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Abstract. In this paper, we present new results on the existence of min-maximal solutions

for the second-order singular impulsive differential equations m−point boundary value prob-

lem, where the nonlinearity is a a.e. continuous function. We also provide discussions to

show the valid of our results. In particular, our results unify many known results.

1. Introduction

In this paper, we consider the existence of positive solutions for the follow-
ing second-order singular impulsive differential equations m−point boundary
value problem (BVP):

x′′(t) + g (t) f (t, x (t)) = 0, t ∈ J,
4x′|t=tk = 4x′ (tk) = I∗k (x′ (tk)) , k = 1, . . . , m,

4x|t=tk = 4x (tk) = Īk (x (tk)) , k = 1, . . . , m,

x (0) = d1x (1) , x′ (0) = d2x
′ (1)−

m−2∑
i=1

aix (ηi) ,

(1.1)
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where J̊ = (0, 1), J = [0, 1] , J0 = [0, t1) , J1 = (t1, t2) , . . . , Jm = (tm, 1] , R+ =
[0, +∞), 0 < t1 < · · · < tm < 1, J ′ = J \ {t1, . . . , tm}, f ∈ C (J × R+,R+),
d1, d2 > 0, g (t) 6≡ 0, and 0 < η1 < η2 < · · · < ηm−2 < 1, ai ≥ 0
(i = 1, . . . ,m−2), I∗k , Īk ∈ C (R+,R+), 4x′ |t=tk= x′

(
t+k
)
−x′

(
t−k
)
, 4x |t=tk=

x
(
t+k
)
−x

(
t−k
)
, where x′

(
t+k
)
, x′
(
t−k
)
, x
(
t+k
)
, x
(
t−k
)

is the left and right limit
of x′ (t) , x (t) at tk. The theory of impulsive differential equations is an im-
portant area (see [1, 2, 4, 5, 6, 8, 11]).

Paper [8] discussed the existence of solutions for impulsive differential equa-
tions of the following:

z′′ = Ψ (t, z (t) , z(ε(t)), Az(t), Bz(t), z(γ(t, ζ(t)))) , t ∈ J ′,
4z′|t=tk = 4z′ (tk) = I∗k (z(tk), z

′ (tk)) , k = 1, . . . , m,

4z|t=tk = 4z (tk) = Īk (z (tk)) , k = 1, . . . , m,

W1(z(0), z(T )) = 0, W2(z
′(0), z′(T )) = 0,

(1.2)

where t ∈ J = [0, T ](T > 0), Ψ ∈ C(J × R5, R), Ik ∈ C(R, R), I∗k , W1, W2 ∈
C(R × R,R), ε ∈ C(J, J), ζ ∈ C(J,R), γ ∈ C(J × R, J), 0 = t0 < t1 < · · · <
tk < · · · < tm < tm+1 = T , J ′ = J\{t1, · · · , tm}, and

Az(t) =

∫ t

0
m(t, s)z(s)ds, Bz(t) =

∫ T

0
h(t, s)z(s)ds,

m(t, s), h(t, s) ∈ C(J × J,R+), R+ = [0,+∞), by means of upper and lower
solutions and the monotone iterative technique.

We shall consider, in this paper, the existence of solutions of boundary value
problems (BV P , for short) for a second order impulsive differential equation
in which impulses occur at fixed times tk (k = 1, · · · ,m). With the help
of lower and upper solutions, we shall employ new comparison principle and
the monotone iterative technique and establish the existence of min-maximal
solutions, which are limits of monotone sequences of the impulsive differential
equation boundary value problems.Then we shall obtain the existence theorem,
utilizing a analysis technique with continuity and connectedness argument,
for the BV P (1.1). It follows therefore that assumptions list in this paper,
which are sufficient to guarantee the existence of solutions to the impulsive
differential equations boundary value problem (1.1).

Nonlinear differential equations with various nonlinear boundary conditions
play an important role in both theory and applications. They have been
attracted a lot of researcher’s attention over the years, see ([9, 10, 12, 13,
14, 15]) and the references therein. They are often used to model various
phenomena in chemistry, physics, biology, and infections diseases etc. in the
positive energy problems. However, in many situations, including the cases
just mentioned above, based on the fixed point theorems and fixed point index
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theories, the existence of solutions is easily obtained, one refers the reader to
see ([13, 14, 15, 16]) for some references along this line.

In [9] (2012), by using the analytic techniques such as comparison principle,
and maximum principle, Lee and Chung presented the long time behaviors of
nontrivial solutions for the p–Laplacian evolution ut = ∆pu, with p > 1 and
proved that the solution became extinct for 1 < p < 2 and remained strictly
positive for p ≥ 2.

In [15](2022), Wettstein studied the fractional harmonic gradient flow on
F1 getting value in Fm−1 ⊂ Rm for m ≥ 2, in particular constructing regularity
and uniqueness of solutions through small enough energy for the weak frac-

tional harmonic gradient flow xt+(−∆)
1
2x = x|d

1
2x|2, satisfying x(0, ·) = x0 in

the sense of x(t, ·)→ x0 in L2 as t→ 0, putting the existence of solutions. The
author improved with extended and generalized many known results. Further,
he contemplated a lot of convergence properties for solutions of the fractional
gradient flow as t→∞.

