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Abstract. In this paper, we investigate the Robin-Dirichlet problems (P,) for damped

12 i
wave equations with arithmetic-mean terms (Sn,u)(t) = = > w?(:=2t), and (Shu)(t) =
n =1

n

1 X ;
= > ui(”;17t), where u is the unknown function. First, under suitable conditions, we
n =1

prove that, for each n € N, (P,) has a unique weak solution @,. Next, we prove that the
sequence of solutions u, converge strongly in appropriate spaces to the weak solution .
of the corresponding problem (P ). Some remarks on open problems are also given in the

end of paper.
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1. INTRODUCTION

In this paper, we consider the Robin-Dirichlet problems (F,) for damped
wave equations as follows

Ut — Nty — P (t, (Swu)(2), (Snu)(t)> ai (u(z, t)ug (2, 1))

(P) =f(z,t),0<z<1,0<t<T, (1.1)
uz(0,t) — Cu(0,t) = u(1,t) =0,
u(w,O) = ﬂO(m)a ut(a;,O) = ﬂ’l(‘r)v

where @, u, f, 4g, 1 are given functions, A > 0, ( > 0 are given constants,
and (Spu)(t), (Spu)(t), n € N are arithmetic-mean terms defined by

(Swu)(1) = = S w50

and

The nonlinear wave equations with strong damping of this type have been
investigated extensively and obtained many interesting results during the past
decades. These equations arise naturally in various sciences such as classical
mechanics, fluid dynamics, quantum field theory, see [2], [4]-[8], [10]-[14] and
the references given therein. In those mentioned works, by using different
methods together with various techniques in functional analysis, several results
concerning the existence/global existence and the properties of solutions such
as blow-up, decay, stability have been established.

In article [12], Pellicer and Morales considered a model for a damped spring-
mass system, precisely a strongly damped wave equation with dynamic bound-
ary conditions as follows

Upt — Ugy — QU = 0, 0 <z < 1, t >0,
u(0,t) =0, (1.2)
u(1,t) = —e Jug(1,t) + au (1, t) + rug(1,1)] .

It is well known that the motion of a mass in a spring-mass-damper system
is usually modelled by the following second-order ordinary differential equation
(ODE) of damped oscillations

mu” (t) = —ku(t) — du/(t), (1.3)

where k > 0 is recovery constant of spring and d > 0 stands for dissipation co-
efficient. The authors showed that, for some certain values of the parameters
in (1.3), the large time behavior of the solutions is the same as for a classical
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spring-mass-damper ODE. For more details, they proved that for fixed con-
stants «, r > 0 and € small enough, the partial differential equation model
(1.2) admitted two dominant eigenvalues. Therefore, this can be implied the
existence of a second-order ODE of type (1.3) which can be considered as the
limit of the model (1.2) when ¢t — oo and ¢ is sufficiently small.

In article [2], Gazzola and Squassina discussed the following viscoelastic
equation with strong damping term Awy:

gy — Au — wAU + puy = uluP~2, in Q x [0, T,
u(z,t) =0, on 99 x [0, T, (1.4)
u(z,0) = up(z), u(z,0) =wui(z), in Q,

where () is an open bounded Lipschitz subset of R™, T' > 0, p > 2, w, pu > 0.
The authors established the global existence theorem and proved that the
global solution is uniformly bounded. They also constructed the finite time
blow up of solutions for low initial energy or arbitrarily high initial energy.

In article [5], Q. Li and L. He investigated the nonlinear viscoelastic wave
equation with strong damping of the form

uy — Au + fgg(t — 7)Au(T)dr — Auy + v = u|ulP72, in Q x (0, 00),
u(z,t) =0, on 09 x (0, 00),
u(z,0) = up(z), w(x,0) =ui(z), in Q,

(1.5)
where 2 C R" is bounded domains with smooth boundary 9€). The authors
proved results concerning local existence/global existence of solutions, estab-
lished the general decay result for global solutions, and showed the finite time
blow-up result for some solutions with negative initial energy and positive
initial energy.

In [9], Nhan et al. considered the Robin problem for a nonlinear wave
equation with source containing multi-point nonlocal terms as follows

Ut — Ugy = f(:L‘,t,u(ac,t),ut(x,t),u(m,t), e 7U(77q7t)>7
O<x<l, O0<t<T,

e (0,8) — hou(0,£) = g (1, £) + hyu(l,£) =0, (16)
U(iL',O) = ’l]o(.%'), Ut(ib',O) = ’111(.’1,'),
where f, g, w1 are given functions and hg, h1 > 0, n1, 12, , 74 are given

constants with hg +hy > 0,0 <71 <12 < --- < 1ng < 1. Here, the authors
proved the existence and uniqueness of a weak solution and established an
asymptotic expansion of high order in a small parameter of a weak solution.

At the present time, to the best of our knowledge, less results are investi-
gated for the damped wave equation containing multi-point nonlocal terms.
Therefore, motivated by the above-mentioned inspiring works, we discuss here
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the existence and uniqueness of a weak solution u, for the problem (P,),
n € N. Furthermore, the convergence of the sequence of solutions u,, in appro-
priate spaces is investigated.

Let us explain in some detail related to our main results. First, for each
n € N fixed, we prove the existence and uniqueness of a local weak solution
Uy, of Prob. (P,). Then, we can consider the behavior of solutions ,, n € N.
It is clear to see that, if u € L>°(0,T; H?) then functions y ~ u?(y,t) and
y +— u2(y,t) are continuous on [0, 1], a.e. t € [0,T], it leads to

_l = 27i—1 ! 2 . 2
(Sa)() = 3 S5k [ uetide = [u(@] as 0,
i=1 0

n 1
(Spu)(t) = S g ui(%,t} — / ul(z, t)de = ||lug(t)]]*  as n — oco.
n < 0
=1

Therefore, it is possible that Prob. (P,) have a close relationship in a certain
sense with Prob. (Ps) defined as follows

e~ At — @ (1 ()1 s (1) o (o, 1)

(Ps) =f(x,t),0<z<1,0<t<T, (1.7)
Uz (0,t) — Cu(0,t) = u(l,t) =0,
u(x,0) = ap(x), u(x,0) =t (z).

We shall prove this relationship to obtain a solution of Prob. (Ps) via the
convergence of the solution sequence {u,} in appropriate spaces. To the best
of our knowledge, there are relatively few results related to approximation
problems (P,), with nonlinear expressions containing arithmetic mean terms,
to get the approximation of the solutions of Prob. (P).

In one-dimensional case, the first equation of Eq. (1.1); of Prob. (Px)
is regarded as a model of nonlinear wave equations of the Kirchhoff-Carrier
type with strong damping. It is well known that the mathematical model of
Kirchhoff and Carrier comes from a description of small vibrations of an elastic
stretched string. In [3], Kirchhoff first investigated the following nonlinear
vibration of an elastic string

ou

2
dy) Uz, (1.8)

where u = u(z,t) is the lateral displacement at the space coordinate x and
the time ¢, p is the mass density, h is the cross-section area, L is the length,
E is the Young modulus, P, is the initial axial tension. And Carrier in [1]
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established a model of the type

L
Ut — (Po + Pl/ uz(y,t)dy> Uge = 0, (1.9)
0

where Py, P; are given constants, which models vibrations of an elastic string
when changes in tension are not small.

