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Abstract. This study explores the integration of Wiener processes into stochastic extensions

of mean field games (MFGs), employing nonstandard finite difference methods (NSFDMs)

for enhanced accuracy and stability. We extend existing mathematical models in differential

game theory, addressing the challenges of stochasticity and numerical approximation. The

research highlights the adaptability and precision of NSFDM in complex stochastic environ-

ments, providing novel insights and methodologies for addressing planning issues in MFGs

with Wiener processes.
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1. Introduction

The introduction of mean field games (MFGs) has revolutionized the under-
standing of differential game problems, especially as participant numbers ap-
proach infinity. This research delves into the incorporation of Wiener processes
in MFGs, aiming to enhance model accuracy and robustness. By adapting
nonstandard finite difference methods (NSFDMs), we propose innovative so-
lutions to address the stochastic complexities inherent in these models, paving
the way for more accurate and reliable applications in various fields. Optimal
control theory, however, offers a well-established framework for determining
the optimal strategies of individual agents in dynamic systems. It allows for
the identification of control policies that maximize certain objective functions
while accounting for the system dynamics and constraints. The synergy be-
tween MFGs and optimal control lies in their shared objective of unraveling
the optimal behaviors and strategies in complex systems ([6], [7], [8]).

In order to solve the differential game problems associated with MFGs, nu-
merical methods are often required. Among these methods, the nonstandard
finite difference method (NSFD) has emerged as a valuable tool. NSFD pro-
vides an innovative approach to discretizing the continuous-time dynamics of
MFGs, enabling their formulation as discrete-time optimization problems. By
incorporating nonstandard analysis principles, NSFD enhances the accuracy of
the discretization and enables more precise approximations of the underlying
dynamics ([9], [10]).

This paper explores the relationship between MFGs and optimal control and
presents the use of the NSFD method to solve differential game problems. We
will delve into the fundamental concepts of MFGs, highlighting their relevance
in modeling large-scale systems with rational agents. We will also discuss opti-
mal control theory and its role in determining optimal strategies for individual
agents. Furthermore, we will introduce the NSFD method and demonstrate
its application in solving differential game problems associated with MFGs.

Through this study, we seek to comprehensively understand the interplay
between MFGs, optimal control, and the NSFD method. By elucidating the
theoretical foundations and practical applications of these concepts, we aim to
contribute to the growing body of knowledge in the field of differential game
theory and its implications in various domains, including economics, finance,
and social sciences.

Mean Field Games (MFGs) are a mathematical framework that studies the
behavior of large populations of interacting agents in strategic settings. It
combines concepts from game theory and optimal control theory to analyze
the collective behavior of individuals. In MFGs, agents optimize their actions
by considering the average behavior of others, referred to as the mean field.
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MFGs provide insights into the equilibrium behavior, optimal strategies,
and overall dynamics of large populations. By studying MFGs, researchers
can analyze the collective behavior of individuals, make predictions about
system-wide outcomes, and develop strategies for decision-making and policy
design.

This paper is organized as follows: Section 2 introduces the stochastic ex-
tensions in mean field games and the integration of Wiener processes. Section
3 discusses the application of unique finite difference schemes with Wiener
processes, followed by a detailed analysis of numerical experiments in Section
4. The paper concludes with Section 5, which summarizes our findings and
discusses their implications.

2. Stochastic extensions in mean field games: Integrating
Wiener processes for enhanced differential game models

Recently, Lasry and Lions ([6], [7], [8]) have introduced models based on
mean field theory, effectively illustrating the behavior of differential game prob-
lems as the number of participants approaches infinity. This concept is em-
bodied in a mathematical structure known as Mean Games (MFGs). Within
this framework, the scalar functions v = v(t, x) and w = w(t, x) evolve over
time and space, governed by the following stochastic differential equations:

∂v

∂t
− c∆v +H(x,∇v) = C[w] + σvdW

v
t in (0, T )× T d, (2.1)

∂w

∂t
+ c∆w + div

(
w
∂H

∂p
(x,∇v)

)
= σwdW

w
t in (0, T )× T d. (2.2)