Motivated by the results mentioned above, in the paper we establish the
existence of min-maximal solutions for the problem (1.1). Usually, the problem
(1.1) can be used to describe the numerical solutions. In the paper, however,
we employ the analytic approaches, such as upper and lower solutions, new
comparison principle and iterative of solution, instead of numerical ones. As
far as we know, many nice of research works of the problem (1.1) are concerned
with the numerical approach, but few works are constructed by the analytic
method, such as upper and lower technique. We should also assert here that
our results are new as well as extend and generalize together with improve the
results in ([6, 7, 8, 9, 10, 11, 12, 13, 14, 15]).

The rest of the paper is organized as follows. In Section 2, we first introduce
definitions and several lemmas with notations, and offer some key conditions,
frequently exploited through the paper. In Section 3, we foremost derive the
interesting properties of solutions of the problem (1.1). And then, we also
present the main results as well as some their proofs. Finally, in Section 4,
we give discussions and supply some examples to show the valid of the main
results.

2. Preliminaries

Let X = C[0, 1] be a Banach space with the norm ‖ z ‖= sup
0≤t≤1

| z(t) |,

and let K = {z ∈ X : z(t) ≥ 0, 0 ≤ t ≤ 1}. Then K is a positive cone in
X. Throughout the paper, the partial ordering is always given by K. For the
concepts and properties of Krein−Kutmann theorems and fixed point index
theory, one refers the reader to see [7].
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Denote

PC(J,R)=

z | z is a map from J ontoR such that z(t) is continuous at
t 6= tk, left continuous at t = tk, and its right limit exists at
t = tk(denoted by) z(t+k ), for k = 1, · · · ,m.

 .

Evidently, PC(J,R) is a Banach space with norm ‖z‖PC(J,R) = sup
t∈J
‖z(t)‖.

PC1(J,R) =


z ∈ PC(J,R) | z′(t) is continuous at t 6= tk,
and left continuous at t = tk, and z(t−k ), z(t+k ), z′(t−k ),
z′(t+k ), z(t−k ) = z(t+k ) = z(tk), exist for k = 1, · · · ,m.

 .

Obviously, PC1[J,R] is a Banach space with norm

‖z‖PC1(J,R) = sup
t∈J
{‖z‖PC(J,R), ‖z′‖PC(J,R)}.

It is noticed that K ⊂ X. Denote Pr = {z ∈ K : ‖z‖ < r}, ∂Pr = {z ∈
K : ‖z‖ = r}, Kr,R = {z ∈ K : r ≤ ‖z‖ ≤ R}, for any positive constants
0 < r < R < +∞. Let z′ = ν, z(0) = 0, z(s) =

∫ s
0 ν(t)dt+ z(0) =

∫ s
0 ν(t)dt.

Definition 2.1. ([3, 6, 7, 8, 16]) x0(t) is call a lower solution of (1.1), if
− x′′0 (t) ≤ g (t) f (t, x0 (t)) ,

4 x′0 (tk) ≥ I∗k
(
x′0 (tk)

)
, 4x0 (tk) = Īk (x0 (tk)) , k = 1, · · · ,m,

x0 (0) = d1x0 (1) , x′0 (0) ≥ d2x′0 (1)−
m−2∑
i=1

aix0 (ηi) .

(2.1)

Definition 2.2. ([3, 6, 7, 8, 16]) y0(t) is called a upper solution of (1.1), if
− y′′0 (tk) ≥ g(t)f(t, y0 (t)),

4 y0 (tk) = Īk (y0 (tk)) , 4y′0 (tk) ≤ I∗k (y0 (tk)) , k = 1, . . . ,m,

y0 (0) = d1x0 (1) , x′0 (0) ≤ d2x′0 (1)−
m−2∑
i=1

aix0 (ηi) .

(2.2)

Throughout of this paper, we suppose that the following conditions hold:

(H1) There exist x0(t), y0(t) ∈ PC1(J,R) ∩ PC2(J ′,R) such that x0(t) ≤
y0(t) satisfies (2.1) and (2.2), respectively.

(H2) g ∈ C((0, 1), (0,+∞)), f(t, x) ∈ C((0, 1)×(−∞,+∞), (0,+∞)). There
exist function g∗ and g̃ ∈ C(J,R+), which satisfy (2.4) such that
g(t)f(t, x) ≤ g∗(t) and for t ∈ J.

g(t)f(t, x)− g(t)f(t, x) ≥ g̃(t)(x− x), x0(t) ≤ x ≤ x ≤ y0(t),
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(H3) f(t, x) may be singular at x = 0 and for any 0 < r < R < +∞, we
have

lim
j→+∞

sup
x∈P r,R

∫
%(j)

g(s)f(s, x(s))ds = 0,

where %(j) = [0, 1j ] ∪ [ j−1j , 1], and j > 1 is a certain positive inte-

ger number. There exist constants 0 ≤ Qk < 1, 0 < Q∗k < 1 (k =

1, · · · ,m), such that Ik(xk) ≤ x(tk)Qk and I
∗
k(xk) ≤ x(tk)Q

∗
k,

Ik(x)− Ik(x) ≥ −Qk(x− x),

I∗k(x′)− I∗k(x′) ≥ −Q∗k(x′ − x′),

where x0(tk) ≤ x ≤ x ≤ y0(tk), x0(0) ≤ x ≤ x ≤ y0(0), x0(1) ≤ y ≤
y ≤ y0(1).