This paper consists of four sections. In Section 2, we present some prelim-
inaries. In Section 3, under suitable assumptions, we prove that (P,) has a
unique weak solution #,. In Section 4, we show that the solution sequence
{1y} of Probs. (P,), n € N strongly converges in the Banach space

Hy ={veC’([0,T; H*nV)NnCY[0,T];V) :v' € L*(0,T; H* N V)}

to a weak solution u of the problem (Ps) as n — oo, with the estimation
[tn — ully, < CrEy, for all n € N, where

E, = H(I)n[an] - (1>[u”|L2(O,T)

Sntin = [[u()|?|

Sutin = |z ()]

<K ‘ -0
=0 [ LZ(O,T)]

as n — oo, and Cp is the constant independent of n. In the proofs of results
obtained here, the main tools of functional analysis such as the linear approx-
imate method, the Galerkin method, the arguments of continuity with priori
estimates, the compact method, the regularized technique are employed.

+]
L2(0,T)

Moreover, in order to get a better priori evaluation, a suitable energy lemma
(Lemma 3.4) is also built, where a piecewise linear function on [0,7] and a
regularized sequence in C2°(R) are used to get an energy equality in the case
the initial condition %y = @; = 0. Lemma 3.4 is a relative generalization of the
inequality and equality of energy given in Lions’s book [6, Lemma 1.6, p. 224],
it is the key lemma to establish the convergence of linear approximate sequence
associated with the problem (P,). Finally, we remark that the methods used
can be applied again for similar problems to obtain the same results (see
Remarks 4.1, 4.2 below).

2. PRELIMINARIES

In this paper, with Q = (0,1), we will use the usual function spaces LP =
LP(QY), H™ = H™ (). Let (-,-) denote either the scalar product in L? or the
dual pairing of a continuous linear functional and an element of a function
space. We denote by ||| the norm in L? and by |||y the norm in a Banach
space X. We call X’ the dual space of X. We denote LP(0,T;X), 1 < p < o0
the Banach space of real functions w : (0,7) — X measurable such that
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||u||LP(0’T;X) < 400 with

1/p
Hlzrorx) = esssupHu( My,  if p=oo.
o<t<T

Let u(t), u'(t) = ui(t) = a(t), u”(t) = up(t) = ii(t), ua(t) = Vu(t), taa(t) =
ou 0%u ou 82 )
Au(t), denote u(z,t), py —(x,t), ﬁ(x,t) e —(x, 1), pe 2(3: t), respectively.
Let T* > 0, with ® € C*([0,7*] x R%), ® = ® (t,y, 2), we put D1® = On

o0 0P ot
Dy = o, Dy = =
0z

9y ,and D*® = D -+ D0, oo = (aq, -+, ag) € Z3,
la|=a;+---+az <k, DO 0P = .

On H', we shall use the following norm

follr = (ol + oal?) (21)
We put
V={veH" :v(l) =0}, (2.2)
1
a(u,v) = /0 Uz () vz (x)dz + Cu(0)v(0), u,v € V. (2.3)

Then, V is a closed subspace of H! and on V, three norms v ~ ||v| g1,
v+ |lvg]| and v — ||v]|, = /a(v,v) are equivalent norms.

We have the following lemmas, the proofs of which are straightforward hence
we omit the details.

Lemma 2.1. The imbedding H* — C°(Q) is compact and
[vllcom) < V2 |||l for allv € H'. (2.4)

Lemma 2.2. Let ( > 0. Then the imbedding V — C°(2) is compact and

||U||co o) < llvall < Hlvllq
@)
75 ol < Noall < Jloll, < VI+Cllvell < VIFC vl

for allv e V.

(2.5)

Lemma 2.3. Let ( > 0. Then the symmetric bilinear form a(-,-) defined by
(2.3) is continuous on 'V x V' and coercive on V.
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Lemma 2.4. Let ¢ > 0. Then there exists the Hilbert orthonormal base {w;}

of L? consisting of the eigenfunctions w; corresponding to the eigenvalue \;
such that

O< A <A< <A<, lim A = oo,
J—r+oo (26)
a(wj,v) = A\j(w;,v) forallveV,j=1,2,---.

Furthermore, the sequence {w;/+/\;} is also a Hilbert orthonormal base of V
with respect to the scalar product a(-,-). On the other hand, we also have w;
satisfying the following boundary value problem

{ —Aw; = Aw;, in (0,1), B @7

w]'m(()) — C’LU]'(O) = wj(l) =0, w; € COO(Q) '

Proof. The proof of Lemma 2.4 can be found in ([13, Theorem 7.7, p.87]) with
H = L% and V, a(-,-) as defined by (2.2), (2.3). O
Remark 2.5. The weak formulation of Prob. (P,) can be given in the follow-
ing manner: Find u € Vp = {v € L*®(0,T; H>NV) : v € L>®(0,T; H*NV),
v" € L°°(0,T; L?)N L%(0,T;V)}, such that u satisfies the following variational
equation

(u" (), w) + Aa(u'(t), w) + u[u](t)ay(t; u(t), w) = (f(t), w) (2.8)
for all w € V, a.e., t € (0,T), together with the initial conditions
U(O) = ao, u'(O) = ’17,1, (2.9)

where

(Snu)(t) = n Z u2(Z;1 1),

i=1 (2.10)
(Snu)(1) = > (50),

=1

ay(t;u, w) = (u(t)ug, vy) + Cu(0,)u(0)v(0), u, v e V.

3. EXISTENCE AND UNIQUENESS FOR (P,)

We make the following assumptions:
(Hy) : g, 11 € VN H?, 19, (0) — Ciip(0) = 0;
(Hs) : € C%(]0,1] x [0,T*]) such that
p(x,t) > e >0, for all (z,t) € [0,1] x [0, T*];
(H3) : ® € C1([0,T*] x R%) such that @ (t,y,2) > 1,
for all (t,y,2) € [0,T%] x R?;
(Hy) : f € L*(0,T*; L?) such that f € L'(0,T%; L?).
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For each M > 0 given, we set the constants Ky/(f), Kur(®), K, as follows
- - 3
Ky = Ku(®) =@l a,) = [1®lleoca,,) + Zm 1Di®l[co(4,,) -

B =l ca(@ye) = 2oy ca 1Mo )

3.1
1Bllco(iy) = sup  |9(t3,2)], (3.1
(ty,2)EAM
lellco(g,.y = sup  u(z, 1)l
(QT ) (xvt)GQT*
where
Ap = [0,T%] x [0, M?] x [0,2M?], Q- = [0,1] x [0,T*]. (3.2)

