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Abstract. In this paper, we investigate the Robin-Dirichlet problems (Pn) for damped

wave equations with arithmetic-mean terms (Snu)(t) =
1

n

n∑
i=1

u2( i−1
n

, t), and (Ŝnu)(t) =

1

n

n∑
i=1

u2
x( i−1

n
, t), where u is the unknown function. First, under suitable conditions, we

prove that, for each n ∈ N, (Pn) has a unique weak solution ūn. Next, we prove that the

sequence of solutions ūn converge strongly in appropriate spaces to the weak solution u∞

of the corresponding problem (P∞). Some remarks on open problems are also given in the

end of paper.
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1. Introduction

In this paper, we consider the Robin-Dirichlet problems (Pn) for damped
wave equations as follows

(Pn)


utt − λutxx − Φ

(
t, (Snu)(t), (Ŝnu)(t)

) ∂

∂x
(µ(x, t)ux(x, t))

= f (x, t) , 0 < x < 1, 0 < t < T,
ux(0, t)− ζu(0, t) = u(1, t) = 0,
u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x),

(1.1)

where Φ, µ, f, ũ0, ũ1 are given functions, λ > 0, ζ ≥ 0 are given constants,
and (Snu)(t), (Ŝnu)(t), n ∈ N are arithmetic-mean terms defined by

(Snu)(t) =
1

n

n∑
i=1

u2( i−1
n , t)

and

(Ŝnu)(t) =
1

n

n∑
i=1

u2
x( i−1

n , t).

The nonlinear wave equations with strong damping of this type have been
investigated extensively and obtained many interesting results during the past
decades. These equations arise naturally in various sciences such as classical
mechanics, fluid dynamics, quantum field theory, see [2], [4]-[8], [10]-[14] and
the references given therein. In those mentioned works, by using different
methods together with various techniques in functional analysis, several results
concerning the existence/global existence and the properties of solutions such
as blow-up, decay, stability have been established.

In article [12], Pellicer and Morales considered a model for a damped spring-
mass system, precisely a strongly damped wave equation with dynamic bound-
ary conditions as follows utt − uxx − αutxx = 0, 0 < x < 1, t > 0,

u(0, t) = 0,
utt(1, t) = −ε [ux(1, t) + αutx(1, t) + rut(1, t)] .

(1.2)

It is well known that the motion of a mass in a spring-mass-damper system
is usually modelled by the following second-order ordinary differential equation
(ODE) of damped oscillations

mu′′(t) = −ku(t)− du′(t), (1.3)

where k > 0 is recovery constant of spring and d ≥ 0 stands for dissipation co-
efficient. The authors showed that, for some certain values of the parameters
in (1.3), the large time behavior of the solutions is the same as for a classical
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spring-mass-damper ODE. For more details, they proved that for fixed con-
stants α, r > 0 and ε small enough, the partial differential equation model
(1.2) admitted two dominant eigenvalues. Therefore, this can be implied the
existence of a second-order ODE of type (1.3) which can be considered as the
limit of the model (1.2) when t→∞ and ε is sufficiently small.

In article [2], Gazzola and Squassina discussed the following viscoelastic
equation with strong damping term ∆ut: utt −∆u− ω∆ut + µut = u|u|p−2, in Ω× [0, T ],

u(x, t) = 0, on ∂Ω× [0, T ],
u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,

(1.4)

where Ω is an open bounded Lipschitz subset of Rn, T > 0, p > 2, ω, µ > 0.
The authors established the global existence theorem and proved that the
global solution is uniformly bounded. They also constructed the finite time
blow up of solutions for low initial energy or arbitrarily high initial energy.

In article [5], Q. Li and L. He investigated the nonlinear viscoelastic wave
equation with strong damping of the form utt −∆u+

∫ t
0 g(t− τ)∆u(τ)dτ −∆ut + ut = u|u|p−2, in Ω× (0,∞),

u(x, t) = 0, on ∂Ω× (0,∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,

(1.5)
where Ω ⊂ Rn is bounded domains with smooth boundary ∂Ω. The authors
proved results concerning local existence/global existence of solutions, estab-
lished the general decay result for global solutions, and showed the finite time
blow-up result for some solutions with negative initial energy and positive
initial energy.

In [9], Nhan et al. considered the Robin problem for a nonlinear wave
equation with source containing multi-point nonlocal terms as follows

utt − uxx = f (x, t, u(x, t), ut(x, t), u(η1, t), · · · , u(ηq, t)) ,
0 < x < 1, 0 < t < T,

ux(0, t)− h0u(0, t) = ux(1, t) + h1u(1, t) = 0,
u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x),

(1.6)

where f, ũ0, ũ1 are given functions and h0, h1 ≥ 0, η1, η2, · · · , ηq are given
constants with h0 + h1 > 0, 0 ≤ η1 < η2 < · · · < ηq ≤ 1. Here, the authors
proved the existence and uniqueness of a weak solution and established an
asymptotic expansion of high order in a small parameter of a weak solution.

At the present time, to the best of our knowledge, less results are investi-
gated for the damped wave equation containing multi-point nonlocal terms.
Therefore, motivated by the above-mentioned inspiring works, we discuss here
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the existence and uniqueness of a weak solution ūn for the problem (Pn),
n ∈ N. Furthermore, the convergence of the sequence of solutions ūn in appro-
priate spaces is investigated.

Let us explain in some detail related to our main results. First, for each
n ∈ N fixed, we prove the existence and uniqueness of a local weak solution
ūn of Prob. (Pn). Then, we can consider the behavior of solutions ūn, n ∈ N.
It is clear to see that, if u ∈ L∞(0, T ;H2) then functions y 7→ u2(y, t) and
y 7→ u2

x(y, t) are continuous on [0, 1], a.e. t ∈ [0, T ], it leads to

(Snu)(t) =
1

n

n∑
i=1

u2( i−1
n , t)→

∫ 1

0
u2(x, t)dx = ‖u(t)‖2 as n→∞,

(Ŝnu)(t) =
1

n

n∑
i=1

u2
x( i−1

n , t)→
∫ 1

0
u2
x(x, t)dx = ‖ux(t)‖2 as n→∞.

Therefore, it is possible that Prob. (Pn) have a close relationship in a certain
sense with Prob. (P∞) defined as follows

(P∞)


utt − λutxx − Φ

(
t, ‖u(t)‖2 , ‖ux(t)‖2

) ∂

∂x
(µ(x, t)ux(x, t))

= f (x, t) , 0 < x < 1, 0 < t < T,
ux(0, t)− ζu(0, t) = u(1, t) = 0,
u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x).

(1.7)

We shall prove this relationship to obtain a solution of Prob. (P∞) via the
convergence of the solution sequence {ūn} in appropriate spaces. To the best
of our knowledge, there are relatively few results related to approximation
problems (Pn), with nonlinear expressions containing arithmetic mean terms,
to get the approximation of the solutions of Prob. (P∞).

In one-dimensional case, the first equation of Eq. (1.1)1 of Prob. (P∞)
is regarded as a model of nonlinear wave equations of the Kirchhoff-Carrier
type with strong damping. It is well known that the mathematical model of
Kirchhoff and Carrier comes from a description of small vibrations of an elastic
stretched string. In [3], Kirchhoff first investigated the following nonlinear
vibration of an elastic string

ρhutt =

(
P0 +

Eh

2L

∫ L

0

∣∣∣∣∂u∂y (y, t)

∣∣∣∣2 dy
)
uxx, (1.8)

where u = u(x, t) is the lateral displacement at the space coordinate x and
the time t, ρ is the mass density, h is the cross-section area, L is the length,
E is the Young modulus, P0 is the initial axial tension. And Carrier in [1]
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established a model of the type

utt −
(
P0 + P1

∫ L

0
u2(y, t)dy

)
uxx = 0, (1.9)

where P0, P1 are given constants, which models vibrations of an elastic string
when changes in tension are not small.

This paper consists of four sections. In Section 2, we present some prelim-
inaries. In Section 3, under suitable assumptions, we prove that (Pn) has a
unique weak solution ūn. In Section 4, we show that the solution sequence
{ūn} of Probs. (Pn), n ∈ N strongly converges in the Banach space

HT = {v ∈ C0
(
[0, T ];H2 ∩ V

)
∩ C1([0, T ];V ) : v′ ∈ L2(0, T ;H2 ∩ V )}

to a weak solution u of the problem (P∞) as n → ∞, with the estimation
‖ūn − u‖HT

≤ CTEn, for all n ∈ N, where

En = ‖Φn[ūn]− Φ[u]‖L2(0,T )

≤ K̃M

[∥∥∥Snūn − ‖u(·)‖2
∥∥∥
L2(0,T )

+
∥∥∥Ŝnūn − ‖ux(·)‖2

∥∥∥
L2(0,T )

]
→ 0

as n → ∞, and CT is the constant independent of n. In the proofs of results
obtained here, the main tools of functional analysis such as the linear approx-
imate method, the Galerkin method, the arguments of continuity with priori
estimates, the compact method, the regularized technique are employed.

Moreover, in order to get a better priori evaluation, a suitable energy lemma
(Lemma 3.4) is also built, where a piecewise linear function on [0, T ] and a
regularized sequence in C∞c (R) are used to get an energy equality in the case
the initial condition ũ0 = ũ1 = 0. Lemma 3.4 is a relative generalization of the
inequality and equality of energy given in Lions’s book [6, Lemma 1.6, p. 224],
it is the key lemma to establish the convergence of linear approximate sequence
associated with the problem (Pn). Finally, we remark that the methods used
can be applied again for similar problems to obtain the same results (see
Remarks 4.1, 4.2 below).

2. Preliminaries

In this paper, with Ω = (0, 1), we will use the usual function spaces Lp =
Lp(Ω), Hm = Hm (Ω) . Let 〈·, ·〉 denote either the scalar product in L2 or the
dual pairing of a continuous linear functional and an element of a function
space. We denote by ‖·‖ the norm in L2 and by ‖·‖X the norm in a Banach
space X. We call X ′ the dual space of X. We denote Lp(0, T ;X), 1 ≤ p ≤ ∞
the Banach space of real functions u : (0, T ) → X measurable such that
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‖u‖Lp(0,T ;X) < +∞ with

‖u‖Lp(0,T ;X) =


(∫ T

0 ‖u(t)‖pX dt
)1/p

, if 1 ≤ p <∞,
ess sup
0<t<T

‖u(t)‖X , if p =∞.

Let u(t), u′(t) = ut(t) = u̇(t), u′′(t) = utt(t) = ü(t), ux(t) = 5u(t), uxx(t) =

∆u(t), denote u(x, t),
∂u

∂t
(x, t),

∂2u

∂t2
(x, t),

∂u

∂x
(x, t),

∂2u

∂x2
(x, t), respectively.

Let T ∗ > 0, with Φ ∈ Ck([0, T ∗]× R2
+), Φ = Φ (t, y, z) , we put D1Φ =

∂µ

∂t
,

D2Φ =
∂Φ

∂y
, D3Φ =

∂Φ

∂z
, and DαΦ = Dα1

1 · · ·D
α3
3 Φ, α = (α1, · · · , α3) ∈ Z3

+,

|α| = α1 + · · ·+ α3 ≤ k, D(0,··· ,0)Φ = Φ.