Lemma 2.3. ([2, 3]) Let C̃k > 0, φ̃k (k = 1, · · · , m) be constants and s ∈ [0, 1)

be fixed. Assume that â, b̂ ∈ PC [J,R] , z ∈ PC1 [J,R]. If{
z′ (t) ≤ â (t) z (t) + b̂ (t) , t ∈ [s, 1) , t 6= tk,

z
(
t+k
)
≤ C̃kz (tk) + φ̃k, tk ∈ [s, 1) .

Then, for all t ∈ [s, 1] ,

z(t) ≤z
(
s+
)( ∏

s<tk<t

C̃k

)
exp

(∫ t

s
â(r)dr

)

+

∫ t

s

( ∏
r<tk<t

C̃k

)
exp

(∫ t

r
â(τ)dτ

)
b̂(r)dr

+
∑

s<tk<t

(∏
tk<t

C̃k

)
exp

(∫ t

tk

â(τ)dτ

)
φ̃k.

Lemma 2.4. (New comparison principle) Let u ∈ PC1 [J,R] ∩ C2 (J ′,R)
satisfies the following:

x′′ (t) ≤ −g (t) f(t, x (t)), t ∈ J ′,
4x (tk) ≤ −Qkx (tk) , 4x′ (tk) ≤ −Q∗kx′ (tk) , k = 1, · · · ,m,

x (0) ≤ d1x (1) , x′ (0) ≤ d2x′ (1)−
m−2∑
i=1

aix (ξi) ,

(2.3)
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where Qk ∈ [0, 1] , d1, d2,Q
∗
k, ξi ∈ (0, 1), for i = 1, . . . ,m−2 and k = 1, . . . ,m,

d1

m∏
k=1

(1−Qk)
2
m∏
k=1

(1−Q∗k)

(
1− d2

m∏
k=1

(1−Q∗k)

)

≥
∫ 1

0
g(s)f(s, x(s))ds

∫ 1

0

∏
s<tk<1

(1−Qk) ds.

(2.4)

Then x(t) ≤ 0, t ∈ J .

Proof. Suppose to the contrary. Then there exists t0 ∈ J , such that x(t0) > 0,
thus there are the following two cases:

Case I. There exists t0 ∈ J such that x(t0) > 0, and x(t) ≥ 0 for t ∈ J .

Case II. There exists t∗, t
∗ ∈ J such that x(t∗) < 0, and x(t

∗
) > 0.

For Case I. It follows from (2.3) that x′′(t) ≤ 0 for t 6= tk, and x′
(
t+k
)
≤

(1−Q∗k)x
′ (tk). By making use of (2.3), we obtain x′ (t) ≤ x′ (0)

∏
0<tk<t

(1−Q∗k).

Consequently, we get

x′ (0) ≤ d2x′ (1) ≤ d2x′ (0)

m∏
k=1

(1−Q∗k) ,

which implies that x′(0) ≤ 0, thus x′(t) ≤ 0. Then x
(
t+k
)
≤ (1−Qk)x (tk) ≤

x (tk). Therefore, x (t) is a non-increasing on J. So x (0) ≤ d1x (1) ≤ d1x (0) <
x(0), which is a contradiction.

For Case II. Let l = − inf
t∈J

x (t), then l > 0, and there exists t∗ ∈ (ti, ti+1]

such that x (t∗) = −l or x (t∗i ) = −l for certain i ∈ {1, . . . ,m}. Without loss
of generality, one only proves x (t∗i ) = −l, the proof of the case x (t∗) = −l is
similar.

From (2.3), we get {
x′′ (t) ≤ lg(t)f (t, x(t)) ,

x′(t+k ) ≤ (1−Q∗k)x
′(tk).

Applying (2.3), we obtain

x′ (t) ≤ x′ (0)
∏

0<tk<t

(1−Q∗k) +

∫ t

0
lg(s)f(s, x(s))

∏
s<tk<t

(1−Q∗k) ds. (2.5)
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Let t = 1, it follows from (2.5), we get

x′ (0) ≤ d2x′ (1)

≤ d2x′ (0)

m∏
k=1

(1−Q∗k) + d2

∫ 1

0
l
∏

s<tk<1

(1−Q∗k) g(s)f(s, x(s))ds

≤ d2x′ (0)
m∏
k=1

(1−Q∗k) + d2

∫ 1

0
lg(s)f(s, x(s))ds,

which implies that

x′ (0) ≤ d2
∫ 1

0
lg(s)f(s, x(s))ds

[
1− d2

m∏
k=1

(1−Q∗k)

