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Abstract. In this paper, we shall give an example of a strong b-metric space which is not

a b−metric space. Besides some fixed point result is proved in such spaces.

1. Introduction

There are a number of generalizations of metric spaces and Banach contrac-
tion principle. In this sequel, Bakhtin [4] and Czerwik [9] introduced b−metric
spaces as a generalization of metric spaces. They proved the contraction map-
ping principle in b−metric space that generalized the famous Banach contrac-
tion principle in such spaces. Since then, several papers have dealt with fixed
point theory or the variational principle for single-valued and multi-valued op-
erators in b−metric space (see e.g., [2, 7, 8, 11–13]) and the references therein.

In [10] Doan define strong b−metric space which is clearly a b−metric space,
but he did not give an example of a strong b−metric which is not a b−metric,
the purpose of this paper is to give an example, besides proving some fixed
point theorems in strong b−metric space, also we shall generalize a theorem
given by Agrawal and it all [14]. For more studies see [1, 5, 6, 15–20,22,23].

First, we recall some definitions from metric and b-metric spaces [9].

0Received October 30, 2023. Revised May 19, 2024. Accepted May 31, 2024.
02020 Mathematics Subject Classification: 47H09, 47H10, 54E50.
0Keywords: Monotone operator, b-metric space, strong b-metric space, fixed point,

contraction.
0Corresponding author: E. Qudah(eslamqudah3@gmail.com).



992 Eslam Qudah and Abdallah Talafhah

Definition 1.1. ( [9]) Let X be a nonempty set and the mapping d : X×X →
R+ (R+ stands for non-negative reals) satisfies the following conditions,

(1) d(x, y) = 0 if and only if x = y for all x, y ∈ X,
(2) d(x, y) = d(y, x) for all x, y ∈ X,
(3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a metric on X and (X, d) is called a metric space.

Definition 1.2. ( [9]) Let X be a nonempty set and the mapping d : X×X →
R+ satisfies the following conditions,

(1) d(x, y) = 0 if and only if x = y for all x, y ∈ X,
(2) d(x, y) = d(y, x) for all x, y ∈ X,
(3) there exists a real number s ≥ 1 such that for all x, y, z ∈ X,

d(x, y) ≤ s[d(x, z) + d(z, y)].

Then d is called a b-metric on X and (X, d) is called a b-metric space with
coefficient s.

Definition 1.3. ( [10]) A strong b-metric on a nonempty set X is a function
d : X ×X → R+such that for all x, y, z ∈ X :

(1) d(x, y) = 0 if and only if x = y,
(2) d(x, y) = d(y, x),
(3) there exists a real number s ≥ 1 such that

d(x, y) ≤ d(x, z) + sd(z, y).

Then d is called a strong b−metric on X and (X, d) is called a strong b−metric
space with coefficient s.

Every metric space is a strong b-metric space with coefficient s = 1 and every
strong b−metric space with coefficient s is a b−metric space with coefficient s
but the converse of these facts need not be true.

Example 1.4. Let X = {1, 2, 3}, define d : X ×X → R by

d(x, y) = d(y, x) =

 0, if x = y,
5, if x = 1, y = 2,
1, if x ∈ {1, 2} and y ∈ {3}.

Then (X, d) is a b-metric space with coefficient s = 5
2 > 1 and (X, d) is a

strong b−metric space with coefficient s = 4, but (X, d) is not a metric space
as

d(1, 2) = 5 > 2 = d(1, 3) + d(3, 2).
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Example 1.5. Let X =
{

0, 1, 12 ,
1
3 , . . . . . .

}
define d : X ×X → R by:

d(x, y) =

{ 0, x = y,
n
2 , if one is 0 and

the other is 1
n ,

d
(
1
n ,

1
m

)
= n+m, n 6= m.

Then (X, d) is a b-metric space with constant 2 , which is not a strong b-metric
space.

Definition 1.6. ( [10]) Let {xn} be a sequence in a strong b−metric space
(X, d).