For every T € (0,T*], we put
Vi = {v e L®0,T; H*nV) : v/ € L®(0,T; H*nV), v" € L*(0,T;V)}, (3.3)
then Vp is a Banach space with respect to the following norm (see Lions [6])
[v]ly;, = max {HU”LOO(O,T;H?mV) ; HU,HLOO(O,T;HQHV) ’ H“NHB(O,T;V)} - (34)
For every M > 0, we put
WOLT) = {v € Vs lully, < M},
Wi(M,T) = {veW(M,T):v" € L=(0,T; L*)}.
We note that
Hy ={ve C’([0,T; H*NV)NnC'([0,T};V) : o' € L*(0,T; H*NV)} (3.6)

(3.5)

is a Banach space with respect to the norm
/ /
oll g, = HU”CO([O,T];HQOV) + Hv HCO([O,T};V) + HU HLQ(O,T;HQHV) : (3.7)

Now, we establish the recurrent sequence {u,,}. The first term is chosen as
ug = ug, suppose that
Um—1 € Wi (M, T), (3.8)
we associate Prob. (P,) with the following problem.

Find u,, € W(M,T) (m > 1) satisfying the linear variational problem

(ulh (t),w) + Aa(ul,(t), w) + Apm (t;um(t), w) = (f(t),w), Yw € V, (3.9)
um(O) = fLo, u;n(O) = ﬂl, ’
where
A (tu,w) = O (t)ay(t;u,w), Yu,w €V,
(3.10)

Bun(t) = @aftn-1](t) = @ (£, (Sptm-1) (1), (Sntim-1)(1))
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First, we need the following lemma, the proof of this lemma is not difficult
so we omit the details.

Lemma 3.1. The following inequalities are fulfilled.
() p [0l2 < apts0,0) < B Joll2, Vo € V. Ve € [0,77),

(i) |aw(t;0,0)| < Ky lv]|2, Yo € V, Vt € [0,T],
(i) 0 < e < pu(2,t) < K,

(iv) |@L,(t)] < (1 +6M2) Ky,

) | 5 (uondten) | < var/sP .
. 02
(vi) 0xot

i) | [0 5 (m2200) || < 4 vDRURL 50 0,

(i) | < 26/,

Now, we have the following theorem.

Theorem 3.2. Let (Hy) — (Hy) hold. Then, there exist positive constants M,
T such that, for uy = g, there exists a recurrent sequence {uy,} C W(M,T)
defined by (3.8)-(3.10).

Proof. The proof consists of several steps.

Step 1. (The Faedo-Galerkin approximation: introduced by Lions [6]). Con-
sider the basis {w;} for L? as in Lemma 2.4. Put

k k
u®) (1) = ijl M (tyw;, (3.11)
where the coefficients cgf;, 7 =1,--- k satisfy the system of linear differential

equations
{ (@8 (8, w;) + M@l (£), w;) + A (t ul) (), wy) = (F(t),w;), 1 < j <k,
k k

(3.12)

J

Uor, = Z?zl a(k)wj — @i strongly in H2N'V, (3.13)
Uy = Z;?:l ﬂ](-k)wj — @y strongly in H2N'V. )
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The system (3.12) is written as follows

(k) t r
Py= o® 1 b (1 - e‘”ﬂ't) + / e M dr / AN f(s)ds
m) J )\)\j 0 0
t - (3.14)
_/0 e_)‘)‘ﬂdr/o e)‘)‘jSZagn)(s)c%(s)ds, 1<j <k,
i=1

where
M (8) = At wiywy), fi(8) = (f(t),wj), 1<i,j <k

Omitting the indices m and k, the system (3.14) is rewritten in the form of
a fixed-point equation as follows

c(t) =Ulcl(t), (3.15)

where

(%) t r
G;(t) = a§k) + f\])\ (1 - ef’\)‘jt) —I—/ e)"\f"dr/ eMS f(s)ds,
J 0 0

t T k
Ljld(t) = _/0 e_”‘jrdr/o e»‘jSZaET)(s)ci(s)ds, 1<j<k.
i=1

Applying the contraction principle, system (3.15) has a unique solution c(t)
in [0, T]. The proof is given below.

k
Let v > v/ Amax, where we denote Apax = sup (max > az(;n) (t)’) .
0<t<T -

1<i<k /=
It is well known that X = C° ([0, T]; R¥) is a Banach space with respect to
the norm

lell, x = sup e " le(t)ly, le()]; = Zk lcj(t)], ce X.
v 0<t<T J=1

Then, clearly, U : X — X. Further, U is contractive. Indeed, first we note
that, for all c = (¢1,--+ ,ex), d = (d1, -+ ,dg) € X, z=c—d,
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U] () = Uld](t)], = |L=)(8);
k
SN AE(0
k L
U
< [ ear
/ dr/ max a;;
0 1<i<k
<
< S (&%Z

>/dr/| 5)), ds
0<s<T
< Amax |2 ||VX/ dr/ oy

<A c—dl, x
max /_yz H

r
ez\)\js

s)}ds

()] 12(5)], ds

It follows that

_ Amax
e M U() - Uld)(t)]; < ;jlga lle—dll, x
it leads to
AmaX
Ul = Uld]ll, x < —%— lle—dll, x, Ve, d € X.
Since, 0 < —== < 1, U : X — X is contractive. Then, (3.15) has a unique

solution ¢ € X. Thus, system (3.12) has a unique solution uP (t) in [0,T7.
Step 2. (A priori estimates). Put

s = [a®o)|| + ]| o o)
(1) [auu; .0+ [Vamad o] eae

e [Pl

then we deduce from (3.12) that

W) + i)

} ds,
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.59 (1) < S (1) = SB(0) + 2B, (0) <§ (1(0)iore) Aalk>
T 20£(0), Adiry)

i /Ot[%s)au(s;u;’?(s),u£7’§><s>>+<1>m<s>auf<s;uﬁ’?<s>»u5~f?<8>ﬂ s
w [t [ [ 2 @utonte )] |30 s

9 / By (5) pta(5)ulb) (5), AL (5)) s
0

2
’da:

+2 /Ot <f’(s), Aa,&’§>(s)> ds — 2 <f(t)7 Aﬂﬁfi)(t)> )

(3.17)
where fi, = min{1, p., A, } and
2 2
g(k) (1) — H (k) H - (k)
SO =P +|aPel (3.18)
T a1 L) (||
+/0 {Hum (s)’ vomz Hum () a:| as,
[vllynge = A/ llol2 + 1Av])?, v e Vi H?

so we omit the details. By using Lemma 3.1, we estimate the terms on the
right-hand side of (3.17) as follows. We first have

11:/0 @;n(s)au(s;uﬁ,’f)(s),u%)(s))ds+/0 @m(s)auz(s;u%)(s),ugff)(s))ds
(3.19)

