x_{n-1},x_n).
$$

Therefore,

$$
d(x_{n+1}, x_n) \leq k^2 d(x_{n-2}, x_{n-1}).
$$

Continuing this process, we get

$$
d(x_n, x_{n+1}) \le k^n d(x_0, x_1). \tag{2.12}
$$

Now, we show that $\{x_n\}$ is a Cauchy sequence in X. For $m, n \in \mathbb{N}$, with $m > n$, we obtain

$$
d(x_n, x_m) \le d(x_n, x_{n+1}) + sd(x_{n+1}, x_m)
$$

\n
$$
\le d(x_n, x_{n+1}) + s[d(x_{n+1}, x_{n+2}) + sd(x_{n+2}, x_m)]
$$

\n
$$
\le d(x_n, x_{n+1}) + sd(x_{n+1}, x_{n+2})
$$

\n
$$
+ s^2d(x_{n+2}, x_{n+3}) + s^3d(x_{n+3}, x_{n+4})
$$

\n
$$
+ \cdots + s^{m-n-1}d(x_{m-1}, x_m)
$$

\n
$$
\le d(x_n, x_{n+1}) + sd(x_{n+1}, x_{n+2})
$$

\n
$$
+ s^2d(x_{n+2}, x_{n+3}) + s^3d(x_{n+3}, x_{n+4})
$$

\n
$$
+ \cdots + s^{m-1}d(x_{m-1}, x_m).
$$

Using (2.12) in the above inequality, we have

$$
d(x_n, x_m) \leq k^n d(x_1, x_0) + sk^{n+1} d(x_1, x_0)
$$

+ $s^2 k^{n+2} d(x_1, x_0) + s^3 k^{n+3} d(x_1, x_0)$
+ $\cdots + s^{m-1} k^{m-1} d(x_1, x_0)$
 $\leq k^n d(x_1, x_0) + sk^{n+1} [1 + sk + s^2 k^2 + s^3 k^3 + \cdots] d(x_1, x_0)$
 $\leq k^n d(x_1, x_0) + \frac{sk^{n+1}}{1 - sk} d(x_1, x_0)$
= $\left(k^n + \frac{sk^{n+1}}{1 - sk}\right) d(x_1, x_0)$
= $\frac{k^n}{1 - sk} d(x_1, x_0),$

this implies that,

$$
d(x_n,x_m) \leq \left(\frac{k^n}{1-sk}\right) d(x_1,x_0).
$$

Then

$$
\lim_{n,m \to \infty} d(x_n, x_m) = 0 \quad \text{as } n, m \to \infty,
$$

since $k < 1$,

$$
\lim_{n \to \infty} \frac{k^n}{1 - sk} d(x_1, x_0) = 0 \quad \text{as } n, m \to \infty.
$$

Thus $\{x_n\}$ is a Cauchy sequence in X. Since X is complete, we consider that ${x_n}$ converges to u.

Now, we show that u is fixed point of f . In fact,

$$
d(u, f(u)) \leq d(u, x_{n+1}) + sd(x_{n+1}, f(u))
$$

\n
$$
= d(u, x_{n+1}) + sd(f(x_n), f(u)),
$$

\n
$$
d(u, f(u)) \leq d(u, x_{n+1}) + sa \max \{d(x_n, fx_n), d(u, f(u)), d(x_n, u)\} + sb\{d(x_n, fu) + d(u, fx_n)\},
$$

\n
$$
d(u, f(u)) \leq d(u, x_{n+1}) + sa \max \{d(x_n, x_{n+1}), d(u, f(u)), d(x_n, u)\} + sb\{d(x_n, fu) + d(u, x_{n+1})\},
$$

\n
$$
d(u, f(u)) \leq d(u, x_{n+1}) + sa \max \{d(x_n, x_{n+1}), d(u, f(u)), d(x_n, u)\} + sb\{d(x_n, u) + sd(u, fu)\} + sbd(u, x_{n+1})
$$

\n
$$
= d(u, x_{n+1}) + sa \max \{d(x_n, x_{n+1}), d(u, f(u)), d(x_n, u)\} + bd(x_n, u) + s^2bd(u, fu) + sbd(u, x_{n+1}).
$$

\nLet $M_2 = \max \{d(x_n, x_{n+1}), d(u, f(u)), d(x_n, u)\}.$ Then
\n
$$
d(u, f(u)) \leq d(u, x_{n+1}) + saM_2 + sbd(x_n, u)
$$