(1) A sequence {xn} is called convergent if and only if there is x ∈ X such
that lim

n→∞
d (x, xn) = 0.

(2) {xn} is a Cauchy sequence if and only if lim
n,m→∞

d (xn, xm) = 0.

(3) A strong b−metric space is said to be complete if and only if each
Cauchy sequence in this space is convergent.

Regarding the properties of a strong b−metric space, we recall that if the
limit of a convergent sequence exists, then it is unique. Also, each convergent
sequence is a Cauchy sequence.

2. Fixed point theorems

Since the strong b−metric space is a b−metric, then we have the following
theorem which is an analog to Banach contraction principle in strong b−metric
space.

Theorem 2.1. Let (X, d) be a complete strong b−metric space with coefficient
s ≥ 1 and f : X → X be a mapping satisfying the following condition:

d(fx, fy) ≤ λd(x, y) for all x, y ∈ X, (2.1)

where λ ∈
[
0, 1s
)
. Then f has a unique fixed point u ∈ X.

Theorem 2.2. Let (X, d) be a complete strong b-metric space with coefficient
s ≥ 1 and f : X → X be a mapping satisfying the following condition:

d(fx, fy) ≤ λ[d(x, fx) + d(y, fy)] ∀ x, y ∈ X, (2.2)

where λ ∈
[
0, 12
)
\
{
1
s

}
. Then f has a unique fixed point u ∈ X.

Proof. Let us first show that if f has a fixed point, then it is unique. Let
u, v ∈ X be two fixed points of f , that is, fu = u, fv = v. It follows from
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(2.2) that

d(u, v) = d(fu, fv) ≤ λ[d(u, fu) + d(v, fv)]

= λ[d(u, u) + d(v, v)] = 0.

Therefore, we must have d(u, v) = 0, that is, u = v. Thus, if fixed point of f
exists then it is unique. For existence of fixed point, let x0 ∈ X be arbitrary;
set xn = fnx0 and dn = d (xn, xn+1). we can assume dn > 0 for all n ≥ 0,
otherwise xn is a fixed point of f for at least one n ≥ 0.

For any n ∈ N, it follows from (2.2) that

dn = d (xn, xn+1) = d (fxn−1, fxn)

≤ λ [d (xn−1, fxn−1) + d (xn, fxn)]

= λ [d (xn−1, xn) + d (xn, xn+1)]

= λ [dn−1 + dn] ,

it implies that

(1− λ)dn ≤ λdn−1.
Therefore, dn ≤ µdn−1, where µ = λ

1−λ ∈ [0, 1). On repeating this process, we
obtain

dn ≤ µnd0.
Therefore, lim

n→∞
dn = 0.

Now we shall show that {xn} is a Cauchy sequence, it follows from (2.2)
that for m,n ∈ N

d (xn, xm) = d (fnx0, f
mx0) = d (fxn−1, fxm−1)

≤ λ [d (xn−1, fxn−1) + d (xm−1, fxm−1)]

= [d (xn−1, xn) + d (xm−1, xm)]

= λ [dn−1 + dm−1] .

This implies that

lim
n,m→∞

d(xn, xm) = 0.

By completeness of (X, d), there exists u ∈ X such that

lim
n→∞

d (xn, u) = 0. (2.3)

We shall show that u is a fixed point of f . For any n ∈ N, it follows from
(2.4) that

d(u, fu) ≤ d (u, xn+1) + sd (xn+1, fu)

= d (u, xn+1) + sd (fxn, fu)

≤ d (u, xn+1) + sλ
[
d (xn, fxn) + d(u, fu)

]
,
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that is,

d(u, fu) ≤ d (u, xn+1) + sλd (xn, fxn) + sλd(u, fu),

it implies that

(1− sλ)d(u, fu) ≤ d (u, xn+1) + sλd (xn, fxn) .

Hence, we have

d(u, fu) ≤ 1

(1− sλ)
d (u, xn+1) +

sλ

(1− sλ)
d (xn, xn+1) .

