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Abstract. Chandra-Arya-Joshi [2] in 2017 obtained a common fixed point theorem for

Suzuki type contractions [20] on complete metric spaces. Özkan [9] in 2023 extended it to

partial metric spaces with some corollaries and an example. Moreover, he gave an application

for a class of functional equations in dynamic programming. Our aim in this article is to

show that the main results of [9] hold for quasi-metric spaces with simple proofs. So, we can

eliminate the lengthy proofs in [2], [9], [20].

1. Introduction

Among hundreds of extensions of metric spaces, a quasi-metric is the one
not necessarily symmetric. In fact, a quasi-metric d satisfies all axioms of a
metric except the symmetry d(x, y) = d(y, x) for all x, y in the space. Certain
key results in Metric Fixed Point Theory hold for quasi-metric spaces from the
beginning; for example, the Banach contraction principle, the Ekeland varia-
tional principle, the Caristi fixed point theorem, the Takahashi minimization
principle, and their equivalents; see [13]–[16].

Let (X, d) be a quasi-metric space and a Rus-Hicks-Rhoades (RHR) map
f : X → X is the one satisfying d(fx, f2x) ≤ αd(x, fx) for every x ∈ X,
where 0 < α < 1. The fixed point theorems due to Rus [19] in 1973 and Hicks-
Rhoades [5] in 1979 are origins of RHR maps. Recently, in [12], we noticed
that it has an interesting long history. The RHR maps are closely related to
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the Banach contraction principle in 1922, but we found that it is more closer
to its multi-valued versions due to Nadler [8] in 1969 and Covitz-Nadler [4]
in 1970. The aim of [12] was to trace such history of the Rus-Hicks-Rhoades
theorem, and to show its grown-up versions or equivalents or closely related
theorems. Such theorems are too many and could be called its relatives.

One of the recent examples of RHR maps is the one called a Suzuki type
map [20] in 2008, which is very popular and has a large number of followers;
for some examples, see the references of [9]. Recently, we found an extension
of Suzuki’s theorem for quasi-metric spaces with a very simple proof in [15].

Recall that Chandra-Arya-Joshi [2] in 2017 obtained a common fixed point

theorem for Suzuki type contractions on complete metric spaces. Later Özkan
[9] in 2023 extended it to complete partial metric spaces with some corollaries
and an example. Moreover, he gave an application showing existence and
uniqueness of a common solution for a class of functional equations in dynamic
programming.

Our aim in this article is to collect simple proofs of Suzuki’s theorem [20]
and to show that the main results of [9] hold for quasi-metric spaces with
simple proofs by following our previous work [15]. So, we can eliminate the
lengthy proofs in [20], [2] and [9].

This article organized as follows: Section 2 is for preliminaries for quasi-
metric spaces and a basic fixed point theorem for RHR maps in our previous
work [14]. In Section 3, we prove basic results of [9] for quasi-metric spaces
with simple proofs. In Section 4, we introduce the contents of our previous
works on RHR maps. In fact, we listed the abstracts of [12]–[15]. Section 5
deals with some comments on the results in [9]. Finally, in Section 6, we give
some conclusion on the present article.

2. Preliminaries

We recall the following:

Definition 2.1. A quasi-metric on a nonempty setX is a function d : X×X →
R+ = [0,∞) satisfying the following conditions for all x, y, z ∈ X:

(1) d(x, y) = d(y, x) = 0⇐⇒ x = y (self-distance);
(2) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

A metric on a set X is a quasi-metric satisfying

(3) d(x, y) = d(y, x) for all x, y ∈ X (symmetry).

The convergence and completeness in a quasi-metric space (X, d) are defined
as follows:

Definition 2.2. ([1], [6])
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(1) A sequence {xn} in X converges to x ∈ X if

lim
n→∞

d(xn, x) = lim
n→∞

d(x, xn) = 0.

(2) A sequence {xn} is left-Cauchy if for every ε > 0, there is a positive
integer N = N(ε) such that d(xn, xm) < ε for all n > m > N .

(3) A sequence {xn} is right-Cauchy if for every ε > 0, there is a positive
integer N = N(ε) such that d(xn, xm) < ε for all m > n > N .

(4) A sequence {xn} is Cauchy if for every ε > 0 there is positive integer
N = N(ε) such that d(xn, xm) < ε for all m,n > N ; that is {xn} is a
Cauchy sequence if it is left and right Cauchy.