< /Ot (| @7, (s)] + [ ®m(s)]) IA(# Hugﬁ)(s)HZdS

t
<2(1+3M?) KMKH/ S (s)ds;
0
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n=[la [ |2 (<T>m<s>u<a:,s>)] 2,5 da

/ds/ [ (s)i(, )+ Bon(5)a (2, 5)] [ A, )

2
‘dx

<2 (1430 Rk, [ S0 (s)as;
= =2 [ (6) ) 0 ) s
< 2Rk, [ [altho)] |t as
< 2Ry K, / "5 (5)ds:
=2 [ a0 (5 (M<s>u55;<s>),m,s’f><s>>ds
ol

< 2v2 (1 + 6M?) KMKM/ S (s)ds;
0

Iy =2 /Olt D, (5) <8i(293 (,u(s)ugjgc(s)) ,Augj)(s)> ds

<2 [ @) | ;255 (w20 | it ) s
<4KyK, /t S (5)ds.
0

ds

ox

2 0) | i

Next, we get

Is = —28,, (1) < 9 (o) aidd <t>>

Note that
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2

g

B (0) 57 (OE10))

B(t) o (1))

# [ 2 [onter o (stsruitho)] | as)
<2H<i>m(0)aax(u(0)1t0k )|

2 8002 (ut02)

2
ds)

(1

<2 H‘W)ax (u0)iges)|

t
+2(2+ V2’ T* K3, K} / S (s)ds,
0
we deduce that

I = =2{ 8,05 (uoOuflk)) AP0 ) (3.20)

t
+ 5(2 L VIPTIRE K2 / S (5)ds.
x 0

We also have
=2 [ {5(60,006) ~ 0D s)) ds (3:21)
<2 [ (s o) + Jaao]) o
< 2V Sllmea) || VS o)

t
<O 12 e 1) + /O 5 (s)ds;
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Is — 2/0 (F/(s), Aa® (s))ds

t t ) 2
< [lr@las+ [l |a o]

¢
= Hf/HLl(O,T*;LQ)—i_/O HfI(S)H %C)(S)dsé

509 (1) + j ok

~|F

Iy = —2 <f(t),Aa$,';>(t)> <

4

< 2S¢ )+‘L—THfH%°°(O,T*;L2)'

»Jk‘t'

It follows from (3.17), (3.19)-(3.21) that
4T

S (0) < S+ — I im0 1)
(3.22)
—l—/ (D1 ( )—i—Hf’(s)H) k) (5)ds
with
. 2 Y. i _
50 = 2 [500) +2 (70 + 800) 5 (1(OVirs) S )|
16 d P2
fz@?nm) [P COLS) R P
? Hf”2L°°(O,T*;L2) ’ (3.23)
Dy(M)=1+2 (5 +V246(1+ \/§)M2> KuK,
16 2k
+ (1 +V2)2T (KMK> .
By (3.13) and (3.16), the first formula in (3.23) leads to
Sk < %MQ for all m, k €N, (3.24)

where M is a constant depending only on u, f, ®, ug, @1, A, C.
We choose T' € (0, T*] such that

1 4T r.o
(3324 2o W oeaey ) o0 (2 [TDaG0 + [ 70 as]) < 2

(3.25)
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and
M2Ky K -
kp = 72\@#\@ exp (TD*(M)> <1, (3.26)
in which
- 4 9 1 -~ ~ ~ ~
D.(M) = - 1+3M2+ Ia—KMK# KyK,. (3.27)

By using Gronwall’s Lemma, we deduce from (3.22), (3.24) and (3.25) that

SM) () < M2 exp <;2 [TDl(M) + /OT £ (s)]| dsD

X exp [MQ /0 (Do) + | £ (5)]) ds] (3:28)
< M?
for all ¢ € [0,T], for all m and k € N. Therefore, we have
ulf) € W(M,T) forall m and k € N. (3.29)

Step 3. (Limit Procedure). From (3.29), there exists a subsequence of the
sequence of {ugf)} with the same notation such that

ugi) — Um in L>(0,7; H>NV) weak*,

o in L>(0,T; H2NV) weak*, (3.30)
TN ull, in L%(0,T;V) weak, .
Um € W(M,T).

Passing to limit in (3.12), we have u,, satisfying (3.9), (3.10) in L?(0,T) weak.
Furthermore, (3.9); and (3.30)4 imply that

= AAul, + @m(t)aa (11()tmz) + f € L°(0,T; L?),
x
so we obtain u,, € Wi(M,T), Theorem 3.2 is proved. g

Now, in order to be able to obtain a priori estimate for the sequence {wy, } in
the deeper function space and also to prove the uniqueness of Prob. (P,), we
need to establish the energy lemma as follows, which is a relative generalization
of the inequality and equality of energy given in Lions’s book [6].
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Lemma 3.3. Let u € Vp be the weak solution of the following problem

u’ = ul, — @(t)(i: (u(z, t)ug(t)) = F(z,t), 0 <z <1,0<t<T,
uz(oat) - CU(O,t) = u(lvt) =0,
U(l’,()) - 110(.70), ul(iL‘,O) - al(x>a
g, U1 € VN H?, 1i9.(0) — (iip(0) = 0,
F e L*0,T;V), p€ CY[0,1] x [0,T]), u(x,t) > s > 0,
L @ € C([0,T7]).

(3.31)
Then we have
Lol + & |VEmamaue] 4 [ avo|f s
—|—/ D (s) (e (s)ug(s), Au'(s ds—/ ds/ Y| Au(z, s)* da
%Hmll + = H\/iAuoH —|—/ —AuY'(s))ds, a.e., t € (0,T).
(3.32)

Furthermore, if g = @y = 0 then there is an equality in (3.32).

Proof. This proof is similar to the argument of Lions to obtain the inequality
and equality of energy in Lions’s book [6, Lemma 1.6, p. 224]. The details are
follows.

Fix t1, t2, 0 < t1 < to < T and let wi,, (x,t) be the function defined by

Wem (2, 1) = [(Om () AU (2,1)) * pi(t) * pr(t)] O (2), (3.33)
where
(1) 0y, is a continuous, piecewise linear function on [0, 7] defined as follows
0, §é[t1—|—1/m tg—l/m],
. 1, [t1—|—2/m t2—2/m],
Onl) =3 m(t—tr—1/m), telt+1/m, tr+2/m), (3.34)
—m(t —ta+1/m), t € [ta —2/m, ta — 1/m];
(i) {px} is a regularizing sequence in C2°(R), that is,
i€ C(R),supppi (-1, /K, pu(=0) = putt), [ oyt = 1
(3.35)
(iii) () is the convolution product in the time variable, that is,
(u*p)(x,t) = / u(z,t — s)pr(s)ds. (3.36)



1074 N. V. Dzung, N. H. Nhan, L. T. P. Ngoc and N. T. Long

Taking the scalar product of the function wyy,(x,t) in (3.33) with the first
equation in (3.31), then integrating with respect to the time variable from 0
to T', we have

where

T T
A= [0 00t B = [ a0, v ()
. ., (3.38)
Ckm:/o O (1) (t; u(t), wim () dt, kaz/o (F'(t), wim(t))dt.