On H1, we shall use the following norm

‖v‖H1 =
(
‖v‖2 + ‖vx‖2

)1/2
. (2.1)

We put

V = {v ∈ H1 : v(1) = 0}, (2.2)

a(u, v) =

∫ 1

0
ux(x)vx(x)dx+ ζu(0)v(0), u, v ∈ V. (2.3)

Then, V is a closed subspace of H1 and on V, three norms v 7→ ‖v‖H1 ,

v 7→ ‖vx‖ and v 7→ ‖v‖a =
√
a(v, v) are equivalent norms.

We have the following lemmas, the proofs of which are straightforward hence
we omit the details.

Lemma 2.1. The imbedding H1 ↪→ C0(Ω) is compact and

‖v‖C0(Ω) ≤
√

2 ‖v‖H1 for all v ∈ H1. (2.4)

Lemma 2.2. Let ζ ≥ 0. Then the imbedding V ↪→ C0(Ω) is compact and{
‖v‖C0(Ω) ≤ ‖vx‖ ≤ ‖v‖a ,

1√
2
‖v‖H1 ≤ ‖vx‖ ≤ ‖v‖a ≤

√
1 + ζ ‖vx‖ ≤

√
1 + ζ ‖v‖H1 ,

(2.5)

for all v ∈ V.

Lemma 2.3. Let ζ ≥ 0. Then the symmetric bilinear form a(·, ·) defined by
(2.3) is continuous on V × V and coercive on V.



Approximation of solutions of the Robin-Dirichlet problems 1063

Lemma 2.4. Let ζ ≥ 0. Then there exists the Hilbert orthonormal base {wj}
of L2 consisting of the eigenfunctions wj corresponding to the eigenvalue λj
such that {

0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · , lim
j→+∞

λj = +∞,

a(wj , v) = λj〈wj , v〉 for all v ∈ V, j = 1, 2, · · · .
(2.6)

Furthermore, the sequence {wj/
√
λj} is also a Hilbert orthonormal base of V

with respect to the scalar product a(·, ·). On the other hand, we also have wj
satisfying the following boundary value problem{

−∆wj = λjwj , in (0, 1),
wjx(0)− ζwj(0) = wj(1) = 0, wj ∈ C∞(Ω).

(2.7)

Proof. The proof of Lemma 2.4 can be found in ([13, Theorem 7.7, p.87]) with
H = L2 and V, a(·, ·) as defined by (2.2), (2.3). �

Remark 2.5. The weak formulation of Prob. (Pn) can be given in the follow-

ing manner: Find u ∈ ṼT = {v ∈ L∞(0, T ;H2 ∩ V ) : v′ ∈ L∞(0, T ;H2 ∩ V ),
v′′ ∈ L∞(0, T ;L2)∩L2(0, T ;V )}, such that u satisfies the following variational
equation

〈u′′(t), w〉+ λa(u′(t), w) + Φn[u](t)aµ(t;u(t), w) = 〈f(t), w〉 (2.8)

for all w ∈ V, a.e., t ∈ (0, T ), together with the initial conditions

u(0) = ũ0, u
′(0) = ũ1, (2.9)

where

Φn[u](t) = Φ
(
t, (Snu)(t), (Ŝnu)(t)

)
,

(Snu)(t) =
1

n

n∑
i=1

u2( i−1
n , t),

(Ŝnu)(t) =
1

n

n∑
i=1

u2
x( i−1

n , t),

aµ(t;u,w) = 〈µ(t)ux, vx〉+ ζµ(0, t)u(0)v(0), u, v ∈ V.

(2.10)

3. Existence and uniqueness for (Pn)

We make the following assumptions:
(H1) : ũ0, ũ1 ∈ V ∩H2, ũ0x(0)− ζũ0(0) = 0;
(H2) : µ ∈ C2([0, 1]× [0, T ∗]) such that

µ (x, t) ≥ µ∗ > 0, for all (x, t) ∈ [0, 1]× [0, T ∗];
(H3) : Φ ∈ C1([0, T ∗]× R2

+) such that Φ (t, y, z) ≥ 1,
for all (t, y, z) ∈ [0, T ∗]× R2

+;
(H4) : f ∈ L2(0, T ∗;L2) such that f ′ ∈ L1(0, T ∗;L2).
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For each M > 0 given, we set the constants K̄M (f), K̃M (Φ), K̂µ as follows

K̃M = K̃M (Φ) = ‖Φ‖C1(ÃM) = ‖Φ‖C0(ÃM) +
∑3

i=1
‖DiΦ‖C0(ÃM) ,

K̂µ = ‖µ‖C2(Q̄T∗) =
∑
|α|≤2

‖Dαµ‖C0(Q̄T∗) ,

‖Φ‖C0(ÃM) = sup
(t,y,z)∈ÃM

|Φ(t, y, z)| ,

‖µ‖C0(Q̄T∗) = sup
(x,t)∈Q̄T∗

|µ(x, t)| ,

(3.1)

where

ÃM = [0, T ∗]× [0,M2]× [0, 2M2], Q̄T ∗ = [0, 1]× [0, T ∗]. (3.2)

For every T ∈ (0, T ∗], we put

VT = {v ∈ L∞(0, T ;H2∩V ) : v′ ∈ L∞(0, T ;H2∩V ), v′′ ∈ L2(0, T ;V )}, (3.3)

then VT is a Banach space with respect to the following norm (see Lions [6])

‖v‖VT = max
{
‖v‖L∞(0,T ;H2∩V ) ,

∥∥v′∥∥
L∞(0,T ;H2∩V )

,
∥∥v′′∥∥

L2(0,T ;V )

}
. (3.4)

For every M > 0, we put

W (M,T ) = {v ∈ VT : ‖v‖VT ≤M},
W1(M,T ) = {v ∈W (M,T ) : v′′ ∈ L∞(0, T ;L2)}.

(3.5)

We note that

HT =
{
v ∈ C0

(
[0, T ];H2 ∩ V

)
∩ C1([0, T ];V ) : v′ ∈ L2(0, T ;H2 ∩ V )

}
(3.6)

is a Banach space with respect to the norm

‖v‖HT
= ‖v‖C0([0,T ];H2∩V ) +

∥∥v′∥∥
C0([0,T ];V )

+
∥∥v′∥∥

L2(0,T ;H2∩V )
. (3.7)

Now, we establish the recurrent sequence {um}. The first term is chosen as
u0 ≡ ũ0, suppose that

um−1 ∈W1(M,T ), (3.8)

we associate Prob. (Pn) with the following problem.

Find um ∈W (M,T ) (m ≥ 1) satisfying the linear variational problem{
〈u′′m(t), w〉+ λa(u′m(t), w) +Am (t;um(t), w) = 〈f(t), w〉 , ∀w ∈ V,
um(0) = ũ0, u

′
m(0) = ũ1,

(3.9)

where

Am(t;u,w) = Φ̄m(t)aµ(t;u,w), ∀u,w ∈ V,

Φ̄m(t) = Φn[um−1](t) = Φ
(
t, (Snum−1)(t), (Ŝnum−1)(t)

)
.

(3.10)
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First, we need the following lemma, the proof of this lemma is not difficult
so we omit the details.

Lemma 3.1. The following inequalities are fulfilled.

(i) µ∗ ‖v‖2a ≤ aµ(t; v, v) ≤ K̂µ ‖v‖2a , ∀v ∈ V, ∀t ∈ [0, T ∗],

(ii)
∣∣aµ′(t; v, v)

∣∣ ≤ K̂µ ‖v‖2a , ∀v ∈ V, ∀t ∈ [0, T ∗],

(iii) 0 < µ∗ ≤ µ (x, t) ≤ K̂µ,

(iv)
∣∣Φ̄′m(t)

∣∣ ≤ (1 + 6M2
)
K̃M ,

(v)

∥∥∥∥ ∂∂x (µ(t)u
(k)
mx(t)

)∥∥∥∥ ≤ √2K̂µ

√
S̄

(k)
m (t),

(vi)

∥∥∥∥ ∂2

∂x∂t

(
µ(t)u

(k)
mx(t)

)∥∥∥∥ ≤ 2K̂µ

√
S̄

(k)
m (t),

(vii)

∥∥∥∥ ∂∂t
[
Φ̄m(t)

∂

∂x

(
µ(t)u

(k)
mx(t)

)]∥∥∥∥ ≤ (2 +
√

2)K̃MK̂µ

√
S̄

(k)
m (t).

Now, we have the following theorem.

Theorem 3.2. Let (H1)− (H4) hold. Then, there exist positive constants M,
T such that, for u0 ≡ ũ0, there exists a recurrent sequence {um} ⊂ W (M,T )
defined by (3.8)-(3.10).

Proof. The proof consists of several steps.

Step 1. (The Faedo-Galerkin approximation: introduced by Lions [6]). Con-
sider the basis {wj} for L2 as in Lemma 2.4. Put

u(k)
m (t) =

∑k

j=1
c

(k)
mj(t)wj , (3.11)

where the coefficients c
(k)
mj , j = 1, · · · , k satisfy the system of linear differential

equations{
〈ü(k)
m (t), wj〉+ λa(u̇

(k)
m (t), wj) +Am(t;u

(k)
m (t), wj) = 〈f(t), wj〉 , 1 ≤ j ≤ k,

u
(k)
m (0) = ũ0k, u̇

(k)
m (0) = ũ1k,

(3.12)
where {

ũ0k =
∑k

j=1 α
(k)
j wj → ũ0 strongly in H2 ∩ V,

ũ1k =
∑k

j=1 β
(k)
j wj → ũ1 strongly in H2 ∩ V.

(3.13)
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The system (3.12) is written as follows

c
(k)
mj(t) = α

(k)
j +

β
(k)
j

λλj

(
1− e−λλjt

)
+

∫ t

0
e−λλjrdr

∫ r

0
eλλjsfj(s)ds

−
∫ t

0
e−λλjrdr

∫ r

0
eλλjs

k∑
i=1

a
(m)
ij (s)c

(k)
mi (s)ds, 1 ≤ j ≤ k,

(3.14)

where

a
(m)
ij (t) = Am(t;wi, wj), fj(t) = 〈f(t), wj〉 , 1 ≤ i, j ≤ k.

Omitting the indices m and k, the system (3.14) is rewritten in the form of
a fixed-point equation as follows

c(t) = U [c](t), (3.15)

where

c(t) = (c1(t), · · · , ck(t)),
U [c](t) = (U1[c](t), · · · , Uk[c](t)) = G(t) + L[c](t),

G(t) = (G1(t), · · · , Gk(t)) ,
L[c](t) = (L1[c](t), · · · , Lk[c](t)) ,

Gj(t) = α
(k)
j +

β
(k)
j

λλj

(
1− e−λλjt

)
+

∫ t

0
e−λλjrdr

∫ r

0
eλλjsfj(s)ds,

Lj [c](t) = −
∫ t

0
e−λλjrdr

∫ r

0
eλλjs

k∑
i=1

a
(m)
ij (s)ci(s)ds, 1 ≤ j ≤ k.

Applying the contraction principle, system (3.15) has a unique solution c(t)
in [0, T ]. The proof is given below.