Note that λ 6= 1
s , therefore, it follows from (2.3) and the above inequality

that d(u, fu) = 0, that is, fu = u. Thus u is a unique fixed point of f . �

Theorem 2.3. Let (X, d) be a strong b-metric space with coefficient s ≥ 1
and f : X → X be a mapping satisfying:

d(fx, fy) ≤ λmax{d(x, y), d(x, fx), d(y, fy)} (2.4)

for all x, y ∈ X, where λ ∈
[
0, 1s
)
. Then f has a unique fixed point u ∈ X.

Proof. Let us first show that if fixed point of f exists, then it is unique. Let
u, v ∈ X be two fixed points of f , that is, fu = u, fv = v, if d(u, v) 6= 0. It
follows from (2.4) that

d(u, v) = d(fu, fv)

≤ λmax{d(u, v), d(u, fu), d(v, fv)}
= λmax{d(u, v), d(u, u), d(v, v)}
= λd(u, v),

which implies λ ≥ 1, which is a contradiction. Therefore, we must have
d(u, v) = 0, that is, u = v. Thus, if fixed point of f exists then it is unique.

For the existence of fixed point, let x0 ∈ X be arbitrary and define a se-
quence {xn} by xn+1 = fxn for all n ≥ 0. Then, we may assume d(xn+1, xn) >
0, ∀n, otherwise xn is a fixed point of f .

Now, for any n we obtain from (2.6) that

d (xn+1, xn) = d (fxn, fxn−1)

≤ λmax
{
d (xn, xn−1) , d (xn, fxn) , d (xn−1, fxn−1)

}
= λmax

{
d (xn, xn−1) , d (xn, xn+1) , d (xn−1, xn)

}
= λmax

{
d (xn, xn−1) , d (xn, xn+1)

}
.

If max {d (xn, xn−1) , d (xn, xn+1)} = d (xn, xn+1), then we obtain from the above
inequality

d (xn+1, xn) ≤ λd (xn, xn+1) < d (xn, xn+1) ,
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which is a contradiction. Therefore, we must have

max {d (xn, xn−1) , d (xn, xn+1)} = d (xn, xn−1) ,

and then from the above inequality we obtain

d (xn+1, xn) ≤ λd (xn, xn−1) .

By repeating this process, we obtain

d (xn+1, xn) ≤ λnd (x1, x0) for all n ≥ 0. (2.5)

For m,n ∈ N with m > n, we obtain

d (xn, xm) ≤ d (xn, xn+1) + sd (xn+1, xm)

≤ d (xn, xn+1) + s
[
d (xn+1, xn+2) + sd (xn+2, xm)

]
.

So we have,

d(xn, xm) ≤ d (xn, xn+1) + sd (xn+1, xn+2)

+ s2d (xn+2, xn+3) + s3d (xn+3, xn+4)

+ · · ·+ sm−n−1d (xm−1, xm)

≤ d (xn, xn+1) + sd (xn+1, xn+2)

+ s2d (xn+2, xn+3) + s3d (xn+3, xn+4)

+ · · ·+ sm−1d (xm−1, xm) .

Using (2.5) in the above inequality, we have

d (xn, xm) ≤ λnd (x1, x0) + sλn+1d (x1, x0)

+ s2λn+2d (x1, x0) + s3λn+3d (x1, x0)

+ · · ·+ sm−1λm−1d (x1, x0)

≤ λnd (x1, x0) + sλn+1
[
1 + sλ

+ s2λ2 + s3λ3 + · · ·
]
d (x1, x0)

≤ λnd (x1, x0) +
sλn+1

1− sλ
d (x1, x0)

=

(
λn +

sλn+1

1− sλ

)
d (x1, x0)

=
λn

1− sλ
d (x1, x0) .

As λ ∈
[
0, 1s
)

and s > 0, it follows from the above inequality

lim
n,m→∞

d (xn, xm) = 0.
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Thus {xn} is a Cauchy sequence in X. By completeness of (X, d) there exists
u ∈ X such that

lim
n→∞

d (xn, u) = lim
n,m→∞

d (xn, xm)

= d(u, u)

= 0.