]−1
. (2.6)

Using (2.5) and (2.6), we know that

x′ (t) ≤ d2
∫ 1

0
lg(s)f(s, x(s))ds

(
1− d2

m∏
k=1

(1−Q∗k)

)−1 ∏
0<tk<t

(1−Q∗k)

+

∫ t

0
l
∏

s<tk<t

(1−Q∗k) g(s)f(s, x(s))ds

≤
∫ 1

0
lg(s)f(s, x(s))ds

d2 ∏
0<tk<t

(1−Q∗k)

(
1− d2

m∏
k=1

(1−Q∗k)

)−1
+ 1


≤ d2

∏
0<tk<t

(1−Q∗k)

∫ 1

0
lg(s)f(s, x(s))ds×

{(
1− d2

m∏
k=1

(1−Q∗k)

)−1

+

[
d2

m∏
k=1

(1−Q∗k)

]−1}

≤
∫ 1

0
lg(s)f(s, x(s))ds

[
m∏
k=1

(1−Q∗k)

(
1− d2

m∏
k=1

(1−Q∗k)

)]−1
for t ∈ [t∗, 1], the above inequality and x(t+k ) ≤ (1−Qk)x(tk) implies that

x (t) ≤ x (t∗)
∏

t∗<tk<t

(1−Qk) +

∫ t

t∗

∏
s<tk<1

(1−Qk) ds

∫ 1

0
lg(v)f(v, x(v))dv

×

[
m∏
k=1

(1−Q∗k)

(
1− d2

m∏
k=1

(1−Q∗k)

)]−1
ds

(2.7)
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≤ x (t∗)
∏

t∗<tk<t

(1−Qk) +

∫ 1

0
lg(v)f(v, x(v))dv

∫ t

t∗

∏
s<tk<1

(1−Qk) ds

×

[
m∏
k=1

(1−Q∗k)

(
1− d2

m∏
k=1

(1−Q∗k)

)]−1
.

If t
∗
> t∗, let t = t

∗
in (2.7), we have

0 < −l
∏

t∗<tk<t
∗

(1−Qk) +

∫ 1

0
lg(v)f(v, x(v))dv

∫ t
∗

t∗

∏
s<tk<t

∗

(1−Qk) ds

×

[
m∏
k=1

(1−Q∗k)

(
1− d2

m∏
k=1

(1−Q∗k)

)]−1
.

Thus
m∏
k=1

(1−Qk)∫ 1
0

∏
s<tk<1

(1−Qk) ds
≤

∏
t∗<tk<t

∗
(1−Qk)∫ t∗

t∗

∏
s<tk<t

∗
(1−Qk) ds

<

∫ 1

0
lg(v)f(v, x(v))dv

×

[
m∏
k=1

(1−Q∗k)

(
1− d2

m∏
k=1

(1−Q∗k)

)]−1
,

which contradicts (2.4). Therefore, x (t) ≤ 0 on J .
If t
∗
< t∗, without loss of generality, let t∗ ∈ (tn−1, tn) and t

∗ ∈ (tr, tr+1],
0 ≤ r ≤ n− 1, n, r ∈ {1, · · · ,m}. From Lemma (2.3), we obtain

x
(
t
∗) ≤ x (0)

∏
0<tk<t

∗

(1−Qk) +

∫ 1

0
lg(v)f(v, x(v))dv

×

[
m∏
k=1

(1−Q∗k)

(
1− d2

m∏
k=1

(1−Q∗k)

)]−1 ∫ t
∗

0

∏
s<tk<t

∗

(1−Qk) ds

= x (0)
r∏

k=1

(1−Qk) +

∫ 1

0
lg(v)f(v, x(v))dv

×

[
m∏
k=1

(1−Q∗k)

(
1− d2

m∏
k=1

(1−Q∗k)

)]−1 ∫ t
∗

0

∏
s<tk<t

∗

(1−Qk) ds.

(2.8)
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On the other hand,

x (0) ≤ d1x (1)

≤ d1x (t∗)
∏

t∗<tk<1

(1−Qk) + d1

∫ 1

0
lg(v)f(v, x(v))dv

×

[
m∏
k=1

(1−Q∗k)

(
1− d2

m∏
k=1

(1−Q∗k)

)]−1 ∫ 1

t∗

∏
s<tk<1

(1−Qk) ds

= −d1l
m∏
k=n

(1−Qk) + d1

∫ 1

0
lg(v)f(v, x(v))dv

×

[
m∏
k=1

(1−Q∗k)

(
1− d2

m∏
k=1

(1−Q∗k)

)]−1 ∫ 1

t∗

∏
s<tk<1

(1−Qk) ds.

(2.9)
It follows from (2.8) and (2.9), we see that

d1

m∏
k=n

(1−Qk)

r∏
j=1

(1−Qj)

<

∫ 1

0
g(v)f(v, x(v))dv

[
m∏
k=1

(1−Q∗k)

(
1− d2

m∏
k=1

(1−Q∗k)

)]−1

×

d1 r∏
j=1

(1−Qj)

∫ 1

t∗

∏
s<tk<1

(1−Qk) ds+

∫ t
∗

0

∏
s<tk<t

∗

(1−Qk) ds

 .