\n
$$
+ s^2bd(u, fu) + sbd(u, x_{n+1}),
$$

this implies that

$$
(1 - s2b) d(u, f(u)) \le (1 + sb)d(u, xn+1) + saM2 + sbd(xn, u).
$$

Case 1: Suppose that $M_2 = d(x_n, x_{n+1})$. Then we have $(1 - s²b) d(u, f(u)) \le (1 + sb)d(u, x_{n+1})$ $+ sad(x_n, x_{n+1}) + sbd(x_n, u)$ $\leq (1 + sb)d(u, x_{n+1})$ $+ sa \left\{ d(x_n, u) + sd(u, x_{n+1}) \right\} + sbd(x_n, u)$ $=(1 + sb)d(u, x_{n+1}) + sad(x_n, u)$ $+ s² ad (u, x_{n+1}) + sbd (x_n, u)$ $= (1 + sb + s²a) d(u, x_{n+1}) + sad(x_n, u)$ $+$ sbd (x_n, u) ,

this implies that,

$$
(1 - s2b) d(u, f(u)) \le (1 + sb + s2a) d(u, xn+1) + s(a + b)d(xn, u).
$$

Therefore,

$$
d(u, f(u)) \le \frac{\left(1 + sb + s^2a\right)}{\left(1 - s^2b\right)} d\left(u, x_{n+1}\right) + \frac{s(a+b)}{\left(1 - s^2b\right)} d\left(x_n, u\right).
$$

Case 2: Suppose that $M_2 = d(x_n, u)$. Then we have

$$
(1 - s2b) d(u, f(u)) \le (1 + sb)d(u, x_{n+1}) + sad(x_n, u) + sbd(x_n, u).
$$

Therefore,

$$
d(u, f(u)) \le \frac{(1+sb)}{(1-s^2b)}d(u, x_{n+1}) + \frac{s(a+b)}{(1-s^2b)}d(x_n, u).
$$

Case 3: Suppose that $M_2 = d(u, fu)$. Then we have

$$
(1 - s2b) d(u, f(u)) \le (1 + sb)d(u, x_{n+1}) + sad(u, fu) + sbd(x_n, u).
$$

This implies that

$$
(1 - s2b - sa)d(u, f(u)) \le (1 + sb)d(u, x_{n+1}) + sbd(x_n, u).
$$

Hence, we have

$$
d(u, f(u)) \le \frac{(1+sb)}{(1-s^2b - sa)} d(u, x_{n+1}) + \frac{sb}{(1-s^2b - sa)} d(x_n, u).
$$

So in both cases, we have

$$
d(u, f(u)) \le \max\left\{\frac{1+sb+s^2b}{1-s^2b}, \frac{1+sb}{1-s^2b-sa}\right\} d(u, x_{n+1}) + \max\left\{\frac{s(a+b)}{(1-s^2b)}, \frac{sb}{(1-s^2b-sa)}\right\} d(x_n, u).
$$

Taking limit $n \to \infty$, we get

$$
\lim_{n \to \infty} d(u, fu) = 0,
$$

that is $f(u) = u$. Therefore, u is the fixed point of f.

For uniqueness of fixed point, we have to show that u is unique fixed point of f .

Assume that x is another fixed point of f . Then we have

$$
fx = x \quad \text{and} \quad d(u, x) = d(fu, fx).
$$

So, we have

$$
d(u, x) = d(fu, fx)
$$

\n
$$
\le a \max\{d(u, fu), d(x, fx), d(u, x)\} + b\{d(u, fx) + d(x, fu)\}
$$

\n
$$
\le a \max\{d(u, u), d(x, x), d(u, x)\} + b\{d(u, x) + d(x, u)\}
$$

\n
$$
\le ad(u, x) + b\{d(u, x) + d(x, u)\}
$$

\n
$$
\le ad(u, x) + 2bd(u, x)
$$

\n
$$
= (a + 2b)d(u, x).
$$

This is a contradiction. Therefore, $u = x$. Hence, u is the unique fixed point of f. This completes the proof.

Clearly Agrawal and et al. theorem can be proved as a corollary of Theorem 2.6.

Corollary 2.7. Let (X,d) be a complete b-metric space. Let $f: X \to X$ be a mapping such that

$$
d(fx, fy) \le a \max \left\{ d(x, fx), d(y, fy), d(x, y) \right\}
$$

$$
+ b \left\{ d(x, fy) + d(y, fx) \right\},
$$

where $a, b > 0$ such that $a + 2bs \leq 1$ for all $x, y \in X$ and $s \geq 1$. Then f has a unique fixed point.

Proof. If $a, b > 0$ such that $a + 2bs < 1$, then $a + b + bs < 1$, then by Theorem 2.6 f has a unique fixed point.