(2.6)

So, we have lim
n→∞

xn = u.

We shall show that u is a fixed point of f .
For any n ∈ N, we have

d(u, fu) ≤ d (u, xn+1) + sd (xn+1, fu)

= d (u, xn+1) + sd (fxn, fu)

≤ d (u, xn+1) + s
[
λmax

{
d (xn, u) , d (xn, fxn) , d(u, fu)

}]
.

Using (2.8) this implies

d(u, f(u)) ≤ d(u, u) + sλd(u, fu).

Hence, we obtain d(u, fu) = 0, that is, fu = u. Thus u is a fixed point of f ,
and it is a unique fixed point of f . �

The following theorem is given by Reich [21].

Theorem 2.4. Let (X, d) be a complete metric space and f : X → X be a
mapping with the following property:

d(fx, fy) ≤ ad(x, fx) + bd(y, fy) + cd(x, y)

for all x, y ∈ X, where a, b, c are non-negative and satisfy a+ b+ c < 1. Then
f has a unique fixed point.

We have extended the a bove theorem to the strong b−metric space.

Theorem 2.5. Let (X, d) be a complete strong b−metric space with coefficient
s ≥ 1 and f : X → X be a mapping with the following:

d(fx, fy) ≤ ad(x, fy) + bd(y, fx) + cd(x, y)

for all x, y ∈ X, where a, b, c are non-negative real numbers and satisfy a +
c+ bs < 1. Then f has a unique fixed point.

Proof. Let x0 ∈ X and {xn} be a sequence in X such that

xn = fxn−1 = fnx0.
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Now

d (xn+1, xn) = d (fxn, fxn−1)

≤ ad (xn, fxn−1) + bd (xn−1, fxn) + cd (xn, xn−1)

= ad (xn, xn) + bd (xn−1, xn+1) + cd (xn, xn−1) .

So, we have

d (xn+1, xn) ≤ bd (xn−1, xn+1) + cd (xn, xn−1)

≤ b
[
d (xn−1, xn) + sd (xn, xn+1)

]
+ cd (xn, xn−1) .

Hence

d (xn+1, xn) ≤bd (xn−1, xn) + sbd (xn, xn+1) + cd (xn, xn−1) ,

it implies that

(1− bs)d (xn+1, xn) ≤ (b+ c)d (xn, xn−1) .

Therefore, we have

d (xn+1, xn) ≤ (b+ c)

(1− bs)
d (xn, xn−1)

= λd (xn, xn−1) ,

that is,

d (xn+1, xn) < λd (xn, xn−1) .

Continuing this process we can easily show that

d(xn+1, xn) ≤ λnd (x1, x0) . (2.7)

For m,n ∈ N with m > n, we obtain

d (xn, xm) ≤d (xn, xn+1) + sd (xn+1, xm)

≤d (xn, xn+1) + s
[
d (xn+1, xn+2) + sd (xn+2, xm)

]
≤d (xn, xn+1) + sd (xn+1, xn+2)

+ s2d (xn+2, xn+3) + s3d (xn+3, xn+4)

+ · · ·+ sm−n−1d (xm−1, xm)

≤d (xn, xn+1) + sd (xn+1, xn+2)

+ s2d (xn+2, xn+3) + s3d (xn+3, xn+4)

+ . . .+ sm−1d (xm−1, xm) .
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Using (2.7) in the above inequality, we have

d (xn, xm) ≤λnd (x1, x0) + sλn+1d (x1, x0)

+ s2λn+2d (x1, x0) + s3λn+3d (x1, x0)

+ · · ·+ sm−1λm−1d (x1, x0)

≤λnd (x1, x0) + sλn+1
[
1 + sλ+ s2λ2 + s3λ3 + . . .

]
d (x1, x0)

≤λnd (x1, x0) +
sλn+1

1− sλ
d (x1, x0)

=

(
λn +

sλn+1

1− sλ

)
d (x1, x0) .