Multiply both sides of the above inequality by
m∏

j=r+1
(1−Qj), then we have

d1

m∏
k=n

(1−Qk)
m∏
j=1

(1−Qj)

<

∫ 1

0
g(v)f(v, x(v))dv

[
m∏
k=1

(1−Q∗k)

(
1− d2

m∏
k=1

(1−Q∗k)

)]−1

×

d1 m∏
j=1

(1−Qj)

∫ 1

t∗

∏
s<tk<1

(1−Qk) ds+

∫ t
∗

0

∏
s<tk<t

∗

(1−Qk) ds

m∏
j=r+1

(1−Qj)
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≤
∫ 1

0
g(v)f(v, x(v))dv

[
m∏
k=1

(1−Q∗k)

(
1− d2

m∏
k=1

(1−Q∗k)

)]−1

×

∫ 1

t∗

∏
s<tk<1

(1−Qk)ds+

∫ t
∗

0

∏
s<tk<1

(1−Qk)ds


≤
∫ 1

0
g(v)f(v, x(v))dv

[
m∏
k=1

(1−Q∗k)

(
1− d2

m∏
k=1

(1−Q∗k)

)]−1

×
∫ 1

0

∏
s<tk<1

(1−Qk)ds.

Therefore,

d1

m∏
k=1

(1−Qk)
2 <

∫ 1

0
g(v)f(v, x(v))dv

[
m∏
k=1

(1−Q∗k)

(
1− d2

m∏
k=1

(1−Q∗k)

)]−1

×
∫ 1

0

∏
s<tk<1

(1−Qk) ds,

which contradicts (2.4). Thus we get x (t) ≤ 0 on J . �

Now we consider the following problem
x′′ (t) = h(t)− g (t) f(t, x (t)), t ∈ J ′,
4x (tk) = ϕk −Qkx (tk) , 4x′ (tk) = φk −Q∗kx

′ (tk) , k = 1, · · · ,m,

x (0) = d1x (1) + C1, x
′ (0) = d2x

′ (1)−
m−2∑
i=1

aix (ηi) + C2,

(2.10)
where h ∈ PC(J,R), ϕk, φk, C1, C2 ∈ R.

Lemma 2.5. If x (t) ∈ PC1(J,R) ∩ C2(J ′,R) is a solution of the impulsive
differential system (2.10) if and only if x (t) ∈ PC1(J,R) is a solution of the
impulsive integral equation

x (t) = W1 + tW2 +

∫ t

0
(t− s) (h(s)− g (s) f (s, x (s))) ds

+
∏

0<tk<t

(
(ϕk −Qkx(tk)) + (t− tk)(φk −Q∗kx

′(tk))
)
,

(2.11)
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where

W1 =
d1

1− d1

(∫ 1

0
(1− s) (h(s)− g (s) f (s, x (s))) ds

+
∏

0<tk<1

(
(ϕk−Qkx(tk))+(1− tk)(φk −Q∗kx

′(tk))
)
+W2+C1

)
+C1,

W2 =
d2

1− d2

(∫ 1

0
(h(s)− g (s) f (s, x (s))) ds

+
∏

0<tk<1

(
φk −

m−2∑
i=1

aix (ηi)−Q∗kx
′(tk)

)
+ C2

)
+ C2.

Proof. By a simple computation, we can get the results. So we omit the
proof. �

Lemma 2.6. For h ∈ PC(J,R), ϕk, φk, C1, C2 ∈ R, 0 ≤ Qk < 1, 0 < d1, d2,
Q∗k < 1. If



1

1− d1

(∫ 1

0
(1− s) g(s)f(s, x(s))ds+

m∑
k=1

(Qk + (1− tk)Q∗k)

)

+
d2

(1− d1) (1− d2)

(∫ 1

0
g(s)f(s, x(s))ds+

m∑
k=1

Q∗k

)
< 1,

1

1− d2

(∫ 1

0
g(s)f(s, x(s))ds+

m∑
k=1

Q∗k

)
< 1.

(2.12)

Then (2.10) has a unique solution x (t) ∈ PC1(J,R) ∩ C2(J ′,R).

Lemma 2.7. Let x ∈ PC1(J, R) ∩ C2(J, R) and
x′′(t) ≤ 0, t ∈ J ′,
x
(
t+k
)

= x
(
t−k
)

+ Ik (x (tk)) , k = 1, . . . ,m,
x′
(
t+k
)
≤ x′

(
t−k
)

+ I∗k (x′ (tk)) , k = 1, . . . ,m,
x(0)− η1x′(0) ≥ 0, η1 ∈ (0, 1),
x(1) + η2x

′(1) ≥ 0, η2 ∈ (0, 1).

(2.13)

Then x(t) ≥ 0 for all t ∈ J .