By using the properties of the functions 6,,(t) and pg(t), we can show after
some lengthy calculations

T
lim Aj, = / 6 (D)0 (1) [/ ()| dt.
k—o0 0 @

T
lim By — — A / 02.(t) A ()| dt,
k—o0

T
klim Crm :/ H\/ t)Au(t H
e (3.39)
/ 02, () (£) (10 (£) 1 (1), Aat' (£))
1
v / 02, ()it / (B(0)u(e, 1)) | A, 1) do
0 0
T
lim Dy, = / 62 (t)(F(t), Au'(t))dt.
k—o0 0
Letting m — oo, from (3.37)-(3.39) we obtain
—Hu ty H 1 ' (t2)) —/\/ | A/ (t \ dt
2
2
—|—§H\/(I)t1 tl Autl‘ —*H\/(I)tQ tz Autz H
to
—/ O (t) (e (t)ug (t), A (t))dt + = / dt/ ) |Au(z, t)|? da
t1 t1

to
:/ (F(t), Ad/(t))dt, a.e., t1, ta € (0,T), t1 <ta <T,

t1
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or

L)+ 5 |V R At +/\/ ad @) de (3.40)
+/t2<1><><um<> A(0), A (1))

_/t2 dt/ ) |Au(z, t)]? dx+/0t2<F(t),Au’(t>>dt

= e Hmm o) +)\/ |Ad @)t
+/“<I><><um<> (0), A (1))

_/“ dt/ Y |Au(z, 1) dm+/0t1<F(t),Au’(t>>dt,

a.e., t1, to € (O,T), t <to <T.

From (3.40) we obtain (3.32), by taking ¢2 = ¢ and passing to the limit as
t; — 04, and using the property of weak lower semicontinuity of the functional
v o]

In the case of 4y = 43 = 0, we prolong w, F' by 0 and (®(t), p(z,t)) by
(®(0), p(z,0)), respectively as t < 0 and we deduce that equality (3.40) is
true for almost ¢; < to < 7. Taking t; < 0 in (3.40), its right-hand side is 0,
we take t1 — 0_ and we have equality (3.32) when @y = @; = 0. The proof of
Lemma 3.3 is completed. ]

We will use the result of Theorem 3.2 and the compact imbedding theorems
to prove the existence and uniqueness of a weak solution of Prob. (P,). The
following theorem is the main result in this section.

Theorem 3.4. Let (Hy) — (Hy) hold. Then, there exist positive constants M,
T such that

(1) Prob. (Py) has a unique weak solution u € Wi (M, T).
(2) The recurrent sequence {uy,} defined by (3.8)-(3.10) converges to the
solution w of Prob. (P,) strongly in the Banach space Hr.

Furthermore, we have the estimation

[wm — ullg, < Crky' for all m €N, (3.41)
where kp € [0,1) and Cp are the constants depending only on T, pn, f, ®, 4o,
alu )‘) C-

Proof. (a) Existence of the solution: We shall prove that {u,,} is a Cauchy
sequence in Hp. Let w,, = umt1 — Um. Then w,, satisfies the variational
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problem
(Wi (), w) + Aa(wy, (t), ) + Oy 5( Yaty. (£ wpn (£), )
= [Pmi1(t) — Pm(t)] o ((tuma () w), Yw €V, (3.42)
Wi (0) = w!,, (0) = 0.

Taking w = w], in (3.42); and integrating in ¢, we get
t
Xn®) = [ s (5)an (i (s), i (5))ds
0

+/0 D1 (8)au (83 Wi (8), win(s))ds (3.43)

42 [ [Ba(9) = Blo)] (g (1(5) () (51 s,

where
Xp(t) = “w;n(t)"2+<i>m+1(t)au(t;wm(t),wm(t))+2)\/0 [why(s)]| ds. (3.44)

We note more that w,, = Umt1 — Um € ‘7T is the Weali solution of the
problem (3.31) corresponding to @y = @ = 0, ®(t) = Ppti(t), F(t) =
[(i)m-i—l(t) - (i)m(t)]

we get

Yin(t) = —2 / B 1.(5) () (), Aty (5))ds

/ ds / By (s ) |Awn(z, 5)[? da (3.45)

0

#2 [ ([Bs1(6) = (5] 2 (15 me(5)), ~ Bt () s,

p ((t)umz(t)) . By using Lemma 3.3 with a9 = 41 = 0,
x

where

2 t
, 2
)| +2 /0 | A, (s)] ds. (3.46)

(8) = [Jwh (0)] 2+ ||/ @y (D)) A (¢

Put
Sin(t) = Xon(t) + You(t) = [[wln()|* + [[wlu(®)|2

+ @1 (2) <au(t§ Win(t), wm(t)) + H mAwm(t)‘r) (3.47)

+2A /Ot (Hw;n(s)ui + HAw,/n(s)HQ) ds
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we deduce from (3.43), (3.45) that

125 (t) < Sin(1) (3.48)
= [ 15511030, (9)+ B (5 51010 (). (5]
=2 [ Bua ()i (). A () s

t 1 o ._
+/0 ds/o 95 [Prmr1(s)p(z, )] | Awy, (2, 5)* da

- - 0
2 [ [Ba(6) =B (5] [<8x ((8)ttma(5)) » W (5) — At () | ds
=21 + -+ 24,
where z1, - -+, z4 are defined as below, fi, = min{1, u., A, } and

Sn(t) = [l ()| + || ()12 + llwm (212
8w O + [ (@2 + [[Awi(s)]*) ds
= J|wh )] + [ )] + N ()32

t
[ o) s

(3.49)

Estimating z; : By Lemma 3.1, (i), (ii), (iv), we deduce that

= [ B ol ()
- By (8)ay (53 W (), win ()| ds
< [ (a )+ i) Kalonlds— (350)
<2 (1+3M?) KuK, /Ot l[wn ()| ds

t
<2(1+3M?) KMKM/ S (8)ds.
0
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Estimating 2y : By Sy, (t) > [|wma(£)||> + fg |Aw!, (s)||? ds, we obtain

=2 /0 D1 (5) 112 (5)0ma (5), At (5))s

< 2Ky K, /0 1w (5)I| || Aoy, (5)]| ds

o ) . g (3.51)
< ’jl/ | Awl,(s)) ds+_K]2wK2/ wma (s)[1? ds
0 Hox 0
for 429 2o [T5
< Sn(t) + —Ki K, / S (s)ds
4 Fox 0
Estimating z3 : We have
o _
o (a9 9)]| = [ sl 5) + B (50 )|
(’(I)m—l—l )’ + @mﬂ(s)}) Ku
<2(1+3M?%) KuK,.
Therefore,
_/ / Opi1(s (x,s)} ]Awm(x,s)IQd:):
<2(1+43M%) Kyk, / | Ay (s)2 ds (3.52)