Let γ >
√
Amax, where we denote Amax ≡ sup

0≤t≤T

(
max
1≤i≤k

k∑
j=1

∣∣∣a(m)
ij (t)

∣∣∣) .
It is well known that X = C0

(
[0, T ];Rk

)
is a Banach space with respect to

the norm

‖c‖γ,X = sup
0≤t≤T

e−γt |c(t)|1 , |c(t)|1 =
∑k

j=1
|cj(t)| , c ∈ X.

Then, clearly, U : X → X. Further, U is contractive. Indeed, first we note
that, for all c = (c1, · · · , ck), d = (d1, · · · , dk) ∈ X, z = c− d,
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|U [c](t)− U [d](t)|1 = |L[z](t)|1

=
∑k

j=1
|Lj [z](t)|

≤
∑k

j=1

∫ t

0
e−λλjrdr

∫ r

0
eλλjs

k∑
i=1

∣∣∣a(m)
ij (s)zi(s)

∣∣∣ ds
≤
∫ t

0
dr

∫ r

0
max
1≤i≤k

∑k

j=1

∣∣∣a(m)
ij (s)

∣∣∣ |z(s)|1 ds
≤ sup

0≤s≤T

(
max
1≤i≤k

∑k

j=1

∣∣∣a(m)
ij (s)

∣∣∣) ∫ t

0
dr

∫ r

0
|z(s)|1 ds

≤ Amax ‖z‖γ,X
∫ t

0
dr

∫ r

0
eγsds

≤ Amax
eγt

γ2
‖c− d‖γ,X .

It follows that

e−γt |U [c](t)− U [d](t)|1 ≤
Amax

γ2
‖c− d‖γ,X ,

it leads to

‖U [c]− U [d]‖γ,X ≤
Amax

γ2
‖c− d‖γ,X , ∀c, d ∈ X.

Since, 0 <
Amax

γ2
< 1, U : X → X is contractive. Then, (3.15) has a unique

solution c ∈ X. Thus, system (3.12) has a unique solution u
(k)
m (t) in [0, T ].

Step 2. (A priori estimates). Put

S(k)
m (t) =

∥∥∥u̇(k)
m (t)

∥∥∥2
+
∥∥∥u̇(k)

m (t)
∥∥∥2

a
+ λ

∥∥∥∆u̇(k)
m (t)

∥∥∥2

+ Φ̄m(t)

[
aµ(t;u(k)

m (t), u(k)
m (t)) +

∥∥∥√µ(t)∆u(k)
m (t)

∥∥∥2
]

+ 2

∫ t

0

[
λ

(∥∥∥u̇(k)
m (s)

∥∥∥2

a
+
∥∥∥∆u̇(k)

m (s)
∥∥∥2
)

+
∥∥∥ü(k)

m (s)
∥∥∥2

a

]
ds,

(3.16)

then we deduce from (3.12) that
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µ̄∗S̄
(k)
m (t) ≤ S(k)

m (t) = S(k)
m (0) + 2Φ̄m(0)

〈
∂

∂x
(µ(0)ũ0kx) ,∆ũ1k

〉
+ 2 〈f(0),∆ũ1k〉

+

∫ t

0

[
Φ̄′m(s)aµ(s;u(k)

m (s), u(k)
m (s))+Φ̄m(s)aµ′(s;u

(k)
m (s), u(k)

m (s))
]
ds

+

∫ t

0
ds

∫ 1

0

[
∂

∂s

(
Φ̄m(s)µ(x, s)

)] ∣∣∣∆u(k)
m (x, s)

∣∣∣2 dx
− 2

∫ t

0
Φ̄m(s)〈µx(s)u(k)

mx(s),∆u̇(k)
m (s)〉ds

+ 2

∫ t

0
Φ̄′m(s)

〈
∂

∂x

(
µ(s)u(k)

mx(s)
)
,∆u̇(k)

m (s)

〉
ds

+ 2

∫ t

0
Φ̄m(s)

〈
∂2

∂x∂s

(
µ(s)u(k)

mx(s)
)
,∆u̇(k)

m (s)

〉
ds

− 2Φ̄m(t)

〈
∂

∂x

(
µ(t)u(k)

mx(t)
)
,∆u̇(k)

m (t)

〉
+ 2

∫ t

0

〈
f(s), u̇(k)

m (s)−∆u̇(k)
m (s)

〉
ds

+ 2

∫ t

0

〈
f ′(s),∆u̇(k)

m (s)
〉
ds− 2

〈
f(t),∆u̇(k)

m (t)
〉
,

(3.17)
where µ̄∗ = min{1, µ∗, λ, } and

S̄(k)
m (t) =

∥∥∥u(k)
m (t)

∥∥∥2

V ∩H2
+
∥∥∥u̇(k)

m (t)
∥∥∥2

V ∩H2
(3.18)

+

∫ t

0

[∥∥∥u̇(k)
m (s)

∥∥∥2

V ∩H2
+
∥∥∥ü(k)

m (s)
∥∥∥2

a

]
ds,

‖v‖V ∩H2 =

√
‖v‖2a + ‖∆v‖2, v ∈ V ∩H2.

so we omit the details. By using Lemma 3.1, we estimate the terms on the
right-hand side of (3.17) as follows. We first have

I1 =

∫ t

0
Φ̄′m(s)aµ(s;u(k)

m (s), u(k)
m (s))ds+

∫ t

0
Φ̄m(s)aµ′(s;u

(k)
m (s), u(k)

m (s))ds

(3.19)

≤
∫ t

0

(∣∣Φ̄′m(s)
∣∣+
∣∣Φ̄m(s)

∣∣) K̂µ

∥∥∥u(k)
m (s)

∥∥∥2

a
ds

≤ 2
(
1 + 3M2

)
K̃MK̂µ

∫ t

0
S̄(k)
m (s)ds;
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I2 =

∫ t

0
ds

∫ 1

0

[
∂

∂s

(
Φ̄m(s)µ(x, s)

)] ∣∣∣∆u(k)
m (x, s)

∣∣∣2 dx
=

∫ t

0
ds

∫ 1

0

[
Φ̄′m(s)µ(x, s) + Φ̄m(s)µ′(x, s)

] ∣∣∣∆u(k)
m (x, s)

∣∣∣2 dx
≤ 2

(
1 + 3M2

)
K̃MK̂µ

∫ t

0
S̄(k)
m (s)ds;

I3 = −2

∫ t

0
Φ̄m(s)〈µx(s)u(k)

mx(s),∆u̇(k)
m (s)〉ds

≤ 2K̃MK̂µ

∫ t

0

∥∥∥u(k)
mx(s)

∥∥∥∥∥∥∆u̇(k)
m (s)

∥∥∥ ds
≤ 2K̃MK̂µ

∫ t

0
S̄(k)
m (s)ds;

I4 = 2

∫ t

0
Φ̄′m(s)

〈
∂

∂x

(
µ(s)u(k)

mx(s)
)
,∆u̇(k)

m (s)

〉
ds

≤ 2

∫ t

0

∣∣Φ̄′m(s)
∣∣ ∥∥∥∥ ∂∂x (µ(s)u(k)

mx(s)
)∥∥∥∥∥∥∥∆u̇(k)

m (s)
∥∥∥ ds

≤ 2
√

2
(
1 + 6M2

)
K̃MK̂µ

∫ t

0
S̄(k)
m (s)ds;

I5 = 2

∫ t

0
Φ̄m(s)

〈
∂2

∂x∂s

(
µ(s)u(k)

mx(s)
)
,∆u̇(k)

m (s)

〉
ds

≤ 2

∫ t

0
Φ̄m(s)

∥∥∥∥ ∂2

∂x∂s

(
µ(s)u(k)

mx(s)
)∥∥∥∥∥∥∥∆u̇(k)

m (s)
∥∥∥ ds

≤ 4K̃MK̂µ

∫ t

0
S̄(k)
m (s)ds.

Next, we get

I6 = −2Φ̄m(t)

〈
∂

∂x

(
µ(t)u(k)

mx(t)
)
,∆u̇(k)

m (t)

〉

≤ µ̄∗
4

∥∥∥∆u̇(k)
m (t)

∥∥∥2
+

4

µ̄∗

∥∥∥∥Φ̄m(t)
∂

∂x

(
µ(t)u(k)

mx(t)
)∥∥∥∥2

≤ µ̄∗
4
S̄(k)
m (t) +

4

µ̄∗

∥∥∥∥Φ̄m(t)
∂

∂x

(
µ(t)u(k)

mx(t)
)∥∥∥∥2

.

Note that
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∂

∂x

(
µ(t)u(k)

mx(t)
)∥∥∥∥2

≤
(∥∥∥∥Φ̄m(0)

∂

∂x

(
µ(0)u(k)

mx(0)
)∥∥∥∥

+

∫ t

0

∥∥∥∥ ∂∂s
[
Φ̄m(s)

∂

∂x

(
µ(s)u(k)

mx(s)
)]∥∥∥∥ ds)2

≤ 2

∥∥∥∥Φ̄m(0)
∂

∂x
(µ(0)ũ0kx)

∥∥∥∥2

+

(∫ t

0

∥∥∥∥ ∂∂s
[
Φ̄m(s)

∂

∂x

(
µ(s)u(k)

mx(s)
)]∥∥∥∥ ds)2

≤ 2

∥∥∥∥Φ̄m(0)
∂

∂x
(µ(0)ũ0kx)

∥∥∥∥2

+ 2(2 +
√

2)2T ∗K̃2
MK̂

2
µ

∫ t

0
S̄(k)
m (s)ds,

we deduce that

I6 = −2

〈
Φ̄m(t)

∂

∂x

(
µ(t)u(k)

mx(t)
)
,∆u̇(k)

m (t)

〉
(3.20)

≤ µ̄∗
4
S̄(k)
m (t) +

4

µ̄∗

∥∥∥∥Φ̄m(t)
∂

∂x

(
µ(t)u(k)

mx(t)
)∥∥∥∥2

≤ µ̄∗
4
S̄(k)
m (t) +

8

µ̄∗
Φ̄2
m(0)

∥∥∥∥ ∂∂x (µ(0)ũ0kx)

∥∥∥∥2

+
8

µ̄∗
(2 +

√
2)2T ∗K̃2

MK̂
2
µ

∫ t

0
S̄(k)
m (s)ds.

We also have

I7 = 2

∫ t

0

〈
f(s), u̇(k)

m (s)−∆u̇(k)
m (s)

〉
ds (3.21)

≤ 2

∫ t

0
‖f(s)‖

(∥∥∥u̇(k)
m (s)

∥∥∥+
∥∥∥∆u̇(k)

m (s)
∥∥∥) ds

≤ 2
√

2 ‖f‖L∞(0,T ∗;L2)

∫ t

0

√
S̄

(k)
m (s)ds

≤ 2T ‖f‖2L∞(0,T ∗;L2) +

∫ t

0
S̄(k)
m (s)ds;
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I8 = 2

∫ t

0
〈f ′(s),∆u̇(k)

m (s)〉ds

≤
∫ t

0

∥∥f ′(s)∥∥ ds+

∫ t

0

∥∥f ′(s)∥∥∥∥∥∆u̇(k)
m (s)

∥∥∥2
ds

≤
∥∥f ′∥∥

L1(0,T ∗;L2)
+

∫ t

0

∥∥f ′(s)∥∥ S̄(k)
m (s)ds;

I9 = −2
〈
f(t),∆u̇(k)

m (t)
〉
≤ µ̄∗

4
S̄(k)
m (t) +

4

µ̄∗
‖f(t)‖2

≤ µ̄∗
4
S̄(k)
m (t) +

4

µ̄∗
‖f‖2L∞(0,T ∗;L2) .