Proof. By simple computation, we can easily obtain the result. Noticing that
the graph of x(t) on [0, 1] is concave. The proof is omitted. �
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Lemma 2.8. Suppose that condition (H1) and (H2) hold. Then there exists
a constant τ ∈ (0, 12) satisfies

0 <

∫
[τ,1−τ ]

g(s)ds < +∞.

Proof. It follows from (H2) that

0 <

∫
[τ,1−τ ]

g(s)ds <

∫
[0,1]

g(s)ds < +∞.

The proof is completed. �

Lemma 2.9. Assume that conditions (H1) as well as (H2) and (H3) hold.
Then T : K → K is a completely continuous operator.

Proof. It is easily to prove that T : K → K. Next, for any positive constants
0 < r < R < +∞, we will show

sup
y∈∂Kr,R

∫
[0,1]

g(s)f(s, x(s))ds < +∞, (2.14)

which implies that T : K\{0} → K is well-defined.
By (H2) − (H3), for any 0 < r < R < +∞, there exists a positive integer

number j such that

sup
x∈∂Kr,R

∫
%(j)

g(s)f(s, x(s))ds < 1. (2.15)

For any x ∈ ∂Pr, let x(t0) = max
t∈[0,1]

|x(t)| = r, t0 ∈ [0, 1]. Denote

χ%[α, β](t) =

{
1, t ∈ [α, β],

0, t 6∈ [α, β],

is the eigenvalue function of the set %[α, β] = {t | α ≤ t ≤ β}.
Denote

Θ> = max

{
f(t, x) | (t, x) ∈ ([0, 1] \ %(j))×

[
r

j
, R

]
, j ∈ Z+

}
. (2.16)

It follows from (H1) and (H2) with (2.15)−(2.16) that
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sup
x∈∂Kr,R

∫
[0,1]

g(s)f(s, x(s))ds ≤ sup
x∈∂Kr,R

∫
%(j)

g(s)f(s, x(s))ds

+ sup
x∈∂P r,R

∫
[0,1]\%(j)

g(s)f(s, x(s))ds

≤ 1 + Θ>
∫
[0,1]

g(s)ds

< +∞, (2.17)

that is, (2.14) holds, which also implies that T : Kr,R → K is well-defined and

T(B) is uniformly bounded for any bounded set B ⊂ Kr,R.

By simple computing and deducing, we know that T(Kr,R) is equicontinuous.

Thus, by the Ascoli−Arzela theorem, we see that T : Kr,R → K is a compact

operator. Finally we show that T : Kr,R → K is continuous. In fact, for any

xn, x0 ∈ Kr,R and ‖xn−x0‖ → 0 (n→∞). Then ‖Txn−Tx0‖ → 0 (n→∞).
This completes the proof. �

3. Main results

In this section, we present and prove our main results.

Theorem 3.1. Suppose that (H1) − (H3) and (2.12) hold. Then the im-
pulsive system (1.1) has the min-maximal solutions x∗, y∗ ∈ [x0, y0], respec-
tively. Moreover, there exist monotone iterative sequences {xn}∞n=1, {yn}∞n=1 ⊂
[x0, y0] such that xn → x∗, yn → y∗ (n → ∞) uniformly on t ∈ J , where
{xn}∞n=1, {yn}∞n=1 satisfy

x′′n (t) = g (t) f (t, xn (t))− g∗ (t) (xn (t)− xn−1 (t)) , t ∈ J ′,
4 xn (tk) = Īk (xn−1 (tk))−Qk (t) (xn (t)− xn−1 (t)) , k = 1, · · · ,m,
4 x′n (tk) = I∗k (xn−1 (tk))−Q∗k (t) (xn (t)− xn−1 (t)) , k = 1, . . .m,

xn (0) = xn−1 (0) + d1 (xn (1)− xn−1 (1)) , n = 1, 2, · · · ,
x′n (0) = x′n−1 (0) + d2

(
x′n (1)− x′n−1 (1)

)
, n = 1, 2, · · · ,

(3.1)
and

y′′n (t) = g (t) f (t, yn (t))− g∗ (t) (yn (t)− yn−1 (t)) , t ∈ J ′,
4 yn (tk) = Īk (yn−1 (tk))−Qk (t) (yn (t)− yn−1 (t)) , k = 1, · · · ,m,
4 y′n (tk) = I∗k (yn−1 (tk))−Q∗k (t) (yn (t)− yn−1 (t)) , k = 1, · · · ,m,
yn (0) = yn−1 (0) + d1 (yn (1)− yn−1 (1)) , n = 1, 2, · · · ,
y′n (0) = y′n−1 (0) + d2

(
y′n (1)− y′n−1 (1)

)
, n = 1, 2, · · ·

(3.2)
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with

x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · ≤ x∗ ≤ y∗ ≤ · · · ≤ yn ≤ · · · ≤ y2 ≤ y1 ≤ y0.