2 (1 + 3M2) f(Mf(#/ Spm(s)ds.
0

Estimating z, : First, we estimate,

D, 41(5) — (I)m(s)| :

}‘i’m—l—l(t) - (i)m(t)‘

= | (£, (Swum) (). (Suwn)(®)) = @ (¢t (Sutm2)(®), (S ®)) | 3.5
< Rt [[(Sutn) (8) = (Sutm-1) O] + | (St (¢) = (Stin-1) ()]

We estimate the terms | (Sptm ) (£) — (Sptm_1)(t)] and ‘ (St (£) — (Snttm—1) (£) ]
respectively, as follows
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(St (6) — (St 1)(0)] < - S [ (51,0) =2,y (51, 9)
i=1

1 n A A
1 " i (3.54)
1 n
< 2M 3 [V 0]
=2M ||[Vwn-1(t)]-
By the inequality |Vum, (=2, t)| < V2 ||um (t)|| g2y » We obtain
(Sutm)(t) = (Suttm-1)()|
1 & . .
<22 950" = [um (52, 0]
1 : , ,
<= Z; [Vt (1, )| + [ V-1 (52, 8)| [ Vwm—1 (51, 1) (3.55)

IN

1 n
E4MZ w1 || 2y

i=1

=AM [[wm—1(8)|| g2y -
Then, it follows from (3.53)-(3.55), that
| @i () = Pn(t)] < K [2M [ Vwm-1 ()| + 4M w1 ()| g2y
< 6M K [[wim—1(8)]| g2y (3.56)
< 6M Ky mefIHHT :

<;$ (11(8)umaz(8)) , wh,(s) — Aw!,(s))|. By the following

Next, we estimate

inequality

0

e 6 ()| = a5+ 1(5) A 0]

< Ku\/inum(t)HHzmv < \f?MR'#,
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we deduce that

e s (9 ~ B o)
< | g o) s 6) = i) (3:57)
< 2M K [|w), (5)]| 2y -
From (3.56), (3.57), the term z4 is estimated as follows

=2 [ (B9 = Bn(6)] | (5 (W) win(5) — Auty(5)| ds

< 2/0 @ y1(s) — Ppu(s)] ‘<88x ((8)umz(8)) ,w,(s) — Awl,(s))| ds

t
§24M2KMKM||wm1HHT/O (|, ()] 2y ds (3.58)

IN

= t
/’L* 2 4 ~ ~ 2 2
4/0 Hw,’n(s)Hmm,ds+i144TM4 (KMKM> [wm—1l7,

s 4 N R 2
< %Sm(t) + ;7144TM4 (KMK;L> lwm—1l,

It follows from (3.48), (3.50)-(3.52) and (3.58) that
~ N 2
i o M* (KMKM) ) -
Sn(t) < (24v2) g Ty, +2D.(0) / S, (s)ds, (3.59)
* 0

where D, (M) is defined as in (3.27).
Using Gronwall’s Lemma, we deduce from (3.59) that

[wmll gy, < kr lwmllg, , ¥meN, (3.60)
where k7 € (0,1) is defined as in (3.26), it leads to
[t = tnspll gy, < Mo = wall gy, (1= k) "'k, ¥om, p e N. (3.61)
It follows that {u,,} is a Cauchy sequence in Hp. Then, there exists u € Hrp
such that
U — u strongly in Hp. (3.62)
Because u,, € W(M,T), there exists a subsequence {um,;} of {u;} such
that
U, — U in L>(0,T; H>NV) weak*,
Upy, — U in L>(0,T; H>NV) weak*,
Up,, —u” in L%(0,T; V) weak,
ue W(M,T).

(3.63)
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We note here that
Bra(t) = @ (1 (Su) (1), (Sut) (1)) | < 6M R 1 — ullg, - (3.64)
Combining (3.62) and (3.64), we obtain
B, — O ( (S ("), (Snu)(-)) strongly in L(0, T). (3.65)

Finally, passing to limit in (3.9), (3.10) as m = mj; — oo, it implies from
(3.62), (3.63) and (3.64) that there exists u € W (M, T) satisfying (2.8)-(2.9).
Furthermore, (2.8) and (3.63)4 imply that

u = A&+ @ (1, (Sp) (1), (Su) (1)) 83 (e, g (b)) + f € LO(0,T;5 L2),

so we obtain u € W1 (M, T'). The existence is proved.

(b) Uniqueness of the solution: Let u;, us € Wi(M,T) be two weak
solution of Prob. (P,). Then u = u; — u9 satisfies the variational problem

(u" (), w) + Aa(u' (1), w) + Oy () au(t;u(t), w)
—_— [cpl (t) — &y (t)} a,(t us(t), w), Yw € V, (3.66)
u(0) = 4/(0) =0,

where

&, (t) = @ (t, (Swus) (2), (S’nui)(t)> Li=1,2. (3.67)

Taking w =« in (3.66); and integrating in ¢, we get

X(t)—/o él(s)au(s;u(s),u(s))ds—i—/o D1(s)ayu(s;u(s),u(s))ds 568)
- 2/0 [@1(3) — @2(3)] a,(s;uz(s), ' (s))ds,

where
X(t) = Hu'(t)H2 + <i>1(t)au(t;u(t),u(t)) + 2)\/0 Hu’(s)HZ ds. (3.69)

Note that w = u; —ug is also the weak solution of the problem (3.31) corre-

sponding to @ig = i = 0, B(t) = 1 (t), F(t) = [(i)l(t) - 5)2(75)} % (1(t)u2z(1)) -



1082 N. V. Dzung, N. H. Nhan, L. T. P. Ngoc and N. T. Long

By using Lemma 3.3 with 49 = u; = 0, we get

Y(t) = 2 / By (5) {pra ()11 (), Al (5)) s

/ds/ <I>1 ) |Au(e, s)|? dx (3.70)
9

where

Y’f)z1!“'(t)Hz+‘i’1(t)H\/u(t)Au(t)H2+2A/0 A/ (s)|[ds.  (3.71)

Put S(t) = X(t) + Y (t), we have
fS(t) < S(t)

t ~
:/0 [q)'l(s)au(s;u(s),u(s))+<b1(s)aul(s;u(s),u(s))} ds
t
=2 [ B s s s), A () s

/ds/ <1>1 ) |Au(z, 5)|2 da— 2/; [él(s)—ég(s)}

< Jan(sruatoal(o) + 5‘; (n(s)uas(s)) (51 s

(3.72)
where

=[Ol + [ @I + lu®l?, /Hu ds. (373)

With the similar estimations as in S,,(t), we obtain the following estimate

) < Duy / S(s (3.74)

where
K MK
s

Dy = —

Pl 3M* + (14 144M%)
*

]KMK

Using Gronwall’s Lemma, it follows from (3.74) that S(t) = 0, that is,
u1 = uo. This completes the proof . O
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4. CONVERGENCE OF THE SEQUENCE OF SOLUTIONS OF (P,)
TO A UNIQUE WEAK SOLUTION OF (Py)