It follows from (3.17), (3.19)-(3.21) that

S̄(k)
m (t) ≤ S̄(k)

0m +
4T

µ̄∗
‖f‖2L∞(0,T ∗;L2)

+
2

µ̄∗

∫ t

0

(
D̄1(M) +

∥∥f ′(s)∥∥) S̄(k)
m (s)ds

(3.22)

with

S̄
(k)
0m =

2

µ̄∗

[
S(k)
m (0) + 2

〈
f(0) + Φ̄m(0)

∂

∂x
(µ(0)ũ0kx) ,∆ũ1k

〉]
+

16

µ̄2
∗
Φ̄2
m(0)

∥∥∥∥ ∂∂x (µ(0)ũ0kx)

∥∥∥∥2

+
2

µ̄∗

∥∥f ′∥∥
L1(0,T ∗;L2)

+
8

µ̄2
∗
‖f‖2L∞(0,T ∗;L2) ,

D̄1(M) = 1 + 2
(

5 +
√

2 + 6(1 +
√

2)M2
)
K̃MK̂µ

+
16

µ̄∗
(1 +

√
2)2T ∗

(
K̃MK̂µ

)2
.

(3.23)

By (3.13) and (3.16), the first formula in (3.23) leads to

S̄
(k)
0m ≤

1

2
M2 for all m, k ∈ N, (3.24)

where M is a constant depending only on µ, f, Φ, ũ0, ũ1, λ, ζ.

We choose T ∈ (0, T ∗] such that(
1

2
M2 +

4T

µ̄∗
‖f‖2L∞(0,T ∗;L2)

)
exp

(
2

µ̄∗

[
TD̄1(M) +

∫ T

0

∥∥f ′(s)∥∥ ds]) ≤M2

(3.25)
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and

kT = 72
√

2
M2K̃MK̂µ

µ̄∗

√
T exp

(
TD̃∗(M)

)
< 1, (3.26)

in which

D̃∗(M) =
4

µ̄∗

(
1 + 3M2 +

1

µ̄∗
K̃MK̂µ

)
K̃MK̂µ. (3.27)

By using Gronwall’s Lemma, we deduce from (3.22), (3.24) and (3.25) that

S̄(k)
m (t) ≤M2 exp

(
−2

µ̄∗

[
TD̄1(M) +

∫ T

0

∥∥f ′(s)∥∥ ds])
× exp

[
2

µ̄∗

∫ t

0

(
D̄2(M) +

∥∥f ′(s)∥∥) ds]
≤M2

(3.28)

for all t ∈ [0, T ], for all m and k ∈ N. Therefore, we have

u(k)
m ∈W (M,T ) for all m and k ∈ N. (3.29)

Step 3. (Limit Procedure). From (3.29), there exists a subsequence of the

sequence of {u(k)
m } with the same notation such that
u

(k)
m → um in L∞(0, T ;H2 ∩ V ) weak*,

u̇
(k)
m → u′m in L∞(0, T ;H2 ∩ V ) weak*,

ü
(k)
m → u′′m in L2(0, T ;V ) weak,
um ∈W (M,T ).

(3.30)

Passing to limit in (3.12), we have um satisfying (3.9), (3.10) in L2(0, T ) weak.
Furthermore, (3.9)1 and (3.30)4 imply that

u′′m = λ∆u′m + Φ̄m(t)
∂

∂x
(µ(t)umx) + f ∈ L∞(0, T ;L2),

so we obtain um ∈W1(M,T ), Theorem 3.2 is proved. �

Now, in order to be able to obtain a priori estimate for the sequence {wm} in
the deeper function space and also to prove the uniqueness of Prob. (Pn), we
need to establish the energy lemma as follows, which is a relative generalization
of the inequality and equality of energy given in Lions’s book [6].
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Lemma 3.3. Let u ∈ ṼT be the weak solution of the following problem

u′′ − λu′xx − Φ(t)
∂

∂x
(µ(x, t)ux(t)) = F (x, t), 0 < x < 1, 0 < t < T,

ux(0, t)− ζu(0, t) = u(1, t) = 0,
u(x, 0) = ũ0(x), u′(x, 0) = ũ1(x),
ũ0, ũ1 ∈ V ∩H2, ũ0x(0)− ζũ0(0) = 0,
F ∈ L2(0, T ;V ), µ ∈ C1([0, 1]× [0, T ]), µ(x, t) ≥ µ∗ > 0,
Φ ∈ C([0, T ]).

(3.31)
Then we have

1

2

∥∥u′(t)∥∥2

a
+

1

2

∥∥∥√Φ(t)µ(t)∆u(t)
∥∥∥2

+ λ

∫ t

0

∥∥∆u′(s)
∥∥2
ds

+

∫ t

0
Φ(s)〈µx(s)ux(s),∆u′(s)〉ds− 1

2

∫ t

0
ds

∫ 1

0
(Φ(s)µ(x, s))′ |∆u(x, s)|2 dx

≥ 1

2
‖ũ1‖2a +

1

2

∥∥∥√Φ(0)µ(0)∆ũ0

∥∥∥2
+

∫ t

0
〈F (s),−∆u′(s)〉ds, a.e., t ∈ (0, T ).

(3.32)
Furthermore, if ũ0 = ũ1 = 0 then there is an equality in (3.32).

Proof. This proof is similar to the argument of Lions to obtain the inequality
and equality of energy in Lions’s book [6, Lemma 1.6, p. 224]. The details are
follows.

Fix t1, t2, 0 < t1 < t2 < T and let wkm(x, t) be the function defined by

wkm(x, t) =
[(
θm(t)∆u′(x, t)

)
∗ ρk(t) ∗ ρk(t)

]
θm(t), (3.33)

where
(i) θm is a continuous, piecewise linear function on [0, T ] defined as follows

θm(t) =


0, t /∈ [t1 + 1/m, t2 − 1/m],
1, t ∈ [t1 + 2/m, t2 − 2/m],
m(t− t1 − 1/m), t ∈ [t1 + 1/m, t1 + 2/m],
−m(t− t2 + 1/m), t ∈ [t2 − 2/m, t2 − 1/m];

(3.34)

(ii) {ρk} is a regularizing sequence in C∞c (R), that is,

ρk ∈ C∞c (R), suppρk ⊂ [−1/k, 1/k], ρk(−t) = ρk(t),

∫ ∞
−∞

ρk(t)dt = 1;

(3.35)
(iii) (∗) is the convolution product in the time variable, that is,

(u ∗ ρk)(x, t) =

∫ ∞
−∞

u(x, t− s)ρk(s)ds. (3.36)
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Taking the scalar product of the function wkm(x, t) in (3.33) with the first
equation in (3.31), then integrating with respect to the time variable from 0
to T , we have

Akm +Bkm + Ckm +Dkm = Ekm, (3.37)

where

Akm =

∫ T

0
〈u′′(t), wkm(t)〉dt, Bkm = λ

∫ T

0
a(u′(t), wkm(t))dt,

Ckm =

∫ T

0
Φ(t)aµ(t;u(t), wkm(t))dt, Dkm =

∫ T

0
〈F (t), wkm(t)〉dt.

(3.38)

By using the properties of the functions θm(t) and ρk(t), we can show after
some lengthy calculations

lim
k→∞

Akm =

∫ T

0
θm(t)θ′m(t)

∥∥u′(t)∥∥2

a
dt,

lim
k→∞

Bkm = −λ
∫ T

0
θ2
m(t)

∥∥∆u′(t)
∥∥2
dt,

lim
k→∞

Ckm =

∫ T

0
θm(t)θ′m(t)

∥∥∥√Φ(t)µ(t)∆u(t)
∥∥∥2
dt

−
∫ T

0
θ2
m(t)Φ(t)〈µx(t)ux(t),∆u′(t)〉dt

+
1

2

∫ T

0
θ2
m(t)dt

∫ 1

0
(Φ(t)µ(x, t))′ |∆u(x, t)|2 dx,

lim
k→∞

Dkm =

∫ T

0
θ2
m(t)〈F (t),∆u′(t)〉dt.

(3.39)

Letting m→∞, from (3.37)-(3.39) we obtain

1

2

∥∥u′(t1)
∥∥2

a
− 1

2

∥∥u′(t2)
∥∥2

a
− λ

∫ t2

t1

∥∥∆u′(t)
∥∥2
dt

+
1

2

∥∥∥√Φ(t1)µ(t1)∆u(t1)
∥∥∥2
− 1

2

∥∥∥√Φ(t2)µ(t2)∆u(t2)
∥∥∥2

−
∫ t2

t1

Φ(t)〈µx(t)ux(t),∆u′(t)〉dt+
1

2

∫ t2

t1

dt

∫ 1

0
(Φ(t)µ(x, t))′ |∆u(x, t)|2 dx

=

∫ t2

t1

〈F (t),∆u′(t)〉dt, a.e., t1, t2 ∈ (0, T ), t1 < t2 < T,
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or

1

2

∥∥u′(t2)
∥∥2

a
+

1

2

∥∥∥√Φ(t2)µ(t2)∆u(t2)
∥∥∥2

+ λ

∫ t2

0

∥∥∆u′(t)
∥∥2
dt (3.40)

+

∫ t2

0
Φ(t)〈µx(t)ux(t),∆u′(t)〉dt

− 1

2

∫ t2

0
dt

∫ 1

0
(Φ(t)µ(x, t))′ |∆u(x, t)|2 dx+

∫ t2

0
〈F (t),∆u′(t)〉dt

=
1

2

∥∥u′(t1)
∥∥2

a
+

1

2

∥∥∥√Φ(t1)µ(t1)∆u(t1)
∥∥∥2

+ λ

∫ t1

0

∥∥∆u′(t)
∥∥2
dt

+

∫ t1

0
Φ(t)〈µx(t)ux(t),∆u′(t)〉dt

− 1

2

∫ t1

0
dt

∫ 1

0
(Φ(t)µ(x, t))′ |∆u(x, t)|2 dx+

∫ t1

0
〈F (t),∆u′(t)〉dt,

a.e., t1, t2 ∈ (0, T ), t1 < t2 < T.
From (3.40) we obtain (3.32), by taking t2 = t and passing to the limit as

t1 → 0+, and using the property of weak lower semicontinuity of the functional
v 7−→ ‖v‖2 .

In the case of ũ0 = ũ1 = 0, we prolong u, F by 0 and (Φ(t), µ(x, t)) by
(Φ(0), µ(x, 0)) , respectively as t < 0 and we deduce that equality (3.40) is
true for almost t1 < t2 < T . Taking t1 < 0 in (3.40), its right-hand side is 0,
we take t1 → 0− and we have equality (3.32) when ũ0 = ũ1 = 0. The proof of
Lemma 3.3 is completed. �

We will use the result of Theorem 3.2 and the compact imbedding theorems
to prove the existence and uniqueness of a weak solution of Prob. (Pn). The
following theorem is the main result in this section.

Theorem 3.4. Let (H1)− (H4) hold. Then, there exist positive constants M,
T such that

(1) Prob. (Pn) has a unique weak solution u ∈W1(M,T ).
(2) The recurrent sequence {um} defined by (3.8)-(3.10) converges to the

solution u of Prob. (Pn) strongly in the Banach space HT .