Hence

d (xn, xm) ≤ λn

1− sλ
d (x1, x0) .

Taking limit as n,m→∞, we get

lim
n,m→∞

d (xn, xm) = 0.

Therefore, {xn} is a cauchy sequence in X. Since X is complete, we consider
that {xn} converges to u.

Now, we show that u is a fixed point of f . We have

d(u, fu) ≤ d (u, xn) + sd (xn, fu)

= d (u, xn) + sd (fxn−1, fu)

≤ d (u, xn) + s
[
ad (xn−1, fu) + bd (u, fxn−1) + cd (xn−1, u)

]
,

and so, we have

d(u, fu) ≤d (u, xn) + sad (xn−1, fu)

+ sbd (u, xn) + scd (xn−1, u) .

Hence,

d (u, fu) ≤(1 + sb)d (u, xn) + sad (xn−1, fu)

+ scd (xn−1, u) .

Taking limit as n→∞, we get

lim
n→∞

d(u, fu) = 0,

that is f(u) = u. Thus, u is the fixed point of f .
Now, for the uniqueness of fixed point. Let u and v be two fixed point of

f . Then

u = f(u), v = f(v)
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and

d(u, v) = d (f(u), f(v))

≤ ad(u, f(v)) + bd(v, f(u)) + cd(u, v)

= ad(u, v) + bd(v, u) + cd(u, v)

= (a+ b+ c)d(u, v) = kd(u, v).

So, we have

d(u, v) ≤ kd(u, v),

which is a contradiction. The proof is complete. �

Now, we shall generalized the theorem given by Agrawal and et al. [3] in
b−metric space.

Theorem 2.6. Let (X, d) be a complete strong b−metric space with coefficient
s ≥ 1. Let f : X → X be a mapping such that

d(fx, fy) ≤amax
{
d(x, f(x)), d(y, f(y)), d(x, y)

}
+ b{d(x, fy) + d(y, fx)}, (2.8)

where a, b > 0 such that a+ b+ bs < 1 for all x, y ∈ X. Then f has a unique
fixed point.

Proof. Let x0 ∈ X and {xn} be a sequence in X such that

xn = fxn−1 = fnx0, n = 1, 2, 3, 4, · · · . (2.9)

By (2.8) and (2.9) we obtain that

d (xn+1, xn) =d (fxn, fxn−1)

≤amax
{
d (xn, xn−1) , d (xn−1, f (xn−1)) , d (xn, f (xn))

}
+ b
{
d (xn−1, f (xn)) + d (xn, f (xn−1))

}
,

d (fxn, fxn−1) ≤amax
{
d (xn, xn−1) , d (xn−1, xn) , d (xn, xn+1)

}
+ b
{
d (xn−1, xn+1) + d (xn, xn)

}
,

d (fxn, fxn−1) ≤amax
{
d (xn, xn−1) , d (xn, xn+1)

}
+ b {d (xn−1, xn+1)}
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and

d (xn+1, xn) ≤amax
{
d (xn, xn−1) , d (xn, xn+1)

}
+ b
{
d (xn−1, xn) + sd (xn, xn+1)

}
.

Hence, we have

d (xn+1, xn) ≤aM1 + b
{
d (xn−1, xn) + sd (xn, xn+1)

}
, (2.10)

where M1 = max {d (xn−1, xn) , d (xn, xn+1)}.
Now two cases arise:

Case 1: Suppose that M1 = d (xn, xn+1), we have

d (xn+1, xn) ≤ ad (xn, xn+1) + b
{
d (xn−1, xn) + sd (xn, xn+1)

}
,

this implies that

(1− a− bs)d (xn+1, xn) ≤ bd (xn−1, xn) .

Hence

d (xn+1, xn) ≤
(

b

1− a− bs

)
d (xn−1, xn)

≤
(
a+ b

1− bs

)
d (xn−1, xn) .

Let K = a+b
1−bs < 1. Then we have

d (xn+1, xn) ≤ Kd (xn−1, xn) .