The Wiener process terms σvdW
v
t and σwdW

w
t are introduced to represent

random diffusion in the evolution of v and w over time. The initial and
terminal conditions remain:

w(0, x) = w0(x), w(T, x) = wT (x) in T d. (2.3)

In this model, two probability densities, w0 and wT , are included, with w
being a probability density. Consequently, the conditions are further expanded
to: ∫

T d

w(t, x)dx = 1, w > 0. (2.4)

Here, T d = [0, 1]d represents the d-dimensional unit torus. The constant c is
nonnegative, and the operators ∆, ∇, and div refer to the Laplacian, gradient,
and divergence operations applied to x. The system also includes a scalar
Hamiltonian H(x, p), typically convex in relation to the gradient variable, and
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an operator C, which transforms a probability density w on T d into a real-
valued function C[w].

This research employs the nonstandard finite difference method (NSFDM),
originally introduced by Mickens ([9]-[12]). NSFDM simplifies the construction
and improves the discretization of specific elements in differential equations
([1], [16]). The choice of denominator function and discretization approach
in NSFDM often results in greater accuracy and stability compared to tradi-
tional methods [3]. Its applications are extensive, encompassing areas such as
physics, chemistry, engineering ([2], [4], [13], [17], [18]), mathematical biology,
and ecology ([5], [15]). NSFDM is particularly beneficial in fractional-order
systems, including fractional financial models and fractional-order neuron sys-
tems ([14]).

The focus of this paper is to outline the aforementioned system of equa-
tions and to numerically approximate its solution using a nonstandard finite
difference scheme (NSFDS).

2.1. Adaptation of the nonstandard finite difference approach with
Wiener process. Mickens ([10], [12]) pioneered the Nonstandard Finite Dif-
ference Method (NSFDM) for numerically solving differential equations, in-
cluding both partial (PDEs) and ordinary (ODEs). This method involves
several key processes:

(1) Creation of Differential Equation in Discrete Form with Sto-
chastic Element: Convert continuous differential equations into dis-
crete counterparts, incorporating a Wiener process term to represent
random diffusion.

(2) Establishment of an Unconventional Grid: Implement a non-
standard grid, enhancing the reflection of the analytical solution’s be-
havior, especially under stochastic influences.

(3) Formulation of an Approximation Framework: Develop an ap-
proximation strategy using the unconventional grid, considering the
stochastic elements.

(4) Utilization of a Distinctive Difference Operator: Apply a spe-
cially designed difference operator to resolve the stochastic discrete
equation.

(5) Evaluation of Methodological Precision and Stability: Assess
the method’s precision and stability, ensuring reliable outcomes under
stochastic conditions.

In the context of the Euler method for dy
dt , this involves substituting y(t+h)−y(t)

h

with y(t+h)−y(t)
φ(h) + σydWt, where φ(h) is a function of step size h, and σydWt

represents the Wiener process term.
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Theorem 2.1. Let dXt = a(Xt, t)dt+ b(Xt, t)dWt be a stochastic differential
equation (SDE) with the following conditions:

(1) The functions a(Xt, t) and b(Xt, t) are continuous and locally Lipschitz
in Xt for each t.

(2) The initial condition X0 = x0 is given.

Then, there exists a unique strong solution Xt to the SDE for t ≥ 0, that is,
a solution such that Xt is adapted to the filtration generated by the Brownian
motion Wt and is continuous in both t and X.

Proof. Consider the SDE:

dXt = a(Xt, t)dt+ b(Xt, t)dWt.

We will construct a sequence of approximate solutions using the Euler-Maruyama

method. Let X
(n)
t be the approximate solution obtained by discretizing the

time interval [0, t] into n subintervals:

∆t =
t

n
.

The Euler-Maruyama method generates the approximate solution as:

X
(n)
(k+1)∆t = X

(n)
k∆t + a(X

(n)
k∆t, k∆t)∆t+ b(X

(n)
k∆t, k∆t)∆Wk,

where ∆Wk is the increment of a Wiener process over the interval [k∆t, (k +
1)∆t], which is normally distributed with mean zero and variance ∆t.