Furthermore, we have the estimation

‖um − u‖HT
≤ CTkmT for all m ∈ N, (3.41)

where kT ∈ [0, 1) and CT are the constants depending only on T, µ, f, Φ, ũ0,
ũ1, λ, ζ.

Proof. (a) Existence of the solution: We shall prove that {um} is a Cauchy
sequence in HT . Let wm = um+1 − um. Then wm satisfies the variational
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problem
〈w′′m(t), w〉+ λa(w′m(t), w) + Φ̄m+1(t)aµ(t;wm(t), w)

=
[
Φ̄m+1(t)− Φ̄m(t)

]
〈 ∂
∂x

(µ(t)umx(t)) , w〉, ∀w ∈ V,
wm(0) = w′m(0) = 0.

(3.42)

Taking w = w′m in (3.42)1 and integrating in t, we get

Xm(t) =

∫ t

0
Φ̄′m+1(s)aµ(s;wm(s), wm(s))ds

+

∫ t

0
Φ̄m+1(s)aµ′(s;wm(s), wm(s))ds

+ 2

∫ t

0

[
Φ̄m+1(s)− Φ̄m(s)

]
〈 ∂
∂x

(µ(s)umx(s)) , w′m(s)〉ds,

(3.43)

where

Xm(t) =
∥∥w′m(t)

∥∥2
+Φ̄m+1(t)aµ(t;wm(t), wm(t))+2λ

∫ t

0

∥∥w′m(s)
∥∥2

a
ds. (3.44)

We note more that wm = um+1 − um ∈ ṼT is the weak solution of the
problem (3.31) corresponding to ũ0 = ũ1 = 0, Φ(t) = Φ̄m+1(t), F (t) =[
Φ̄m+1(t)− Φ̄m(t)

] ∂
∂x

(µ(t)umx(t)) . By using Lemma 3.3 with ũ0 = ũ1 = 0,

we get

Ym(t) = −2

∫ t

0
Φ̄m+1(s)〈µx(s)wmx(s),∆w′m(s)〉ds

+

∫ t

0
ds

∫ 1

0

(
Φ̄m+1(s)µ(x, s)

)′ |∆wm(x, s)|2 dx

+ 2

∫ t

0
〈
[
Φ̄m+1(s)− Φ̄m(s)

] ∂
∂x

(µ(s)umx(s)) ,−∆w′m(s)〉ds,

(3.45)

where

Ym(t) =
∥∥w′m(t)

∥∥2

a
+

∥∥∥∥√Φ̄m+1(t)µ(t)∆wm(t)

∥∥∥∥2

+2λ

∫ t

0

∥∥∆w′m(s)
∥∥2
ds. (3.46)

Put

Sm(t) = Xm(t) + Ym(t) =
∥∥w′m(t)

∥∥2
+
∥∥w′m(t)

∥∥2

a

+ Φ̄m+1(t)

(
aµ(t;wm(t), wm(t)) +

∥∥∥√µ(t)∆wm(t)
∥∥∥2
)

+ 2λ

∫ t

0

(∥∥w′m(s)
∥∥2

a
+
∥∥∆w′m(s)

∥∥2
)
ds,

(3.47)
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we deduce from (3.43), (3.45) that

µ̄∗S̄m(t) ≤ Sm(t) (3.48)

=

∫ t

0

[
Φ̄′m+1(s)aµ(s;wm(s), wm(s))+Φ̄m+1(s)aµ′(s;wm(s), wm(s))

]
ds

− 2

∫ t

0
Φ̄m+1(s)〈µx(s)wmx(s),∆w′m(s)〉ds

+

∫ t

0
ds

∫ 1

0

∂

∂s

[
Φ̄m+1(s)µ(x, s)

]
|∆wm(x, s)|2 dx

+ 2

∫ t

0

[
Φ̄m+1(s)−Φ̄m(s)

][
〈 ∂
∂x

(µ(s)umx(s)) , w′m(s)−∆w′m(s)〉
]
ds

= z1 + · · ·+ z4,

where z1, · · · , z4 are defined as below, µ̄∗ = min{1, µ∗, λ, } and

S̄m(t) =
∥∥w′m(t)

∥∥2
+
∥∥w′m(t)

∥∥2

a
+ ‖wm(t)‖2a

+ ‖∆wm(t)‖2 +

∫ t

0

(∥∥w′m(s)
∥∥2

a
+
∥∥∆w′m(s)

∥∥2
)
ds

=
∥∥w′m(t)

∥∥2
+
∥∥w′m(t)

∥∥2

a
+ ‖wm(t)‖2H2∩V

+

∫ t

0

∥∥w′m(s)
∥∥2

H2∩V ds.

(3.49)

Estimating z1 : By Lemma 3.1, (i), (ii), (iv), we deduce that

z1 =

∫ t

0

[
Φ̄′m+1(s)aµ(s;wm(s), wm(s))

+ Φ̄m+1(s)aµ′(s;wm(s), wm(s))
]
ds

≤
∫ t

0

(∣∣Φ̄′m+1(s)
∣∣+
∣∣Φ̄m+1(s)

∣∣) K̂µ ‖wm(s)‖a ds

≤ 2
(
1 + 3M2

)
K̃MK̂µ

∫ t

0
‖wm(s)‖2a ds

≤ 2
(
1 + 3M2

)
K̃MK̂µ

∫ t

0
S̄m(s)ds.

(3.50)
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Estimating z2 : By S̄m(t) ≥ ‖wmx(t)‖2 +
∫ t

0 ‖∆w
′
m(s)‖2 ds, we obtain

z2 = −2

∫ t

0
Φ̄m+1(s)〈µx(s)wmx(s),∆w′m(s)〉ds

≤ 2K̃MK̂µ

∫ t

0
‖wmx(s)‖

∥∥∆w′m(s)
∥∥ ds

≤ µ̄∗
4

∫ t

0

∥∥∆w′m(s)
∥∥2
ds+

4

µ̄∗
K̃2
MK̂

2
µ

∫ t

0
‖wmx(s)‖2 ds

≤ µ̄∗
4
S̄m(t) +

4

µ̄∗
K̃2
MK̂

2
µ

∫ t

0
S̄m(s)ds.

(3.51)

Estimating z3 : We have∣∣∣∣ ∂∂s [Φ̄m+1(s)µ(x, s)
]∣∣∣∣ =

∣∣Φ̄′m+1(s)µ(x, s) + Φ̄m+1(s)µ′(x, s)
∣∣

≤
(∣∣Φ̄′m+1(s)

∣∣+
∣∣Φ̄m+1(s)

∣∣) K̂µ

≤ 2
(
1 + 3M2

)
K̃MK̂µ.

Therefore,

z3 =

∫ t

0
ds

∫ 1

0

∂

∂s

[
Φ̄m+1(s)µ(x, s)

]
|∆wm(x, s)|2 dx

≤ 2
(
1 + 3M2

)
K̃MK̂µ

∫ t

0
‖∆wm(s)‖2 ds

≤ 2
(
1 + 3M2

)
K̃MK̂µ

∫ t

0
S̄m(s)ds.

(3.52)

Estimating z4 : First, we estimate,
∣∣Φ̄m+1(s)− Φ̄m(s)

∣∣ .∣∣Φ̄m+1(t)− Φ̄m(t)
∣∣

=
∣∣∣Φ(t, (Snum)(t), (Ŝnum)(t)

)
− Φ

(
t, (Snum−1)(t), (Ŝnum−1)(t)

)∣∣∣
≤ K̃M

[
|(Snum)(t)− (Snum−1)(t)|+

∣∣∣(Ŝnum)(t)− (Ŝnum−1)(t)
∣∣∣] .

(3.53)

We estimate the terms |(Snum)(t)−(Snum−1)(t)| and
∣∣∣(Ŝnum)(t)−(Ŝnum−1)(t)

∣∣∣
respectively, as follows
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|(Snum)(t)− (Snum−1)(t)| ≤ 1

n

n∑
i=1

∣∣u2
m( i−1

n , t)− u2
m−1( i−1

n , t)
∣∣

≤ 1

n
2M

n∑
i=1

∣∣um( i−1
n , t)− um−1( i−1

n , t)
∣∣

≤ 1

n
2M

n∑
i=1

∣∣wm−1( i−1
n , t)

∣∣
≤ 1

n
2M

n∑
i=1

‖∇wm−1(t)‖

= 2M ‖∇wm−1(t)‖ .

(3.54)

By the inequality
∣∣∇um( i−1

n , t)
∣∣ ≤ √2 ‖um(t)‖H2∩V , we obtain∣∣∣(Ŝnum)(t)− (Ŝnum−1)(t)
∣∣∣

≤ 1

n

n∑
i=1

∣∣∣∣∣∇um( i−1
n , t)

∣∣2 − ∣∣∇um−1( i−1
n , t)

∣∣2∣∣∣
≤ 1

n

n∑
i=1

∣∣∇um( i−1
n , t)

∣∣+
∣∣∇um−1( i−1

n , t)
∣∣ ∣∣∇wm−1( i−1

n , t)
∣∣

≤ 1

n
4M

n∑
i=1

‖wm−1(t)‖H2∩V

= 4M ‖wm−1(t)‖H2∩V .

(3.55)

Then, it follows from (3.53)-(3.55), that∣∣Φ̄m+1(t)− Φ̄m(t)
∣∣ ≤ K̃M [2M ‖∇wm−1(t)‖+ 4M ‖wm−1(t)‖H2∩V ]

≤ 6MK̃M ‖wm−1(t)‖H2∩V

≤ 6MK̃M ‖wm−1‖HT
.

(3.56)

Next, we estimate

∣∣∣∣〈 ∂∂x (µ(s)umx(s)) , w′m(s)−∆w′m(s)〉
∣∣∣∣ . By the following

inequality ∥∥∥∥ ∂∂x (µ(s)umx(s))

∥∥∥∥ = ‖µx(s)umx(s) + µ(s)∆um(s)‖

≤ K̂µ

√
2 ‖um(t)‖H2∩V ≤

√
2MK̂µ,
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we deduce that ∣∣∣∣〈 ∂∂x (µ(s)umx(s)) , w′m(s)−∆w′m(s)〉
∣∣∣∣

≤
∥∥∥∥ ∂∂x (µ(s)umx(s))

∥∥∥∥∥∥w′m(s)−∆w′m(s)
∥∥

≤ 2MK̂µ

∥∥w′m(s)
∥∥
H2∩V .

(3.57)

From (3.56), (3.57), the term z4 is estimated as follows

z4 = 2

∫ t

0

[
Φ̄m+1(s)− Φ̄m(s)

] [
〈 ∂
∂x

(µ(s)umx(s)) , w′m(s)−∆w′m(s)〉
]
ds

≤ 2

∫ t

0

∣∣Φ̄m+1(s)− Φ̄m(s)
∣∣ ∣∣∣∣〈 ∂∂x (µ(s)umx(s)) , w′m(s)−∆w′m(s)〉

∣∣∣∣ ds
≤ 24M2K̃MK̂µ ‖wm−1‖HT

∫ t

0

∥∥w′m(s)
∥∥
H2∩V ds (3.58)

≤ µ̄∗
4

∫ t

0

∥∥w′m(s)
∥∥2

H2∩V ds+
4

µ̄∗
144TM4

(
K̃MK̂µ

)2
‖wm−1‖2HT

≤ µ̄∗
4
S̄m(t) +

4

µ̄∗
144TM4

(
K̃MK̂µ

)2
‖wm−1‖2HT

.