Definition 2.3. ([1], [6])

(1) (X, d) is left-complete if every left-Cauchy sequence in X is convergent;
(2) (X, d) is right-complete if every right-Cauchy sequence in X is conver-

gent;
(3) (X, d) is complete if every Cauchy sequence in X is convergent.

Definition 2.4. Let (X, d) be a quasi-metric space and f : X → X a selfmap.
The orbit of f at x ∈ X is the set

Of (x) = {x, fx, · · · , fnx, · · · }.

The space X is said to be f-orbitally complete if every right-Cauchy sequence in
Of (x) is convergent in X. A selfmap f of X is said to be orbitally continuous
at x0 ∈ X if

lim
n→∞

fnx = x0 =⇒ lim
n→∞

fn+1x = fx0

for any x ∈ X.

Every quasi-metric induces a metric, that is, if (X, δ) is a quasi-metric space,
then the function d : X ×X → [0,∞) defined by

d(x, y) = max{δ(x, y), δ(y, x)}

is a metric on X; see Jleli et al. [6].

In our previous works, we obtained the following:

Theorem 2.5. ([10]) Let f be a selfmap of a quasi-metric space (X, d) satis-
fying:

(i) X is f -orbitally complete and δ(Of (x)) <∞ for each x ∈ X, where δ
denotes the diameter.

(ii) There exists a u ∈ X such that Of (u) has a cluster point p ∈ X.
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(iii) There exists a function ϕ : [0,∞) → [0,∞) which is nondecreasing,
continuous from the right and satisfies ϕ(t) < t for each t > 0 and the
inequality

d(fx, fy) ≤ ϕ(δ(Of (x) ∪Of (y)) for each x, y ∈ X.

Then p is the unique fixed point of f and limn f
n(u) = p.

This extends works of Pal-Maiti, Park, Hegedüs, Danes̆, and many others.
The following is known as Theorem H(γ1) in 2022:

Theorem 2.6. ([11], [16]) Let X be a quasi-metric space with a map f : X →
X and 0 < h < 1 satisfying d(fx, f2x) ≤ hd(x, fx) for all x ∈ X\{fx}. If X
is f-orbitally complete, then f has a fixed element v ∈ X, that is, v = fv.

The following is a recent work:

Theorem 2.7. ([13], [15]) Let (X, d) be a quasi-metric space and let f : X →
X be an RHR map; that is,

d(fx, f2x) ≤ kd(x, fx) for every x ∈ X,

where 0 < k < 1.

(1) If X is f -orbitally complete, then, for each x ∈ X, there exists a point
x0 ∈ X such that

lim
n→∞

fnx = x0

and

d(fnx, x0) ≤
kn

1− k
d(x, fx), n = 1, 2, · · · .

(2) f : X → X is orbitally continuous at x0 ∈ X in (1) and x0 is a fixed
point of T .

The following is the main result of our previous article [13]:

Theorem 2.8. ([13]) Let f be a selfmap of a quasi-metric space (X, d) which
is f-orbitally complete. Suppose ϕ : X → [0,∞) is a function.

(1) If there exists a point x ∈ X satisfying

d(fx, f2x) ≤ ϕ(x)− ϕ(fx),

then {fnx} is a right-Cauchy sequence converging to some x0 ∈ X.
(2) f is orbitally continuous at x0 and x0 is a fixed point of f.

In view of Theorem 2.6, two equivalent statements in (2) of Theorems 2.7
and 2.8 are true.
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3. Proofs of the Suzuki type theorems

A well-known fixed point theorem of Suzuki ([20], Theorem 2) for the so-
called Suzuki type map on a complete metric space with a lengthy proof is very
popular and has a large number of followers. In this section, we extend it and
collect its simple proofs.

Theorem 3.1. ([20]) Let (X, d) be a complete metric space, and T : X → X
be a self-map. Define a nonincreasing function θ : [0, 1)→ (1/2, 1] by

θ(r) =


1 if 0 ≤ r ≤ (

√
5− 1)/2,

(1− r)r−2 if (
√

5− 1)/2 ≤ r ≤ 2−1/2,

(1 + r)−1 if 2−1/2 ≤ r < 1.

(3.1)

Assume that there exists r ∈ [0, 1) such that

θ(r)d(x, Tx) ≤ d(x, y) =⇒ d(Tx, Ty) ≤ rd(x, y)

for all x, y ∈ X. Then there exists a unique fixed point z ∈ X of T. Moreover
limn T

nx = z for each x ∈ X.