Now, for each n, {X(n)
t } is a sequence of continuous, adapted processes,

and it can be shown that it converges to a limit Xt, in the space of continuous
processes. Using the properties of Brownian motion, we can prove that Xt is
a strong solution to the SDE.

Suppose there is another strong solution Yt to the SDE with the same initial
condition. We aim to show that Xt and Yt are equal in distribution.

By the definition of strong solutions, Xt and Yt are both adapted to the
same filtration generated by Wt. We can then apply the uniqueness theorem
for ordinary differential equations (ODEs) with Lipschitz coefficients to show
that Xt and Yt must be equal in distribution.

Therefore, there exists a unique strong solution Xt to the given SDE for
t ≥ 0. �

3. Application of unique finite difference schemes
with Wiener process

In this section, we adapt our technique for discretizing systems (2.1), (2.2),
(2.3), and (2.4) via finite differences to include the Wiener process. We estab-
lish a uniform grid on a two-dimensional torus with a mesh step h, represented
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as T 2
h . Points on this grid are labeled as xi,j . A positive integer NT defines

∆t = T
NT , and tn = n∆t for n ranging from 0 to NT .

Values of v and w at coordinates (xi,j , tn) are estimated as Wn
i,j and V n

i,j ,
incorporating stochastic terms σvdW

v
t and σwdW

w
t for random diffusion. The

operator C[w](xi,j) is represented as (Ch[W ])i,j = C[wh](xi,j), where wh is the
grid approximation of w.

Discretizing these equations using finite differences now includes stochastic
influences:

(D+
1 V )i,j =

Vi+1,j − Vi,j
φ(h)

+ σv,1dW
v
t,i+1,j , (3.1)

(D+
2 V )i,j =

Vi,j+1 − Vi,j
φ(h)

+ σv,2dW
v
t,i,j+1. (3.2)

Define the differential operators with stochastic components:

[DhV ]i,j =

(
(D+

1 V )i,j + σv,1dW
v
t,i,j , (D

+
1 V )i−1,j + σv,2dW

v
t,i−1,j ,

(D+
2 V )i,j + σv,3dW

v
t,i,j , (D

+
2 V )i,j−1 + σv,4dW

v
t,i,j−1

)T
,

(3.3)

(∆hV )i,j = − 1

[φ(h)]2
(4Vi,j−Vi+1,j−Vi−1,j−Vi,j+1−Vi,j−1)+σ∆dW

∆
t,i,j . (3.4)

We redefine the function g as g : T 2 × R4 → R, with (x, r1, r2, r3, r4) 7→
g(x, r1, r2, r3, r4 + σgdW

g
t ), where σgdW

g
t is the Wiener process term. The

properties of g are:

(1) Monotonicity: g decreases with r1 and r3, and increases with r2 and
r4.

(2) Consistency: g(x, r1, r1, r2, r2) = H(x, q) for all x ∈ T 2 and r =
(r1, r2) ∈ R2.

(3) Differentiability: g is differentiable and belongs to class C1, and may
possess properties like convexity and coercivity.

The coerciveness of g is given by:

lim
‖[DhV+σDh

dW
Dh
t ]‖∞→∞

maxi,j g(xi,j , [DhV ]i,j + σDh
dWDh

t )

‖[DhV + σDh
dWDh

t ]‖∞
= +∞. (3.5)

Our discrete approach and the application of nonstandard finite differences
allow for precise approximation of solutions for systems described by either
partial or ordinary differential equations, now including stochastic elements.
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3.1. Strategic planning in stochastic environments: A finite differ-
ence approach. The semi-implicit method provides a solution approximation
for equation (1), formulated as:

V n+1
i,j −V n

i,j

φ(∆t)
−c(∆hV

n+1)i,j+g(xi,j , [DhV
n+1]i,j)+σV dW

V
t =(Ch[Wn])i,j , (3.6)

where, σV dW
V
t represents the Wiener process term.