It follows from (3.48), (3.50)-(3.52) and (3.58) that

S̄m(t) ≤
(

24
√

2
)2 M

4
(
K̃MK̂µ

)2

µ̄2
∗

T ‖wm−1‖2HT
+2D̃∗(M)

∫ t

0
S̄m(s)ds, (3.59)

where D̃∗(M) is defined as in (3.27).
Using Gronwall’s Lemma, we deduce from (3.59) that

‖wm‖HT
≤ kT ‖wm−1‖HT

, ∀ m ∈ N, (3.60)

where kT ∈ (0, 1) is defined as in (3.26), it leads to

‖um − um+p‖HT
≤ ‖u0 − u1‖HT

(1− kT )−1kmT , ∀ m, p ∈ N. (3.61)

It follows that {um} is a Cauchy sequence in HT . Then, there exists u ∈ HT

such that

um → u strongly in HT . (3.62)

Because um ∈ W (M,T ), there exists a subsequence {umj} of {um} such
that 

umj → u in L∞(0, T ;H2 ∩ V ) weak*,
u′mj
→ u′ in L∞(0, T ;H2 ∩ V ) weak*,

u′′mj
→ u′′ in L2(0, T ;V ) weak,

u ∈W (M,T ).

(3.63)
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We note here that∣∣∣Φ̄m(t)− Φ
(
t, (Snu)(t), (Ŝnu)(t)

)∣∣∣ ≤ 6MK̃M ‖um−1 − u‖HT
. (3.64)

Combining (3.62) and (3.64), we obtain

Φ̄m → Φ
(
·, (Snu)(·), (Ŝnu)(·)

)
strongly in L∞(0, T ). (3.65)

Finally, passing to limit in (3.9), (3.10) as m = mj → ∞, it implies from
(3.62), (3.63) and (3.64) that there exists u ∈ W (M,T ) satisfying (2.8)-(2.9).
Furthermore, (2.8) and (3.63)4 imply that

u′′ = λ∆u′ + Φ
(
t, (Snu)(t), (Ŝnu)(t)

) ∂

∂x
(µ(x, t)ux(t)) + f ∈ L∞(0, T ;L2),

so we obtain u ∈W1(M,T ). The existence is proved.

(b) Uniqueness of the solution: Let u1, u2 ∈ W1(M,T ) be two weak
solution of Prob. (Pn). Then u = u1 − u2 satisfies the variational problem

〈u′′(t), w〉+ λa(u′(t), w) + Φ̃1 (t) aµ(t;u(t), w)

= −
[
Φ̃1 (t)− Φ̃2 (t)

]
aµ(t;u2(t), w), ∀w ∈ V,

u(0) = u′(0) = 0,

(3.66)

where

Φ̃i (t) = Φ
(
t, (Snui)(t), (Ŝnui)(t)

)
, i = 1, 2. (3.67)

Taking w = u′ in (3.66)1 and integrating in t, we get

X(t) =

∫ t

0
Φ̃′1(s)aµ(s;u(s), u(s))ds+

∫ t

0
Φ̃1(s)aµ′(s;u(s), u(s))ds

− 2

∫ t

0

[
Φ̃1(s)− Φ̃2(s)

]
aµ(s;u2(s), u′(s))ds,

(3.68)

where

X(t) =
∥∥u′(t)∥∥2

+ Φ̃1(t)aµ(t;u(t), u(t)) + 2λ

∫ t

0

∥∥u′(s)∥∥2

a
ds. (3.69)

Note that u = u1−u2 is also the weak solution of the problem (3.31) corre-

sponding to ũ0 = ũ1 = 0, Φ(t) = Φ̃1(t), F (t) =
[
Φ̃1(t)− Φ̃2(t)

] ∂

∂x
(µ(t)u2x(t)) .
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By using Lemma 3.3 with ũ0 = ũ1 = 0, we get

Y (t) = −2

∫ t

0
Φ̃1(s)〈µx(s)ux(s),∆u′(s)〉ds

+

∫ t

0
ds

∫ 1

0

(
Φ̃1(s)µ(x, s)

)′
|∆u(x, s)|2 dx

− 2

∫ t

0

[
Φ̃1(s)− Φ̃2(s)

]
〈 ∂
∂x

(µ(s)u2x(s)) ,∆u′(s)〉ds,

(3.70)

where

Y (t) =
∥∥u′(t)∥∥2

a
+ Φ̃1(t)

∥∥∥√µ(t)∆u(t)
∥∥∥2

+ 2λ

∫ t

0

∥∥∆u′(s)
∥∥2
ds. (3.71)

Put S(t) = X(t) + Y (t), we have

µ̄∗S̄(t) ≤ S(t)

=

∫ t

0

[
Φ̃′1(s)aµ(s;u(s), u(s)) + Φ̃1(s)aµ′(s;u(s), u(s))

]
ds

− 2

∫ t

0
Φ̃1(s)〈µx(s)ux(s),∆u′(s)〉ds

+

∫ t

0
ds

∫ 1

0

(
Φ̃1(s)µ(x, s)

)′
|∆u(x, s)|2 dx−2

∫ t

0

[
Φ̃1(s)− Φ̃2(s)

]
×
[
aµ(s;u2(s), u′(s)) +

∂

∂x
(µ(s)u2x(s)) ,∆u′(s)〉

]
ds,

(3.72)
where

S̄(t) =
∥∥u′(t)∥∥2

+
∥∥u′(t)∥∥2

a
+ ‖u(t)‖2

H2∩V
+

∫ t

0

∥∥u′(s)∥∥2

H2∩V
ds. (3.73)

With the similar estimations as in S̄m(t), we obtain the following estimate

S̄(t) ≤ D̄M

∫ t

0
S̄(s)ds, (3.74)

where

D̄M =
8

µ̄∗

[
1 + 3M2 +

(
1 + 144M4

) K̃MK̂µ

µ̄∗

]
K̃MK̂µ.

Using Gronwall’s Lemma, it follows from (3.74) that S̄(t) ≡ 0, that is,
u1 ≡ u2. This completes the proof . �



Approximation of solutions of the Robin-Dirichlet problems 1083

4. Convergence of the sequence of solutions of (Pn)
to a unique weak solution of (P∞)

In this section, we shall consider the problems (Pn), (P∞) as follows

(Pn)


utt − λutxx − Φn[u](t)

∂

∂x
(µ(x, t)ux(x, t))

= f (x, t) , 0 < x < 1, 0 < t < T,
ux(0, t)− ζu(0, t) = u(1, t) = 0,
u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x),

(P∞)


utt − λutxx − Φ[u](t)

∂

∂x
(µ(x, t)ux(x, t))

= f (x, t) , 0 < x < 1, 0 < t < T,
ux(0, t)− ζu(0, t) = u(1, t) = 0,
u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x),

where ζ ≥ 0, λ > 0 are constants and Φ, µ, f, ũ0, ũ1 are given functions, in
which

Φn[u](t) = Φ
(
t, (Snu)(t), (Ŝnu)(t)

)
,

Φ[u](t) = Φ
(
t, ‖u(t)‖2 , ‖ux(t)‖2

)
,

(Snu)(t) =
1

n

n−1∑
i=0

u2( in , t), (Ŝnu)(t) =
1

n

n−1∑
i=0

u2
x( in , t).

(4.1)

Using the assumptions (H1) − (H4) and the results of Theorem 3.4, there
exist positive constants M, T independent of n such that the problem (Pn)
have the unique weak solution ūn satisfying

ūn ∈W1(M,T ) for all n ∈ N. (4.2)

From (4.2), we deduce that there exists a subsequence of {ūn}, with the
same notation, such that

ūn → ū in L∞(0, T ;H2 ∩ V ) weak*,
ū′n → ū′ in L∞(0, T ;H2 ∩ V ) weak*,
ū′′n → ū′′ in L2(0, T ;V ) weak,
ū ∈W (M,T ).

(4.3)

Applying the lemma of Aubin-Lions, a classical compactness result in the
space C([0, T ];V ), there exists a subsequence {ūn}, with the same symbol,
such that {

ūn → ū in C([0, T ];V ) strongly,
ū′n → ū′ in C([0, T ];V ) strongly.

(4.4)
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Because ūn is the unique weak solution of (Pn), we have∫ T

0
〈ū′′n(t), w〉ϕ(t)dt+ λ

∫ T

0
a(ū′n(t), w)ϕ(t)dt

+

∫ T

0
Φ
(
t, (Snūn)(t), (Ŝnūn)(t)

)
aµ(t; ūn(t), w)ϕ(t)dt

=

∫ T

0
〈f (t) , w〉ϕ(t)dt, ∀w ∈ V, ∀ϕ ∈ C∞c (0, T ).

(4.5)

By (4.3) and (4.4), we get∫ T

0
〈ū′′n(t), w〉ϕ(t)dt →

∫ T

0
〈ū′′(t), w〉ϕ(t)dt,

λ

∫ T

0
a(ū′n(t), w)ϕ(t)dt → λ

∫ T

0
a(ū′(t), w)ϕ(t)dt.

(4.6)

We need to check∫ T

0
Φn[ūn](t)aµ(t; ūn(t), w)ϕ(t)dt →

∫ T

0
Φ[ū](t)aµ(t; ū(t), w)ϕ(t)dt, (4.7)

so the following lemma is useful.

Lemma 4.1. There exists a subsequence of {ūn}, which is also denoted by
{ūn}, such that

(i)
∥∥∥Snū− ‖ū(·)‖2

∥∥∥2

L2(0,T )
=
∫ T

0

∣∣∣(Snū)(t)− ‖ū(t)‖2
∣∣∣2 dt→ 0,

(ii)
∥∥∥Ŝnū− ‖ūx(·)‖2

∥∥∥2

L2(0,T )
=
∫ T

0

∣∣∣(Ŝnū)(t)− ‖ūx(t)‖2
∣∣∣2 dt→ 0,

(iii) ‖Snūn − Snū‖C([0,T ]) → 0,

(iv)
∥∥∥Snūn − ‖ū(·)‖2

∥∥∥2

L2(0,T )
=
∫ T

0

∣∣∣(Snūn)(t)− ‖ū(t)‖2
∣∣∣2 dt→ 0,

(v)
∥∥∥Ŝnūn − Ŝnū∥∥∥

C([0,T ])
→ 0,

(vi)
∥∥∥Ŝnūn − ‖ūx(·)‖2

∥∥∥2

L2(0,T )
=
∫ T

0

∣∣∣(Ŝnūn)(t)− ‖ūx(t)‖2
∣∣∣2 dt→ 0,

(vii) En ≡ ‖Φn[ūn]− Φ[ū]‖L2(0,T ) → 0. (4.8)

Proof. We note that

1

n

∑n−1

i=0
h(
i

n
)→

∫ 1

0
h(y)dy, ∀h ∈ C0 ([0, 1]) . (4.9)
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Since ū ∈ HT ↪→ C0([0, T ];H2 ∩ V ), we deduce that ū, ūx ∈ C0([0, T ];H1) ↪→
C0([0, T ];C0(Ω̄)), so the functions y 7→ ū2(y, t), y 7→ ū2

x(y, t) belongs to C0(Ω̄),
for all t ∈ [0, T ] then,

(Snū)(t) =
1

n

∑n−1

i=0
ū2(

i

n
, t)→

∫ 1

0
ū2(y, t)dy = ‖ū(t)‖2 as n→∞,

(Ŝnū)(t) =
1

n

∑n−1

i=0
ū2
x(
i

n
, t)→

∫ 1

0
ū2
x(y, t)dy = ‖ūx(t)‖2 as n→∞.