Therefore,
d (xn+1, xn) ≤ K2d (xn−2, xn−1) .

Continuing this process, we get

d (xn, xn+1) ≤ knd (x0, x1) . (2.11)

Case 2: Suppose that M1 = d (xn, xn−1). Then we have

d (xn+1, xn) ≤ ad (xn, xn−1) + b
{
d (xn−1, xn) + sd (xn, xn+1)

}
,

this implies that

(1− bs)d (xn+1, xn) ≤ (a+ b)d (xn−1, xn) .

Hence

d (xn+1, xn) ≤
(
a+ b

1− bs

)
d (xn−1, xn) .

Let k = a+b
1−bs < 1. Then we have

d (xn+1, xn) ≤ kd (xn−1, xn) .
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Therefore,

d (xn+1, xn) ≤ k2d (xn−2, xn−1) .

Continuing this process, we get

d (xn, xn+1) ≤ knd (x0, x1) . (2.12)

Now, we show that {xn} is a Cauchy sequence in X.
For m,n ∈ N, with m > n, we obtain

d (xn, xm) ≤ d (xn, xn+1) + sd (xn+1, xm)

≤ d (xn, xn+1) + s
[
d (xn+1, xn+2) + sd (xn+2, xm)

]
≤ d (xn, xn+1) + sd (xn+1, xn+2)

+ s2d (xn+2, xn+3) + s3d (xn+3, xn+4)

+ · · ·+ sm−n−1d (xm−1, xm)

≤ d (xn, xn+1) + sd (xn+1, xn+2)

+ s2d (xn+2, xn+3) + s3d (xn+3, xn+4)

+ · · ·+ sm−1d (xm−1, xm) .

Using (2.12) in the above inequality, we have

d (xn, xm) ≤ knd (x1, x0) + skn+1d (x1, x0)

+ s2kn+2d (x1, x0) + s3kn+3d (x1, x0)

+ · · ·+ sm−1km−1d (x1, x0)

≤ knd (x1, x0) + skn+1
[
1 + sk + s2k2 + s3k3 + · · ·

]
d (x1, x0)

≤ knd (x1, x0) +
skn+1

1− sk
d (x1, x0)

=

(
kn +

skn+1

1− sk

)
d (x1, x0)

=
kn

1− sk
d (x1, x0) ,

this implies that,

d (xn, xm) ≤
(

kn

1− sk

)
d (x1, x0) .

Then

lim
n,m→∞

d (xn, xm) = 0 as n,m→∞,

since k < 1,

lim
n→∞

kn

1− sk
d (x1, x0) = 0 as n,m→∞.
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Thus {xn} is a Cauchy sequence in X. Since X is complete, we consider that
{xn} converges to u.

Now, we show that u is fixed point of f . In fact,

d(u, f(u)) ≤ d (u, xn+1) + sd (xn+1, f(u))

= d (u, xn+1) + sd (f (xn) , f(u)) ,

d(u, f(u)) ≤ d (u, xn+1) + samax
{
d (xn, fxn) , d(u, f(u)), d (xn, u)

}
+ sb

{
d (xn, fu) + d (u, fxn)

}
,

d(u, f(u)) ≤ d (u, xn+1) + samax
{
d (xn, xn+1) , d(u, f(u)), d (xn, u)

}
+ sb

{
d (xn, fu) + d (u, xn+1)

}
,

d(u, f(u)) ≤ d (u, xn+1) + samax
{
d (xn, xn+1) , d(u, f(u)), d (xn, u)

}
+ sb

{
d (xn, u) + sd(u, fu)

}
+ sbd (u, xn+1)

= d (u, xn+1) + samax
{
d (xn, xn+1) , d(u, f(u)), d (xn, u)

}
+ bd (xn, u) + s2bd(u, fu) + sbd (u, xn+1) .

Let M2 = max {d (xn, xn+1) , d(u, f(u)), d (xn, u)} . Then

d(u, f(u)) ≤ d (u, xn+1) + saM2 + sbd(xn, u)

+ s2bd(u, fu) + sbd (u, xn+1) ,

this implies that(
1− s2b

)
d(u, f(u)) ≤ (1 + sb)d (u, xn+1) + saM2

+ sbd (xn, u) .