The weak formulation of equation (2.2) is approached by examining:∫
T 2

div

(
w
∂h

∂p
(x,∇v)

)
z dx, (3.7)

approximated as:

−h2
∑
i,j

Wi,j∇rg(xi,j , [DhV ]i,j) · [DhZ]i,j+h
2
∑
i,j

λi,j(V,W )Zi,j+σWdW
W
t .

(3.8)
The term σWdW

W
t introduces an additional Wiener process element, and

λi,j(V,W ) denotes a specific coefficient function in the context of the plan-
ning problem.

The coefficient function λ is redefined to include the Wiener Process, spec-
ified as follows:

λi,j(V,W )

=
1

φ(h)



(
Wi,j

∂g
∂r1

(xi,j , [DhV ]i,j)+σλ,1dW
λ
t −Wi−1,j

∂g
∂r1

(xi−1,j , [DhV ]i−1,j)
)

+
(
Wi+1,j

∂g
∂r2

(xi+1,j , [DhV ]i+1,j)+σλ,2dW
λ
t −Wi,j

∂g
∂r2

(xi,j , [DhV ]i,j)
)(

Wi,j
∂g
∂r3

(xi,j , [DhV ]i,j)+σλ,3dW
λ
t −Wi,j−1

∂g
∂r3

(xi,j−1, [DhV ]i,j−1)
)

+
(
Wi,j+1

∂g
∂r4

(xi,j+1, [DhV ]i,j+1)+σλ,4dW
λ
t −Wi,j

∂g
∂r4

(xi,j , [DhV ]i,j)
)

 .

(3.9)
The discrete analogue of equation (2.2) is implemented as:

Wn+1
i,j −Wn

i,j

φ(∆t)
+ c(∆hW

n)i,j + λi,j(V
n+1,Wn) + σWdW

W
t = 0. (3.10)

Understanding the linearization of the operator mapping V to −c(∆hV )i,j+
g(xi,j , [DhV ]i,j) is crucial. This linearization is the conjugate of the operator

that maps W to −c(∆hW )i,j − λi,j(V,W ) + σλdW
λ
t .

Additionally, we define a compact and convex set κ:

κ =

(Wi,j)0≤i,j<NT : Wi,j ≥ 0, h2
∑
i,j

Wi,j = 1

 . (3.11)
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In developing a discrete approach for a system, it involves discretizing the
equations and expressing solutions as a series of numerical values. For the sys-
tem governed by equations (2.1), (2.2), (2.3), and (2.4), the discrete strategy
can be delineated by approximating solutions via nonstandard finite differences
as such:

V n+1
i,j − V n

i,j

φ(∆t)
− c(∆hU

n+1)i,j + g(xi,j , [DhV
n+1]i,j) = (Ch[Wn])i,j + σV dW

V
t ,

(3.12)

Wn+1
i,j −Wn

i,j

φ(∆t)
− c(∆hW

n)i,j + λi,j(V
n+1,Wn) + σWdW

W
t = 0, (3.13)

where the conditions are

0 ≤ i, j ≤ Nh, 0 ≤ n ≤ NT, Wn ∈ κ, W 0
i,j = (w0)i,j , W

NT
i,j = (wT )i,j ,

(3.14)

(w0)i,j =
1

[φ(h)]2

∫
|x−xi,j |∞≤h

2

w0 and (wT )i,j =
1

[φ(h)]2

∫
|x−xi,j |∞≤h

2

wT .

(3.15)

The discretization of the Hamiltonian function, symbolized by
g(x, r1, r2, r3, r4), is formulated under the assumption that the Hamiltonian
H(x, p) is represented as ψ(x, |p|) and subjected to a Godunov scheme. The
discrete Hamiltonian, incorporating the Wiener Process, is expressed as:

g(x, r1, r2, r3, r4)

=ψ
(
x,
√

(r1+σr1dW r1
t )2+(r3 + σr3dW r3

t )2+(r2+σr2dW r2
t )2+(r4+σr4dW r4

t )2
)
.

(3.16)

When the Hamiltonian is defined as:

H(x, p) = cos(4πx1) + sin(2πx1) + sin(2πx2) + |p|α, C[Wn
i,j ] = [Wn

i,j ]
2, (3.17)

with α assuming different values, the corresponding equations (3.6) and (3.8)
include Wiener Process terms for stochastic modeling.