Proof. Since θ(r) ≤ 1, θ(r)d(x, Tx) ≤ d(x, Tx) holds for every x ∈ X. By
hypothesis, we have

d(Tx, T 2x) ≤ rd(x, Tx) for all x ∈ X.
This clearly satisfies condition (iii) of Theorem 2.5 for y = fx. We now fix
u ∈ X and define a sequence {un} in X by un = Tnu. Then d(un, un+1) ≤
rnd(u, Tu), so

∑∞
n=1 d(un, un+1) <∞, and a standard argument shows {un} is

Cauchy and δ(O(u)) <∞. Then the conclusion follows from Theorem 2.5. �

The following extends Theorem 3.1 and the main theorems of Chandra-
Arya-Joshi ([2], Theorem 2.1) for metric spaces and of Özkan ([9], Theorem
1) for partial metric spaces:

Theorem 3.2. Let (X, d) be a complete quasi-metric space, T, S : X → X be
two self-maps and a nonincreasing function θ : [0, 1) → (1/2, 1] defined as in
Theorem 3.1. If there exists r ∈ [0, 1/2) such that

θ(r) min{d(x, Tx), d(x, Sx)} ≤ d(x, y) =⇒ (3.2)

max{d(Sx, Sy), d(Tx, Ty), 12 [d(Sx, Ty) + d(Sy, Tx)] ≤ r d(x, y)
for all x, y ∈ X, then T and S have a unique common fixed point.

Proof. We divide several steps to prove.

Step 1. Fixed point sets Fix(T ) = Fix(S):
Let u = Tu. Then

0 ≤ θ(r) min{d(u, Tu), d(u, Su)} ≤ d(u, Tu)
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implies

d(Su, u) ≤ max{d(Su, STu), d(Tu, T 2u),
1

2
[d(Su, T 2u) + d(Su, Tu)]}

≤ r d(u, Tu).

Hence, we have d(Su, u) ≤ r d(u, u). Since d is a quasi-metric, d(u, u) = 0 and
hence Su = u.

Similarly, u = Su implies Tu = u.

Step 2. T is an RHR map:
Putting y = Tx, we have

θ(r) min{d(x, Tx), d(x, Sx)} ≤ d(x, Tx)

implies

max{d(Sx, STx), d(Tx, T 2x),
1

2
[d(Sx, T 2x) + d(STx, Tx)]} ≤ rd(x, Tx)

for every x ∈ X. Hence, we get d(Tx, T 2x) ≤ r d(x, Tx).

Step 3. Existence and uniqueness of common fixed point:
Since T is an RHR map, we have Fix(T ) = Fix(S) 6= ∅ by Theorem 2.5.
Now, to show the uniqueness of this common fixed point, we assume that

u and v are common fixed points of T and S where u 6= v. Taking x = u and
y = v in inequality (3.2), we have

0 = θ(r) min{d(u, Tu), d(u, Su)} ≤ d(u, v).

Hence, we have

max{d(Su, Sv), d(Tu, Tv),
1

2
[d(Su, Tv) + d(Tu, Sv)] ≤ rd(u, v),

it implies that

max{d(u, v), d(u, v),
1

2
[2d(u, v)]} ≤ rd(u, v).

Therefore, we have

d(u, v) ≤ rd(u, v) < d(u, v).

This is a contradiction. Hence, d(u, v) = 0 and u = v. �

Remark 3.3. (1) We can add the statement (i) of Theorem 2.5 to Theo-
rem 3.2.

(2) For S = T , Theorem 3.2 reduces to Theorem 3.1. Hence, the above
proof gives the third proof of Theorem 3.1.

(3) Some particular cases of the RHR maps extending Suzuki type con-
tractive conditions were appeared already as follows:
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(3.1) Ćirić [3] in 1974:

min d(Tx, Ty), d(x, Tx), d(y, Ty)−min d(x, Ty), d(y, Tx) ≤ r d(x, y).

(3.2) Suzuki [20] in 2008: θ(r)d(x, Tx) ≤ d(x, y) implies

d(Tx, Ty) ≤ r d(x, y).

(3.3) Kim-Sedghi-Shobkolaei [7] in 2015: θ(r) min{d(x, Tx), d(x, Sx)} ≤
d(x, y) implies

max{d(Sx, Sy), d(Tx, Ty), d(Sx, Ty), d(Sy, Tx) ≤ r d(x, y).