In this section, we shall consider the problems (P,), (Px) as follows

Ut — Mgy — P [u](t) (1(z, t)ug (1))

IR

(Fn) flzt),0<2z<1,0<t<T,
ug(0,t) — Cu(0,t) = u(1,t) =0,
u(z,0) = to(z), u(r,0) =1 (),
Ugt — Migzz — P[] (t)% (u(z, t)ug(x,t))

(P) =f(z,t),0<z<1,0<t<T,
uz(0,1) — Cu(0,t) = u(1,t) =0,
u(x,0) = tg(x), u(x,0) = a1 (z),

where ( > 0, A > 0 are constants and ®, u, f, ug, @ are given functions, in
which

Duful(t) = ® (£, (Su)(8), (Sau)(1))

Dful(t) = @ (& Ju(®) |, llua (0)]1) @)
n—1 n—1
(Sn)(1) = - 3w (1), (San)(t) = - > wd(E ).
=0 =0

Using the assumptions (H;) — (H4) and the results of Theorem 3.4, there
exist positive constants M, T independent of n such that the problem (P,)
have the unique weak solution u,, satisfying

Uy € Wi (M,T) forall neN. (4.2)

From (4.2), we deduce that there exists a subsequence of {u,}, with the
same notation, such that

Up — U in L0, T; H>NV) weak*,

a, — in L*(0,T; H> NV) weak*, 43
al — u” in L2(0,T;V) weak, (4.3)
ue W(M,T).

Applying the lemma of Aubin-Lions, a classical compactness result in the
space C([0,T];V), there exists a subsequence {u,}, with the same symbol,
such that
{ up, —u in C([0,T];V) strongly, (4.4)
=4 in C([0,T];V) strongly. '
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Because 4, is the unique weak solution of (P,), we have

T T
| @ wewd - [ a0 v
0 0
T
+AQ%M&MWM&%W0%@%®WW®ﬁ
Z/TU®AWﬂWMVwEKV¢6@WQﬂ-
0
By (4.3) and (4.4), we get
T T
[ @wwewn [ @
0 0
T T
A / (@ (), we®dt — A [ a@ (), w)pt)dt.
0

0
We need to check

T
/ O, [ty (t)ay(t; un(t), w)p(t)dt — / t)au(t;u(t), w)p(t)dt, (4.7)
0

so the following lemma is useful.

Lemma 4.1. There exists a subsequence of {uy}, which is also denoted by

{1}, such that

(i) ||Sna
(i) |

(iii) [[Sntin — Snilleory) — 0,

()P

LQoqn'—xﬁ?\<snu>@>——nu<wu2]2dt—+<x

= |G e) e 2]t — 0,

Sut = 3O

. o 7 1(Sna a2
() | = 1O,y = K [(Suin)(®) = ()]t
(v) ||Sniin — SnaH -0,
c([0,17)
(60) [ = 121 1y = o |G ) = a7t = 0
(vii) Ep = [|Pplan] — [U]HB(O,T) — 0.

Proof. We note that

%Z:Ol n / y)dy, Vh e C°((0,1]).
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Since 4 € Hp — CY([0,T]; H*NV), we deduce that a, @, € C°([0,T); H') —
C°(]0,T]; C°(€2)), so the functions y — u?(y,t), y — u2(y,t) belongs to C°(€2),
for all ¢ € [0,77] then,

o)) = £ SR [ @y = @) asn o o

=0

S0 = 23 w0 o [ w iy = O 0o
(4.10)
B _l n—lﬂ 3 l n—1 i
(S @] =3 R0 < -3 a0l o
N =lla @l < M2
’(Snﬂ)(t) - ||ﬂ(t)]|2‘ < 2M2, Vn e N and Vt € [0,T]. (4.12)

Applying the dominated convergence theorem, we deduce that (4.8)(i) is
true. Similarly,

G| = L R < Y e Ol
= [[@ (D)o < 21 (1) F2qy < 2M°
and
‘(Sna)(t) - Haw(t)H?‘ <3M? for alln € N and ¥t € [0, T]. (4.14)

By the dominated convergence theorem, (4.8)(ii) is also true.
Next, by iy, 4 € Wi (M,T) and V — C°(]0,1]) = E, we deduce from the
first limit in (4.4) that

(.00~ (S0 < 3 30 a0~ (o)
< lz:}l ﬁn(%,t)—i—fa(%,t) Up(—,1) —a(a,t)

S*ZZ o (@l + 2@ g) [ (t) — a®)|
= (lan (g + la@®)ll ) [lent) = a@)l
< (lan@®lly + la@®)lly) [lan ) = a@)ly

< 2M ||tp — Ul comvy -

hence
[Sntn — Sniill o,y < 2M ||t — tll o790y - (4.15)
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By (4.15), (4.4)1, it is clear to see that (4.8)(iii) holds.
By (i) and (iii) of (4.8), we obtain

St — 7))

Suti — ()|

< 1St = Sutll 20.1) + |

L2(0,T) L2(0,7)

< VT || Sniin — Snitll o1y + \ Spitt — Ha(~)||2\

L2(0,T)
—0

as n — oo. Thus, (4.8)(iv) holds.

Now, we prove (v) of (4.8). By u, € W1(M,T), we deduce that
i, € C°([0,T); H* V) nCH([0,T]); V)N L®(0,T; H* NV), (416)
i, € CY([0,T]; V)N L>®(0,T; H*NV). '

Consider the sequence {w,} defined by w,, = ., by H' — C°([0,1]) = E,
we have {w,} C C°([0,T]; H') c C°([0,T]; E). We shall show that there
exists a subsequence of {wy,}, it is also denoted by {w,}, such that

wy, — Uy strongly in C° ([0, T]; E) . (4.17)
Using Ascoli-Arzela theorem in C° ([0, T]; E), we have the following

(i) {wy} is equicontinuous in C° ([0, T]; E),
(jj) for every t € [0, T], {wy(t) : n € N} is relatively compact in E.

(4.18)
Indeed, for all t1, t2 € [0,T], t; < tg, for all n € N, by (4.16)(ii), we have
to
Jun(t2) = waltr)lp = | [ iy
t1 E
1)
/
< [ i)
t1
1)
_/
= /t [0 ()|  dt (4.19)
1

t
<2 [ g 0)] o
t1

< \/§\t2 — t1] Hﬂ;zHLoo(o,T;HQHV)
< V2M |ty —t].

This implies that (4.18)(j) holds.
By (4.16)(;), we have

lwn Ol = [tna @l = N @l 2y < [@nllpeo,r,m20v) < M- (4:20)
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Since the imbedding H' < CY ([0,1]) = E is compact, there exists a con-
vergent subsequence of {wy,(t)} (in £). This implies (4.18)(jj) holds.