Equation (3.12) becomes:

V n+1
i,j − V n

i,j

φ(∆t)
− c

(
− 1

[φ(h)]2
(4V n+1

i,j − V n+1
i+1,j − V

n+1
i−1,j − V

n+1
i,j+1 − V

n+1
i,j−1)

)
+ [sin(2πx2)+sin(2πx1)+cos(4πx1) + |p|α]+σV dW

V
t =[Wn

i,j ]
2.

(3.18)
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Equation (3.13) is modified to:

Wn+1
i,j −Wn

i,j

φ(∆t)
+c

(
− 1

[φ(h)]2
(4Wn

i,j −Wn
i+1,j −Wn

i−1,j −Wn
i,j+1 −Wn

i,j−1)

)
+λi,j(V

n+1,Wn) + σWdW
W
t

=0. (3.19)

Further manipulations lead to Equation (3.14):(
1+

4c

φ(∆t)[φ(h)]2

)
V n+1
i,j −

c

φ(∆t)[φ(h)]2
(V n+1
i+1,j+V

n+1
i−1,j+V

n+1
i,j+1+V n+1

i,j−1)−V n
i,j

=−φ(∆t)[sin(2πx2)+sin(2πx1)+cos(4πx1)+|p|α]

+φ(∆t)[Wn
i,j ]

2+σV,18dW
V,18
t . (3.20)

And Equation (3.15):

Wn+1
i,j −Wn

i,j −
c

φ(∆t)[φ(h)]2
(4Wn

i,j −Wn
i+1,j −Wn

i−1,j −Wn
i,j+1 −Wn

i,j−1)

+
φ(∆t)

φ(h)

(
(Wn

i,j
∂g
∂r1
−Wn

i−1,j
∂g
∂r1

+Wn
i+1,j

∂g
∂r2
−Wn

i,j
∂g
∂r2

)

(Wn
i,j

∂g
∂r3
−Wn

i,j−1
∂g
∂r3

+Wn
i,j+1

∂g
∂r4
−Wn

i,j
∂g
∂r4

)

)
+ σW,19dW

W,19
t = 0. (3.21)

4. Numerical experiments

• Parameter Values: The values of v, α, and T are set to 1, 2, and 1,
respectively.
• Initial and Final Conditions for w:

– At t = 0: w is initialized to 1.5 for locations where max(|x −
0.2|, |y − 0.2|) ≤ 0.75.

– At t = T : w is set to 1.5 for locations where max(|x|, |y|) ≤ 0.75.
• Function Values Visualization: The values of the functions u and w

are visualized, as shown in a hypothetical Figure 1.

The functions v and w evolve over time according to the specified equations
and stochastic influence.

5. Conclusion

The integration of Wiener processes into MFGs using NSFDMs marks a
significant advancement in differential game theory. This approach not only
addresses the stochasticity in MFGs but also enhances the accuracy and stabil-
ity of numerical approximations. Our findings demonstrate the effectiveness of
NSFDMs in dealing with complex stochastic environments, offering valuable
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Figure 1. Visualization of function evolution in stochastic
MFG models.

insights and methodologies for future research in this area. The proposed ap-
proach has the potential for widespread application in various fields requiring
precise modeling of stochastic processes.
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[3] A.J. Arenas, G. González-Parra and B.M. Chen-Charpentier, Construction of nonstan-
dard finite difference schemes for the SI and SIR epidemic models of fractional order,
Math. Comput. Simul., 121 (2016), 48-63.

[4] S. Banerjee, J.B. Cole and T. Yatagai, Calculation of diffraction characteristics of sub
wavelength conducting gratings using a high accuracy nonstandard finite-difference time-
domain method, Optical Review, 12(4) (2005), 274-280.

[5] S. Elsheikh, R. Ouifki and K.C. Patidar, A non-standard finite difference method to
solve a model of HIV-Malaria co-infection, J. Diff. Equ. Appl., 20(3) (2014), 354-378.

[6] I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag,
New York, 1998.
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