REFERENCES

- [1] Y. Achtoun, M.S. Lamarti and I. Tahiri, Multi-valued Hicks contractions in b-Menger spaces, Nonlinear Funct. Anal. Appl., 29(2) (2024), 477-485.
- [2] A. Aghajani, M. Abbas and J.R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, 64 (2014), 941-960
- [3] S. Agrawal and K. Qureshi and J. Nema, A fixed Point Theorem for b-Metric Spaces, Int. J. Pure Appl. Math. Sci., 9 (2016), 45-50.
- [4] I. Bakhtin, The contraction mapping principle in quasimetric spaces, Functional Anal., 30 (1989), 26-37.
- [5] A. Bataihah, T. Qawasmeh and M. Shatnawi, Discussion on b-metric spaces and related results in metric and g-metric spaces, Nonlinear Funct. Anal. Appl., 27(2) (2022), 233-247.
- [6] A. Bataihah, W.A. Shatanawi, T. Qawasmeh and R. Hatamleh, On h-simulation functions and fixed point results in the setting of ωt -distance mappings with application on matrix equations. Mathematics, **8**(5): 837, math8050837, (2020).
- [7] M. Boriceanu, M. Bota and A. Petrușel, *Multivalued fractals in b-metric spaces*, Central Eur. J. Math., 8 (2010), 367-377.
- [8] M. Bota, A. Molnar and C. Varga, On ekeland's variational principle in b-metric spaces, Fixed Point Theory, 12(2) (2011), 21-28.
- [9] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. et Informatica Universitatis Ostraviensis, 1(1) (1993), 5-11.
- [10] H. Doan, A new type of kannan's fixed point theorem in strong b-metric spaces, AIMS Mathematics, **6**(7) (2021), 7895-7908.
- [11] M. Jovanovic, Z. Kadelburg and S. Radenovic, Common fixed point results in metric type spaces, Fixed Point Theory Appl., 2010 (2010) , 1-15.
- [12] R. Kannan, Some results on fixed points-II, The Amer. Math. Mont., 76(4) (1969), 405-408.
- [13] M. Khamsi and N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal., 73(9) (2010), 3123-3129.
- [14] W.A. Kirk, Fixed points of asymptotic contractions, J. Math. Anal. Appl., 277(2) (2003), 645-650.
- [15] A. Malkawi, A. Tallafha and W. Shatanawi, Coincidence and fixed point results for $(\psi, 1)$ -m-weak contraction mapping on mr-metric spaces, Italian J. Pure App. Math., 47 (2020), 751-768.
- [16] A.A.-R.M. Malkawi, A. Talafhah and W. Shatanawi, Coincidence and fixed point results for generalized weak contraction mapping on b-metric spaces. Nonlinear Funct. Anal. Appl., 26(1) (2021), 177-195.
- [17] T. Qawasmeh, (h, ω, b) -interpolative contractions in ω b-distance mappings with application, Europ. J. Pure Appl. Math., 16(3) (2023), 1717-1730.
- [18] T. Qawasmeh, H-simulation functions and Ωb-distance mappings in the setting of gbmetric spaces and application, Nonlinear Funct. Anal. Appl., 28(2) (2023), 557-570.
- [19] T. Qawasmeh, W. Shatanawi, A. Bataihah and A. Tallafha, Fixed point results and (α, β) -triangular admissibility in the frame of complete extended b-metric spaces and application, U.P.B. Sci. Bull., Series A, 83(1) (2021), 113-124.
- [20] A. Rabaiah, A.A.-R. Malkawi, A. Al-Rawabdeh, D. Mahmoud and M. Qousini, Fixed point theorems in mr -metric space through semi-compatibility, Adv. Math. Sci. J., $10(6)$ (2021), 2831-2845.
- [21] S. Reich, Some remarks concerning contraction mappings, Canadian Math. Bull., 14(1) (1971), 121-124.
- [22] W. Shatanawi, T. Qawasmeh, A. Bataihah and A. Tallafha, New contractions and some fixed point results with application based on extended quasi b-metric spaces, U.P.B. Sci. Bull., Series A, 83(2) (2021), 39-48.
- [23] P. Swapna, T. Phaneendra and M.N. Rajashekhar, Fixed point theorems in b-metric and extended b-metric spaces, Nonlinear Funct. Anal. Appl., 28(4) (2023), 877-886.
- [24] O. Yamaod and A. Wiriyapongsanon, Fixed point theorem of ψ_s -rational type contractions along with altering distance functions in b-metric spaces, Nonlinear Funct. Anal. Appl., 29(3) (2024), 769-779.