Proof. For any xn−1, yn−1 ∈ PC1(J,R) ∩ C2 (J ′,R), it follows from Lemma
2.6 and the problems (3.1) and (3.2) have unique solutions xn and yn in
PC1(J,R) ∩ C2 (J ′,R), respectively. Now, we verify that

xn−1 ≤ xn ≤ yn ≤ yn−1, n = 1, 2, · · · . (3.3)

Let u (t) = x0 (t) − x1 (t) , v (t) = y1 (t) − y0 (t) , $ (t) = x1 (t) − y1 (t), and
such that

d1(y0(1)− x0(1)) ≤ x0(0)− y0(0)

with x′0 (0)−y′0 (0)+d1 [y′0 (1)− x′0 (1)] ≤ 0. From (3.1) and (3.2) with (H1)−
(H3), we have that

u′′ (t) ≤ −g∗ (t)u (t) , t ∈ J ′,
4u (tk) ≤ −Qk (tk) , 4u′ (tk) ≤ −Q∗k (tk) , k = 1, · · · ,m,
u (0) ≤ d1u (1) , u′ (0) ≤ d2u′ (1) ,

and 
v′′ (t) ≤ −g∗ (t) v (t) , t ∈ J ′,
4v (tk) ≤ −Qk (tk) , 4v′ (tk) ≤ −Q∗k (tk) , k = 1, 2, · · · ,m,
v (0) ≤ d1v (1) , v′ (0) ≤ d2v′ (1) ,

with

$′′ (t) = −g∗ (t)$(t), t ∈ J ′,
4$ (tk) = Qk$(tk), k = 1, · · · ,m,
4$′ (tk) = Q∗k$(tk), k = 1, · · · ,m,
$ (0) = x0 (0)− y0 (0) + d1 [x1 (1)− x0 (1)]− d1 [y1 (1)− y0 (1)]

≤ x0 (0)− y0 (0) + d1$ (1) + d1 [y0 (1)− x0 (1)] ≤ d1$ (1) ,

$′ (0) = x′0 (0)− y′0 (0) + d1 [x′1 (1)− x′0 (1)]− d1 [y′1 (1)− y′0 (1)]

≤ x′0 (0)− y′0 (0) + d1$
′ (1) + d1 [y′0 (1)− x′0 (1)] ≤ d1$′ (1) .

Thus, by means of Lemma 2.4, we have u (t) ≤ 0, v (t) ≤ 0, $ (t) ≤ 0, ∀t ∈ J ,
i. e., x0 ≤ x1 ≤ y1 ≤ y0. Assume that xk−1 ≤ xk ≤ yk ≤ yk−1 for some k ≥ 1.
Thus, employing the same technique once again, by Lemma 2.4, one can get
xk ≤ xk+1 ≤ yk+1 ≤ yk, for k ≥ 1. Then, one can easily show that

x0 ≤ x1 ≤ · · · ≤ xn ≤ · · · ≤ x∗ ≤ y∗ ≤ · · · ≤ yn ≤ · · · ≤ y1 ≤ y0, n = 1, 2, · · · .
(3.4)

Employing the standard arguments, we have lim
n→∞

xn (t) = x∗ (t) , lim
n→∞

yn (t) =

y∗ (t) uniformly on t ∈ J , and the limit functions x∗ and y∗ satisfy (1.1).
Moreover, x∗, y∗ ∈ [x0, y0].
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Next, we prove that x∗ (t) and y∗ (t) are the min-maximal solutions of im-
pulsive differential equation (1.1) in [x0, y0], respectively. If $ ∈ [x0, y0] is any
solution of the problem (1.1), and xn−1 (t) ≤ $ (t) ≤ yn−1 (t) for some integer
n. Let µ (t) = xn (t)−$ (t) such that µ (t) ≥ 1+$ (t) and xn−1(0) ≤ d1xn−1(1)
with y′0(0)− x′0(1)− d1(y′0(1) +$′(1)) ≤ d2µ′(1). Then

µ′′ (t) = g (t) f (t, xn (t))− g∗ (t) [xn (t)− xn−1 (t)] + g∗ (t)$ (t)

≤ g∗ (t)µ(t), t ∈ J ′,
4µ (tk) = Īk (xn−1 (tk))−Qk [xn (tk)− xn−1 (tk)]−Qk$ (t)

≤ Qkxn(tk)−Qk$ (tk) = Qkµ (tk) ,

4µ′ (tk) = I∗k (xn−1 (tk))−Q∗k [xn (tk)− xn−1 (tk)]−Q∗k$ (tk)

≤ Q∗kxn(tk)−Q∗k$ (tk) = Qkµ (tk) = Q∗kµ (tk) ,

µ (0) = xn−1 (0) + d1 [xn (1)− xn−1 (1)]− x0(0) + y0(0)

− d1(x1(1)− x0(1)) + d1(y1(1)− y0(1))

≤ xn−1(0)− x0(0) + y0(0) + d1µ(1)− d1xn−1(1)

= xn−1(0)− d1xn−1(1)− x0(0) + y0(0) + d1µ(1) ≤ d1µ(1),

µ′ (0) = x′n−1 (0) + d2
[
x′n (1)− x′n−1 (1)

]
− x′0(0) + y′0(0)

− d1(x′1(1)− x′0(1)) + d1(y
′
1(1)− y′0(1))