Case 1: Suppose that M2 = d (xn, xn+1). Then we have(
1− s2b

)
d(u, f(u)) ≤ (1 + sb)d (u, xn+1)

+ sad (xn, xn+1) + sbd (xn, u)

≤ (1 + sb)d (u, xn+1)

+ sa
{
d (xn, u) + sd (u, xn+1)

}
+ sbd (xn, u)

= (1 + sb)d (u, xn+1) + sad (xn, u)

+ s2ad (u, xn+1) + sbd (xn, u)

=
(
1 + sb+ s2a

)
d (u, xn+1) + sad (xn, u)

+ sbd (xn, u) ,
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this implies that,(
1− s2b

)
d(u, f(u)) ≤

(
1 + sb+ s2a

)
d (u, xn+1)

+ s(a+ b)d (xn, u) .

Therefore,

d(u, f(u)) ≤
(
1 + sb+ s2a

)
(1− s2b)

d (u, xn+1) +
s(a+ b)

(1− s2b)
d (xn, u) .

Case 2: Suppose that M2 = d (xn, u). Then we have(
1− s2b

)
d(u, f(u)) ≤ (1 + sb)d (u, xn+1) + sad(xn, u) + sbd (xn, u) .

Therefore,

d(u, f(u)) ≤ (1 + sb)

(1− s2b)
d (u, xn+1) +

s(a+ b)

(1− s2b)
d (xn, u) .

Case 3: Suppose that M2 = d(u, fu). Then we have(
1− s2b

)
d(u, f(u)) ≤ (1 + sb)d (u, xn+1) + sad(u, fu) + sbd (xn, u) .

This implies that(
1− s2b− sa

)
d(u, f(u)) ≤ (1 + sb)d (u, xn+1) + sbd (xn, u) .

Hence, we have

d(u, f(u)) ≤ (1 + sb)

(1− s2b− sa)
d (u, xn+1) +

sb

(1− s2b− sa)
d (xn, u) .

So in both cases, we have

d(u, f(u)) ≤ max

{
1 + sb+ s2b,

1− s2b
,

1 + sb

1− s2b− sa

}
d(u, xn+1)

+ max

{
s(a+ b)

(1− s2b)
,

sb

(1− s2b− sa)

}
d (xn, u) .

Taking limit n→∞, we get

lim
n→∞

d(u, fu) = 0,

that is f(u) = u. Therefore, u is the fixed point of f .
For uniqueness of fixed point, we have to show that u is unique fixed point

of f .
Assume that x is another fixed point of f . Then we have

fx = x and d(u, x) = d(fu, fx).
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So, we have

d(u, x) = d(fu, fx)

≤ amax{d(u, fu), d(x, fx), d(u, x)}+ b{d(u, fx) + d(x, fu)}
≤ amax{d(u, u), d(x, x), d(u, x)}+ b{d(u, x) + d(x, u)}
≤ ad(u, x) + b{d(u, x) + d(x, u)}
≤ ad(u, x) + 2bd(u, x)

= (a+ 2b)d(u, x).

This is a contradiction. Therefore, u = x. Hence, u is the unique fixed point
of f . This completes the proof. �

Clearly Agrawal and et al. theorem can be proved as a corollary of Theorem
2.6.

Corollary 2.7. Let (X, d) be a complete b-metric space. Let f : X → X be a
mapping such that

d (fx, fy) ≤ amax
{
d (x, fx) , d (y, fy) , d(x, y)

}
+b
{
d (x, fy) + d (y, fx)

}
,

where a, b > 0 such that a+ 2bs ≤ 1 for all x, y ∈ X and s ≥ 1. Then f has a
unique fixed point.

Proof. If a, b > 0 such that a+ 2bs < 1, then a+ b+ bs < 1, then by Theorem
2.6 f has a unique fixed point. �
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