(4.10)
Note that

|(Snū)(t)| = 1

n

∑n−1

i=0
ū2(

i

n
, t) ≤ 1

n

∑n−1

i=0
‖ū (t)‖2C0(Ω̄)

= ‖ū (t)‖2C0(Ω̄) ≤ ‖ūx (t)‖2 = ‖ū (t)‖2V ≤M
2,

(4.11)

so ∣∣∣(Snū)(t)− ‖ū(t)‖2
∣∣∣ ≤ 2M2, ∀n ∈ N and ∀t ∈ [0, T ]. (4.12)

Applying the dominated convergence theorem, we deduce that (4.8)(i) is
true. Similarly,∣∣∣(Ŝnū)(t)

∣∣∣ =
1

n

∑n−1

i=0
ū2
x(
i

n
, t) ≤ 1

n

∑n−1

i=0
‖ūx (t)‖2C0(Ω̄)

= ‖ūx (t)‖2C0(Ω̄) ≤ 2 ‖ū (t)‖2H2∩V ≤ 2M2
(4.13)

and ∣∣∣(Ŝnū)(t)− ‖ūx(t)‖2
∣∣∣ ≤ 3M2 for all n ∈ N and ∀t ∈ [0, T ]. (4.14)

By the dominated convergence theorem, (4.8)(ii) is also true.
Next, by ūn, ū ∈ W1(M,T ) and V ↪→ C0 ([0, 1]) ≡ E, we deduce from the

first limit in (4.4) that

|(Snūn)(t)− (Snū)(t)| ≤ 1

n

∑n−1

i=0

∣∣∣∣ū2
n(
i

n
, t)− ū2(

i

n
, t)

∣∣∣∣
≤ 1

n

∑n−1

i=0

∣∣∣∣ūn(
i

n
, t) + ū(

i

n
, t)

∣∣∣∣ ∣∣∣∣ūn(
i

n
, t)− ū(

i

n
, t)

∣∣∣∣
≤ 1

n

∑n−1

i=0
(‖ūn(t)‖E + ‖ū(t)‖E) ‖ūn(t)− ū(t)‖E

= (‖ūn(t)‖E + ‖ū(t)‖E) ‖ūn(t)− ū(t)‖E
≤ (‖ūn(t)‖V + ‖ū(t)‖V ) ‖ūn(t)− ū(t)‖V
≤ 2M ‖ūn − ū‖C([0,T ];V ) ,

hence

‖Snūn − Snū‖C([0,T ]) ≤ 2M ‖ūn − ū‖C([0,T ];V ) . (4.15)
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By (4.15), (4.4)1, it is clear to see that (4.8)(iii) holds.
By (i) and (iii) of (4.8), we obtain∥∥∥Snūn − ‖ū(·)‖2

∥∥∥
L2(0,T )

≤ ‖Snūn − Snū‖L2(0,T ) +
∥∥∥Snū− ‖ū(·)‖2

∥∥∥
L2(0,T )

≤
√
T ‖Snūn − Snū‖C([0,T ]) +

∥∥∥Snū− ‖ū(·)‖2
∥∥∥
L2(0,T )

→ 0

as n→∞. Thus, (4.8)(iv) holds.
Now, we prove (v) of (4.8). By ūn ∈W1(M,T ), we deduce that

ūn ∈ C0
(
[0, T ];H2 ∩ V

)
∩ C1 ([0, T ];V ) ∩ L∞(0, T ;H2 ∩ V ),

ū′n ∈ C0 ([0, T ];V ) ∩ L∞(0, T ;H2 ∩ V ).
(4.16)

Consider the sequence {wn} defined by wn = ūnx, by H1 ↪→ C0 ([0, 1]) ≡ E,
we have {wn} ⊂ C0

(
[0, T ];H1

)
⊂ C0 ([0, T ];E) . We shall show that there

exists a subsequence of {wn}, it is also denoted by {wn}, such that

wn → ūx strongly in C0 ([0, T ];E) . (4.17)

Using Ascoli-Arzela theorem in C0 ([0, T ];E), we have the following

(j) {wn} is equicontinuous in C0 ([0, T ];E) ,
(jj) for every t ∈ [0, T ], {wn(t) : n ∈ N} is relatively compact in E.

(4.18)
Indeed, for all t1, t2 ∈ [0, T ], t1 ≤ t2, for all n ∈ N, by (4.16)(ii), we have

‖wn(t2)− wn(t1)‖E =

∥∥∥∥∫ t2

t1

w′n(t)dt

∥∥∥∥
E

≤
∫ t2

t1

∥∥w′n(t)
∥∥
E
dt

=

∫ t2

t1

∥∥ū′nx(t)
∥∥
E
dt

≤
√

2

∫ t2

t1

∥∥ū′nx(t)
∥∥
H1 dt

≤
√

2 |t2 − t1|
∥∥ū′n∥∥L∞(0,T ;H2∩V )

≤
√

2M |t2 − t1| .

(4.19)

This implies that (4.18)(j) holds.
By (4.16)(i), we have

‖wn(t)‖H1 = ‖ūnx(t)‖H1 = ‖ūn(t)‖H2∩V ≤ ‖ūn‖L∞(0,T ;H2∩V ) ≤M. (4.20)
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Since the imbedding H1 ↪→ C0 ([0, 1]) = E is compact, there exists a con-
vergent subsequence of {wn(t)} (in E). This implies (4.18)(jj) holds.

From (4.18), we deduce that there exists a subsequence of {wn}, also de-
noted by {wn} such that

wn → w strongly in C0 ([0, T ];E) . (4.21)

By C0 ([0, T ];E) ↪→ C0
(
[0, T ];L2

)
, we deduce that

wn → w strongly in C0
(
[0, T ];L2

)
. (4.22)

On the other hand, from (4.4)(i), we obtain

wn = ūnx → ūx strongly in C0
(
[0, T ];L2

)
. (4.23)

It follows from (4.22) and (4.23) that w = ūx, thus (4.17) is proved.
On the other hand, from (4.2), we obtain the following estimation∣∣∣(Ŝnūn)(t)− (Ŝnū)(t)

∣∣∣ ≤ 1

n

∑n−1

i=0

∣∣∣∣ū2
nx(

i

n
, t)− ū2

x(
i

n
, t)

∣∣∣∣
≤ (‖ūnx (t)‖E + ‖ūx (t)‖E) ‖ūnx (t)− ūx (t)‖E
≤
√

2 (‖ūnx (t)‖H1 + ‖ūx (t)‖H1) ‖ūnx − ūx‖C0([0,T ];E)

≤ 2
√

2M ‖ūnx − ūx‖C0([0,T ];E) .

(4.24)
Hence ∥∥∥Ŝnūn − Ŝnū∥∥∥

C([0,T ])
≤ 2
√

2M ‖ūnx − ūx‖C0([0,T ];E) . (4.25)

From (4.17) and (4.25), we obtain (4.8)(v) holds.
By (4.8)(ii) and (4.8)(v), we obtain∥∥∥Ŝnūn − ‖ūx(·)‖2

∥∥∥
L2(0,T )

≤
∥∥∥Ŝnūn − Ŝnū∥∥∥

L2(0,T )
+
∥∥∥Ŝnū− ‖ūx(·)‖2

∥∥∥
L2(0,T )

≤
√
T
∥∥∥Ŝnūn−Ŝnū∥∥∥

C([0,T ])
+
∥∥∥Ŝnū−‖ūx(·)‖2

∥∥∥
L2(0,T )

→ 0

as n→∞. Thus, (4.8)(vi) holds.
By the following inequality

|Φn[ūn](t)− Φ[ū](t)|

=
∣∣∣Φ(t, (Snūn)(t), (Ŝnūn)(t)

)
− Φ

(
t, ‖ū(t)‖2 , ‖ūx(t)‖2

)∣∣∣
≤ K̃M

[∣∣∣(Snūn)(t)− ‖ū(t)‖2
∣∣∣+
∣∣∣(Ŝnūn)(t)− ‖ūx(t)‖2

∣∣∣] ,
(4.26)
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we deduce from (4.8)(vi) that

En ≡ ‖Φn[ūn]− Φ[ū]‖L2(0,T )

≤ K̃M

[∥∥∥Snūn − ‖ū(·)‖2
∥∥∥
L2(0,T )

+
∥∥∥Ŝnūn − ‖ūx(·)‖2

∥∥∥
L2(0,T )

]
→ 0

(4.27)

as n→∞. Thus, (4.8)(vii) holds. Lemma 4.1 is proved. �

Now, we continue with the proof of (4.7). Note more that

|Φn[ūn](t)| =
∣∣∣Φ(t, (Snūn)(t), (Ŝnūn)(t)

)∣∣∣ ≤ K̃M ,

we obtain∣∣∣∣∫ T

0
Φn[ūn](t)aµ(t; ūn(t), w)ϕ(t)dt−

∫ T

0
Φ[ū](t)aµ(t; ū(t), w)ϕ(t)dt

∣∣∣∣
≤
∫ T

0
Φn[ūn](t) |aµ(t; ūn(t)− ū(t), w)ϕ(t)| dt

+

∫ T

0
|Φn[ūn](t)− Φ[ū](t)| |aµ(t; ū(t), w)ϕ(t)| dt

≤ K̃MK̂µ ‖w‖a
∫ T

0
‖ūn(t)− ū(t)‖a |ϕ(t)| dt

+ K̂µ ‖w‖a
∫ T

0
|Φn[ūn](t)− Φ[ū](t)| ‖ū(t)‖a |ϕ(t)| dt

≤ K̃MK̂µ ‖w‖a ‖ϕ‖L1(0,T ) ‖ūn − ū‖C([0,T ];V )

+MK̂µ ‖w‖a ‖ϕ‖L2(0,T )En → 0, as n

→∞.

(4.28)

It follows from (4.4)1, (4.27) and (4.28) that (4.7) holds.

Finally, letting n → ∞ in (4.5), (4.6) and (4.7) lead to ū ∈ W (M,T )
satisfying the equation∫ T

0
〈ū′′(t), w〉ϕ(t)dt+ λ

∫ T

0
a(ū′(t), w)ϕ(t)dt

+

∫ T

0
Φ[ū](t)aµ(t; ū(t), w)ϕ(t)dt =

∫ T

0
〈f (t) , w〉ϕ(t)dt

(4.29)

for all w ∈ V, ϕ ∈ C∞c (0, T ), together with the initial conditions

ū(0) = ũ0, ū
′(0) = ũ1. (4.30)
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Furthermore, (4.29) and (4.3)4 give

ū′′ = λ∆ū′ + Φ[ū](t)
∂

∂x
(µ(x, t)ūx) + f ∈ L∞(0, T ;L2),

so we obtain ū ∈W1(M,T ). The existence proof is completed.