≤ y′0(0)− x′0(1)− d1(y′0(1) +$′(1)) ≤ d2µ′(1).
(3.5)

By Lemma 2.4, we have xn (t) ≤ $ (t) for t ∈ J . By the same way as above,
we can show $ (t) ≤ yn (t) for t ∈ J . Therefore, xn (t) ≤ $ (t) ≤ yn (t) for
t ∈ J . That is x∗, y∗ ∈ [x0, y0]. Thus x∗ and y∗ are the min-maximal solutions
of the impulsive differential equation boundary value problem (1.1). �

4. Discussions

As an application, we study an infinite system of scalar second-order im-
pulsive differential equations

xn
′′ (t) =

1√
236

(
1

n3
− xn

)
+

1

60n2
√
t

(
x2n+1 + x32n

)
, 0 ≤ t ≤ 1, t 6= 1

2
,

M xn|t=ti = − 1

16
xn(1) +

1

5
x′n(1),

M x′n|t=ti = − 1

24
xn(1),

xn(0) =
1

n3
, x′n(0) = 0, (n = 1, 2, 3, · · · ),

(4.1)
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where d1 = d2 = 0, ai ≡ 0, i = 1, · · · ,m − 2. Evidently, xn(t) ≡ 0 (n =
1, 2, · · · ) is not a solution of (4.1).

Corollary 4.1. System (4.1) has minimal and maximal solutions which are
continuously differential on [0, 12 ]

⋃
(12 , 1], (n = 1, 2, · · · ) and satisfy

0 ≤ xn(t) ≤


1

n3
, 0 ≤ t ≤ 1

2
,

3

n2
√
t
,

1

2
≤ t ≤ 1, (n = 1, 2, 3, · · · ).

(4.2)

Remark 4.2. From above discussions, it is clear that our results improve and
extend the results in [6] and [9].

Acknowledgments: The authors express their gratitude to Professor R. P.
Agarwal and Professor Yeol Je Cho with Professor Jong Kyu Kim for stimu-
lating discussions. They would like to gratitude to the referee for his/her very
important comments that improved the results and the quality of the paper.

References

[1] B. Ahmad, A. Alsaedi and D. Garout, Monotone iterative schemes for impulsive three–
point nonlinear boundary value problems with quadratic convergence, J. Kor. Math. Soc.,
45(5) (2008), 1275–1295.

[2] D. Bainov and P. Simeonov, Impulsive Differential Equations: Periodic Solutions and
Applications, Longman Scientific and Technical, Harlow, 1993.

[3] K. Deimling, Nonlinear Functional Analysis, New York, Springer–Verlag, 1985.
[4] M. Derhab and H. Mekni, Existence of minimal and maximal solution for a second order

differential equation with nonlocal boundary conditions, Comm. Appl. Nonlinear Anal.,
18(2) (2011), 1–19.

[5] S.W. Du and V. Lakshmilkanthan, Monotone iterative technique for differential equa-
tions in a Banach space, J. Math. Anal. Appl., 87(2) (1982), 454–459.

[6] D. Guo, Existence of solution of boundary value problems for nonlinear second order
impulsive differential equations in Banach space, J. Math. Anal. Appl., 181(2) (1994),
407–421.

[7] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic
Press, Boston, 1988.

[8] Y. Hou, L. Zhang and G. Wang, A new comparison principle and its application to
nonlinear impulsive functional integro–differential equations, Adv. Diff. Equ., 2018(380)
(2018), 1–13.

[9] Y. Lee and S. Chun, Extinction and positivity of solution of the p-Laplacian evolution
equations on networks, J. Math. Anal. Appl., 386 (2012), 581–592.

[10] K. Mazowiecka and A. Schikorra, Fractional div-curl guantities and appplications to
nonlocal geometric equations, J. Funct. Anal., 275 (2018), 1–44.

[11] V.D. Milman and A.D. Myshkis, On the Stability of motion in the presence of impulses,
Sib. Math. J., 1(2) (1960), 233–237. (in Russian)

[12] B.P. Rynne, Simple bifurcation and global curves of solution of p-Laplacian problems
with radial symmetry, J. Diff. Equ., 263 (2017), 3611–3626.



Min-maximal solution of impulsive differential equation boundary value problems 1047

[13] Y. Sun, L. Liu and Y. Wu, The existence and uniqueness of positive monotone solutions
for a class of nonlinear Schrödinger equations on infinite domains, J. Comput. Appl.
Math., 321 (2017), 478–486.

[14] Y. Sun, L. Liu, J. Zhang and R.P. Agarwal, Positive solution of singular three–point
boundary value problems for second–order differential equations, J. Comput. Appl.
Math., 230(1) (2009), 738–750.

[15] J. Wettstein, Uniqueness and regularity of the fractional harmonic gradient flow in Sn−1,
Nonlinear Anal., 214 (2022), 112592.

[16] M. Zhu, Wave analysis in the complex Fourier transform domain: A new method to
obtain the Green’s functions of dispersive linear partial differential equations, J. Sound.
Vib., 537 (2022), 117–175.