(3.4) Rakoc̆ević-Samet [17] in 2017:
min{||Tx−Ty||, ||x−Tx||, ||y−Ty||}−min{||x−Ty||, ||y−Tx||} ≤
r||x− y||.

The following is motivated by Chandra-Arya-Joshi ([2], Corollary 2.3) and

Özkan ([6], Corollary 2):

Corollary 3.4. Let (X, d) be a complete quasi-metric space, f, S, T : X → X
be three self-maps and a nonincreasing function θ : [0, 1)→ (1/2, 1] be defined
as usual. If there exists r ∈ [0, 1/2) such that

θ(r) min{d(x, fTx), d(x, fSx)} ≤ d(x, y)

implies

max{d(fSx, fSy), d(fTx, fTy),
1

2
[d(fSx, fTy) + d(fSy, fTx)]} ≤ r d(x, y),

(3.3)

also, if f is one to one, fS = Sf and fT = Tf , then f, T and S have a
common fixed point.

Proof. If we consider fS and fT as two maps with given contractive condition
of Theorem 3.2, then fS and fT have a common fixed point u ∈ X. Namely,
fSu = fTu = u. Since f is one to one, we get

fSu = fTu = u =⇒ Su = Tu.

Then, putting x = u and y = Tu in inequality (3.3)

θ(r) min{d(u, fTu), d(u, fSu)} ≤ d(u, Tu),

it implies that

max{d(fSu, fSTu), d(fTu, fT 2u),
1

2
[d(fSu, fT 2u) + d(fSTu, fTu)]}

≤ r d(u, Tu).
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And also, we have

max{d(fSu, SfTu), d(fTu, TfTu),
1

2
[d(fSu, TfTu) + d(SfTu, fTu)]}

≤ r d(u, Tu).

Hence,

max{d(u, Su), d(u, Tu),
1

2
[d(u, Tu) + d(Su, u)]} ≤ r d(u, Tu).

Therefore, we have

d(u, Tu) ≤ r d(u, Tu).

Then, d(u, Tu) = 0. So, we get Tu = u which implies Tu = Su = u and also
fu = fTu = u. So, f, T and S have a common fixed point. �

4. Previous works on RHR maps

The Banach contraction has thousands of related works. Recall that our
RHR maps extend the Banach contraction and are anticipated much related
works. We first introduced the RHR maps in [12] and obtained some related
results in [13]–[16]. Here we introduce the abstracts of such articles for conve-
nience of the readers or the possible workers in future study.

(1) [12] : Let (X, d) be a complete metric space and f : X → X a map
satisfying d(fx, f2x) ≤ αd(x, fx) for every x ∈ X, where 0 < α < 1. The fixed
point theorems due to Rus (1973) and Hicks-Rhoades (1979) on such maps
were extended or improved by Park (1980), Harder-Hicks-Saliga (1993), Suzuki
(2001), and Jachymski (2003). Moreover, fixed point theorems of Zermelo
(1904), Banach (1922) and Caristi (1976), extended versions for multimaps
due to Nadler (1969) and Covitz-Nadler (1970) are also closely related to the
Rus-Hicks-Rhoades theorem. Finally, we unify these based on a particular
form of our 2023 Metatheorem.

(2) [13] : Our aim in this article is to show that all metric fixed point theo-
rems hold for quasi-metric spaces (without symmetry). In fact, we show some
well-known theorems on metric spaces hold for quasi-metric spaces from the
beginning. We check this fact for the Banach contraction principle, the Covitz-
Nadler fixed point theorem, the Rus-Hicks-Rhoades fixed point theorem, and
others. In these theorems the concepts of continuity and completeness can
be replaced by orbital continuity and T -orbital completeness for a selfmap
T , respectively. Consequently, we improve and generalize the basic known
theorems in the metric fixed point theory.
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(3) [14] : Our aim in this article is to show that certain well-known theorems
on metric spaces hold for quasi-metric spaces (without symmetry) from the be-
ginning. We check this claim for theorems of Banach, Ekeland, Caristi, Taka-
hashi, Rus-Hicks-Rhoades, and others. Moreover our Brøndsted-Jachymski
principle – on the relation among maximal elements, fixed elements, and peri-
odic elements of partially ordered quasi-metric spaces – improves known fixed
point theorems. Consequently, we extend many theorems in the metric or
ordered fixed point theory by adopting quasi-metric instead of metric.