Next, it is not difficult to prove the uniqueness of a weak solution of (P )
and so ū = u∞. Therefore, we obtain the main result in this section as follows.

Theorem 4.2. Let (H1)− (H4) hold. Then, there exist positive constants M,
T > 0 such that

(i) (P∞) has a unique weak solution u∞ ∈W1(M,T ).
(ii) the sequence {ūn} converges to the solution u∞ of (P∞) strongly in the

Banach space HT .

Furthermore, we also have the estimation

‖ūn − u∞‖HT
≤ CTEn for all n ∈ N, (4.31)

where
En = ‖Φn[ūn]− Φ[u∞]‖L2(0,T ) → 0 as n→∞,

and CT is the constant depending only on T, Φ, µ, f, ũ0, ũ1, λ, ζ.

Proof. It remains to prove (ii). We put

vn = ūn − u∞,
Φ̄n(t) = Φn[ūn](t)− Φ[u∞](t)

= Φ
(
t, (Snūn)(t), (Ŝnūn)(t)

)
− Φ

(
t, ‖u∞(t)‖2 , ‖u∞x(t)‖2

)
,

(4.32)

then vn ∈ ṼT satisfies the variational problem
〈v′′n(t), w〉+ λa(v′n(t), w) + Φ[u∞](t)aµ(t; vm(t), w)

= Φ̄n(t)〈 ∂
∂x

(µ(t)ūnx(t)) , w〉, ∀w ∈ V,
vn(0) = v′n(0) = 0.

(4.33)

Taking w = v′m in (4.33)1 and integrating in t, we get

Zn(t) =

∫ t

0
(Φ[u∞])′ (s)aµ(s; vn(s), vn(s))ds

+

∫ t

0
Φ[u∞](s)aµ′(s; vn(s), vn(s))ds

+ 2

∫ t

0
Φ̄n(s)〈 ∂

∂x
(µ(s)ūnx(s)) , v′m(s)〉ds,

(4.34)

where

Zn(t) =
∥∥v′n(t)

∥∥2
+ Φ[u∞](t)aµ(t; vn(t), vn(t)) + 2λ

∫ t

0

∥∥v′n(s)
∥∥2

a
ds. (4.35)
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On the other hand, vn ∈ ṼT is also the weak solution of the problem (3.31)

corresponding to ũ0 = ũ1 = 0, Φ(t) = Φ[u∞](t), F (t) = Φ̄n(t)
∂

∂x
(µ(t)ūnx(t)) .

Similarly, by using Lemma 3.3 with ũ0 = ũ1 = 0, we have

Z̄n(t) = −2

∫ t

0
Φ[u∞](s)〈µx(s)vnx(s),∆v′n(s)〉ds

+

∫ t

0
ds

∫ 1

0
(Φ[u∞](s)µ(x, s))′ |∆vn(x, s)|2 dx

+ 2

∫ t

0
Φ̄n(s)〈 ∂

∂x
(µ(s)ūnx(s)) ,−∆v′n(s)〉ds,

(4.36)

where

Z̄n(t) =
∥∥v′n(t)

∥∥2

a
+ Φ[u∞](t)

∥∥∥√µ(t)∆vn(t)
∥∥∥2

+ 2λ

∫ t

0

∥∥∆v′n(s)
∥∥2
ds. (4.37)

Put

Yn(t) = Zn(t) + Z̄n(t)

=
∥∥v′n(t)

∥∥2
+
∥∥v′n(t)

∥∥2

a

+ Φ[u∞](t)

[
aµ(t; vn(t), vn(t)) +

∥∥∥√µ(t)∆vn(t)
∥∥∥2
]

+ 2λ

∫ t

0

(∥∥v′n(s)
∥∥2

a
+
∥∥∆v′n(s)

∥∥2
)
ds,

Ȳn(t) =
∥∥v′n(t)

∥∥2
+
∥∥v′n(t)

∥∥2

a
+ ‖vn(t)‖2H2∩V +

∫ t

0

∥∥v′n(s)
∥∥2

H2∩V ds,

(4.38)

then, it follows from (4.34), (4.35), (4.37) and (4.38) that

µ̄∗Ȳn(t) ≤ Yn(t)

=

∫ t

0

[
(Φ[u∞])′ (s)aµ(s; vn(s), vn(s))+Φ[u∞](s)aµ′(s; vn(s), vn(s))

]
ds

+

∫ t

0
ds

∫ 1

0
(Φ[u∞](s)µ(x, s))′ |∆vn(x, s)|2 dx

− 2

∫ t

0
Φ[u∞](s)〈µx(s)vnx(s),∆v′n(s)〉ds

+ 2

∫ t

0
Φ̄n(s)〈 ∂

∂x
(µ(s)ūnx(s)) , v′m(s)−∆v′n(s)〉ds,

(4.39)
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where µ̄∗ = min{1, µ∗, λ, }. With the following estimations

|Φ[u∞](t)| ≤ K̃M ,∣∣(Φ[u∞])′ (t)
∣∣ ≤ (1 + 4M2)K̃M ,∣∣(Φ[u∞](t)µ(x, t))′
∣∣ ≤ 2(1 + 2M2)K̃MK̂µ,∥∥∥∥ ∂∂x (µ(t)ūnx(t))

∥∥∥∥ ≤ √2MK̂µ,

and putting En ≡
∥∥Φ̄n

∥∥
L2(0,T )

= ‖Φn[ūn]− Φ[u∞]‖L2(0,T ) , we obtain the esti-

mations for the terms in the right-hand side of (4.39) as follows

J1 =

∫ t

0

[
(Φ[u∞])′ (s)aµ(s; vn(s), vn(s)) + Φ[u∞](s)aµ′(s; vn(s), vn(s))

]
ds

≤ 2(1 + 2M2)K̃MK̂µ

∫ t

0
Ȳn(s)ds;

J2 =

∫ t

0
ds

∫ 1

0
(Φ[u∞](s)µ(x, s))′ |∆vn(x, s)|2 dx

≤ 2(1 + 2M2)K̃MK̂µ

∫ t

0
Ȳn(s)ds;

J3 = −2

∫ t

0
Φ[u∞](s)〈µx(s)vnx(s),∆v′n(s)〉ds

≤ 2K̃MK̂µ

∫ t

0
‖vnx(s)‖

∥∥∆v′n(s)
∥∥ ds

≤ µ̄∗
4
Ȳn(t) +

4

µ̄∗

(
K̃MK̂µ

)2
∫ t

0
Ȳn(s)ds;

J4 = 2

∫ t

0
Φ̄n(s)〈 ∂

∂x
(µ(s)ūnx(s)) , v′m(s)−∆v′n(s)〉ds

≤ 4MK̂µ

∫ t

0

∥∥Φ̄n(s)
∥∥∥∥v′n(s)

∥∥
H2∩V ds

≤ µ̄∗
4
Ȳn(t) +

16

µ̄∗

(
MK̂µEn

)2
.

(4.40)
It follows from (4.39) and (4.40) that

Ȳn(t) ≤ 32

µ̄2
∗

(
MK̂µEn

)2
+ 2d̄1(M)

∫ t

0
Ȳn(s)ds, (4.41)
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where

d̄1(M) =
4

µ̄∗

[
1 + 2M2 +

1

µ̄∗
K̃MK̂µ

]
K̃MK̂µ.

Using Gronwall’s lemma, it follows from (4.41) that

Ȳn(t) ≤ 32

µ̄2
∗

(
MK̂µ

)2
exp(2T d̄1(M))E2

n. (4.42)

Combining (3.7), (4.38) and (4.42), we get

‖vn‖HT
≤ 12

µ̄∗

√
2MK̂µ exp(T d̄1(M))En. (4.43)

Theorem 4.2 is proved. �

Remark 4.3. The arguments and methods used for proving the unique exis-
tence of solutions of (Pn) can be applied to the problem (P̄n) in which (Snu)(t),

(Ŝnu)(t) are replaced by the following arithmetic-mean terms

(Snu)(t) =
1

n

n−1∑
i=0

u2

(
i+ θi
n

, t

)
, (Ŝnu)(t) =

1

n

n−1∑
i=0

u2
x

(
i+ θ̄i
n

, t

)
,

respectively, where θi, θ̄i ∈ [0, 1), i = 0, n− 1 are given constants.

Remark 4.4. The methods used in the above sections can be applied again
to obtain the same results for the following problem

(P̄n)


utt − λutxx −

∂

∂x

[
µ
(
x, t, (Snu)(t), (Ŝnu)(t)

)
ux

]
= f

(
x, t, u, ut, ux, (Snu)(t), (Ŝnu)(t)

)
, 0 < x < 1, 0 < t < T,

ux(0, t)− ζu(0, t) = u(1, t) = 0,
u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x),

where λ > 0, ζ ≥ 0 are given constants, Φ, µ, f, ũ0, ũ1 are given functions and

(Snu)(t) =
1

n

n−1∑
i=0

u2

(
i+ θi
n

, t

)
, (Ŝnu)(t) =

1

n

n−1∑
i=0

u2
x

(
i+ θ̄i
n

, t

)
,

with θi, θ̄i ∈ [0, 1), i = 0, n− 1 are given constants. Furthermore, the weak
solution of (P̄n) converges strongly in appropriate spaces to the weak solution
of the following problem

(P̄∞)


utt − λutxx −

∂

∂x

[
µ
(
x, t, ‖u(t)‖2 , ‖ux(t)‖2

)
ux

]
= f

(
x, t, u, ut, ux, ‖u(t)‖2 , ‖ux(t)‖2

)
, 0 < x < 1, 0 < t < T,

ux(0, t)− ζu(0, t) = u(1, t) = 0,
u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x),
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where ‖u(t)‖2 =
∫ 1

0 u
2(y, t)dy, ‖ux(t)‖2 =

∫ 1
0 u

2
x(y, t)dy.

Acknowledgments: The authors wish to express their sincere thanks to
the editor and the referees for the valuable comments and suggestions for the
improvement of the paper.

References

[1] G.F. Carrier, On the nonlinear vibrations problem of elastic string, Quart. J. Appl.
Math., 3 (1945), 157-165.

[2] F. Gazzola and M. Squassina, Global solutions and finite time blow up for damped
semilinear wave equations. Ann. I. H. Poincaré - AN 23 (2006), 185-207.
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Dunod, Gauthier-Villars, Paris, 1969.

[7] V.T.T. Mai, N.A. Triet, L.T.P. Ngoc and N.T. Long, Existence, blow-up and expo-
nential decay for a nonlinear Kirchhoff-Carrier-Love equation with Dirichlet conditions,
Nonlinear Funct. Anal. Appl., 25(4) (2020), 617-655.

[8] P. Massat, Limiting behavior for strongly damped nonlinear wave equations, J. Diff.
Equ., 48 (1983), 334-349.

[9] N.H. Nhan, L.T.P. Ngoc and N.T. Long, Existence and asymptotic expansion of the weak
solution for a wave equation with nonlinear source containing nonlocal term, Bound.
Value Prob., 2017:87 (2017).

[10] Vittorino Pata and Marco Squassina, On the strongly damped wave equation, Commun.
Math. Phys., 253 (2005), 511-533.

[11] Sun-Hye Park, Blow-up of solutions for wave equations with strong damping and
variable-exponent nonlinearity, J. Korean Math. Soc., 58(3) (2021), 633-642.
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