(4) [15] : Let (X, d) be a quasi-metric space. A Rus-Hicks-Rhoades (RHR)
map f : X → X is the one satisfying d(fx, f2x) ≤ αd(x, fx) for every x ∈ X,
where 0 < α < 1. In our previous work [12], we collected various fixed
point theorems closely related to RHR maps. In the present article, we collect
almost all things we know about the RHR maps and their examples. Moreover
we derive new classes of generalized RHR maps and fixed point theorems on
them. Consequently, many of known results in metric fixed point theory are
improved and reproved in easy way.

5. The Özkan type

In the article [8] in 2023, Özkan proves a common fixed point theorem for
Suzuki type contractions on complete partial metric spaces. Moreover, he
states some corollaries related to Suzuki type common fixed point theorem.
And he gives an example where he applies his main theorem on complete
partial metric spaces. Finally, to show usability of our results, he gives an
application showing existence and uniqueness of a common solution for a class
of functional equations in dynamic programming.

Definition 5.1. Let X 6= ∅. A function p : X ×X → [0,∞) is called a partial
metric, if it holds the following properties for all x, y, z ∈ X

(p1) x = y if and only if p(x, x) = p(x, y) = p(y, y),
(p2) p(x, x) ≤ p(x, y),
(p3) p(x, y) = p(y, x),
(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

Definition 5.2. Let (X, p) be a partial metric space (PMS).

(1) A sequence {xn}n∈N in X converges to a point x ∈ X if and only if
p(x, x) = limn→∞ p(x, xn).

(2) A sequence {xn}n∈N in X is called a Cauchy sequence if there exists
(and is finite) limn,m→∞ p(xn, xm).

(3) (X, p) is called complete if every Cauchy sequence {xn}n∈N in X con-
verges to a point x ∈ X such that p(x, x) = limn,m→∞ p(xn, xm).
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It is noted in [6] that, from (p1) and (p2), p(x, y) = 0 implies x = y . But the
opposite may not be true. If we define partial metric as p(x, y) = max{x, y}
for all x, y ∈ R+, then the pair (R+, p) is a PMS. This is a basic for PMS.
This means that the quasi-metric and the partial metric are independent each
other.

From now on, we compare the main results of Özkan [9] with our results in
the present article:

(1) Theorem 1 of [9] : This is our Theorem 3.3 for PMS with more than
five page proof.

(2) Corollary 1 of [9] : This is the Suzuki type result [13] and Theorem 3.1
for PMS.

(3) Corollary 2 of [9] : This is our Corollary 3.5 for PMS.

6. Conclusion

There are thousands of extensions, generalizations, modifications of com-
plete metric spaces and hundreds of contractive type conditions on them. The
Banach contraction principle originates such study in the last one hundred
years.

Recently, we found the class of the Rus-Hicks-Rhoades (BHR) maps extend-
ing the Banach contractions and including a large number of proper examples;
see [13], [14]. A typical example is the Suzuki type maps which were followed
and modified by scores of authors. Recent studies on BHR maps in [12]–
[16] show the importance of the RHR maps in the ordered fixed point theory
initiated by the present author in [11].

In 2023, Kubra Özkan [6] extended the Suzuki type theorem to partial met-
ric spaces which are different from quasi-metric spaces (without the symme-
try). It would be interesting to check whether the symmetry (p3) was applied
or not in [9].
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[3] Lj. Ćirić, On some maps with a nonunique fixed point, Publ. de L’Institut Math., 17
(1974), 52–58.

[4] H. Covitz and S.B. Nadler, Jr. Multi-valued contraction mappings in generalized metric
spaces, Israel J. Math., 8 (1970), 5–11.

[5] T.L. Hicks and B.E. Rhoades, A Banach type fixed point theorem, Math. Japon., 24
(1979), 327–330.



Generalizations of Suzuki type common fixed point theorems 1017

[6] M. Jleli and B. Samet, Remarks on G-metric spaces and fixed point theorems, Fixed
Point Theory Appl., 2012:210, (2012).

[7] J.K. Kim, S. Sedghi and N. Shobkolaei, Suzuki-type of common fixed point theorems in
metric spaces, J. Nonlinear Conv. Anal., 16 (2015), 1779-1786.

[8] S.B. Nadler, Jr. Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475-488.
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