From (4.18), we deduce that there exists a subsequence of {wy}, also de-
noted by {wy,} such that

wy, — w strongly in C° ([0, T]; E). (4.21)
By C°([0,T); E) — C° ([O,T]; L2) , we deduce that
wy, — w strongly in C° ([O,T]; L2) . (4.22)
On the other hand, from (4.4), we obtain
Wy, = Upg — Uy Strongly in P ([0, TY; L2) . (4.23)
It follows from (4.22) and (4.23) that w = 1, thus (4.17) is proved.
On the other hand, from (4.2), we obtain the following estimation
Ty |Ee ) )
< ([tne (Dl g + e (Bl ) [1tne () — @ (8]
< V2 (ane Ol g + @ )] 2) N8ne = @ellcogo 7y,
< 2V2M |ty — Uzl cojo,1);) -

(Sniin)(t) — (Snﬂ)(t)‘ < Z;:ol

(4.24)
Hence
G, iy, — Sy < 2V2M ||tipg — g B - 4.2
Sniin = S| < OV fine — elloogormy - (4:25)
From (4.17) and (4.25), we obtain (4.8)(v) holds.
By (4.8)(ii) and (4.8)(v), we obtain
| Sutin = 12?0 < S0 = S|, -+ ]| 8o = NEaC1P]
L2(0,T) L2(0,T) L2(0,T)
VT [Suin—Saa| | +][Sua—lla ()]
C((o,17) L2(0,T)

—0

as n — oo. Thus, (4.8)(vi) holds.
By the following inequality

(@[] (1) — [a](2)]
= |® (£ (Sun)(®), (Sni) (1)) = @ (& Na O Jw01?)|  (4.26)
< Kar [|(Sum)(®) = 7)) + | (Sutin) (6) — 701
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we deduce from (4.8)(vi) that
By = || Pp[un] — (I)[ﬂ]HLQ(O,T)

+ |[8ntin — ()P

4.27
L2(0,T) ’ (4.27)

St — [[a()|?

<7
< Ku D LQ(O,T)]

— 0

as n — oo. Thus, (4.8)(vii) holds. Lemma 4.1 is proved. O

Now, we continue with the proof of (4.7). Note more that
ufa) )] = [@ (¢, (Suii) (), (Sui) (9) | < K,

we obtain

T T
/ D[] (t)ap (L Un (), w)ep(t)dt — / Ola)(t)ay(t; ult), w)@(t)dt‘
0 0

T
< / By 110 (1) |ap (t: @ () — a(t), w)p(t)] dt
0
T
n / B[] () — B[] (1)) | (£ (), w)ep (1))
T
< By, |, / lan(t) — a(®)ll, |o(t)] dt (4.28)
0

. T
+ Ky lela/0 | @[] () — @[a] (@) [[u(®)]l, l¢(t)] dt

< KK ol 19l 0.2 N = @leqo )
+ ME |l 9]l 207y En = 085 1
— OQ.
It follows from (4.4)1, (4.27) and (4.28) that (4.7) holds.

Finally, letting n — oo in (4.5), (4.6) and (4.7) lead to uw € W(M,T)
satisfying the equation

T T
/ (@ (t), wyp(t)dt + A / o (1), w)p(t)dt
0 0 (4.29)

T T
T / B[] (£) (1 (1), w)ep(t)dt = / (f (1) w) p(t)dt

for all w € V, ¢ € C2°(0,T), together with the initial conditions
w(0) = g, u'(0) = . (4.30)
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Furthermore, (4.29) and (4.3)4 give
0
a" = \AT + @[a](t)a— (u(z, t)ag) + f € L°°(0,T; L?),
T

so we obtain u € W1 (M, T'). The existence proof is completed.
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Next, it is not difficult to prove the uniqueness of a weak solution of (P)
and So 4 = us,. Therefore, we obtain the main result in this section as follows.

Theorem 4.2. Let (Hy) — (Hy) hold. Then, there exist positive constants M,

T > 0 such that
(i) (Px) has a unique weak solution us € Wi(M,T).

(i) the sequence {u,} converges to the solution us of (Px) strongly in the

Banach space Hr.
Furthermore, we also have the estimation
[tn — ool gy, < CrEn  for all m €N,

where
En = ||(I)n[an] - q)[uoo]HL2(07T) —0 asn— 00,
and Cr is the constant depending only on T, ®, u, f, tg, @1, A, C.

Proof. Tt remains to prove (ii). We put

<

n = Un — Uco,

D (t) = P un](t) — luco](t)
= @ (£, (Su) (1), (Su) (1)) = @ (& luso (DI Juoca (B)])
then v,, € VT satisfies the variational problem
(on(8), w) + Aa(vp (1), w) + Plucc] (t)au(t; vm(t), w)

= B(0)( - (u(D)ine 1) ), Y € V.
vn(0) = v},(0) = 0.

Taking w = v/, in (4.33); and integrating in ¢, we get
t
Zu(®) = [ (®fue)) ()au(s: a(s),va(9)ds
0

+/0 B[utoo] (8)ap (53 vn(s), vn(s))ds

2 [ B () nn(s) (),

where

Zn() = [0 )| + Pluoc] (B)au(t; vn(t), va(t)) + 2 /0 (s ds.

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)
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On the other hand, v, € Vr is also the weak solution of the problem (3.31)
- 0
corresponding to tg = 41 = 0, ®(t) = Plux(t), F(t) = @n(t)% ((t) Uz (t)) -

Similarly, by using Lemma 3.3 with 4y = @ = 0, we have
Zn(t) = 2/ Cluioc](5) (o (5)vna(s), Avy(s))ds
/ ds/ [tso]( Y | Avy (2, )| da (4.36)
#2 [ @) (1)0als)) D] ),
where

Zn(t) = |0 ®)|| + ®lusc] (®) Hmmn<t)”2+zx/otHAU;(S)H%. (4.37)

Put
Yn(t) = Zn(t) + Zn(t)
= o+ o]

# 0lucl() (6 00(0), 000 + [V A0 (0] |
+ 2\ /Ot (Hv,’l(s)Hz + HAU;L(S)H2> ds,

Yalt) = [[on @ + [on @Il + loa®)l1F2ny +/O [07,(3) 72y s,

(4.38)

then, it follows from (4.34), (4.35), (4.37) and (4.38) that
Yo (t) < Ya(t)

=/[(<1>[uoo])/( 5)ay.(53Vn (5), Vn (5)) +P[uoc] () aw (53 vn(5), vn(s))] ds

/ds/ [t ( Y [Avy(z, 8)|? dz

(s Una(s), Avp(s))ds

/0 Dfunc)(s)
+2/0t<1>()<8‘9

-2

(ha(s)
(1(8)tna(5)) , v (s) — Avy, (s))ds,
(4.39)
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where i, = min{1, pu, A, }. With the following estimations

O] < Fiv,
|(<I>[uoo])' (0] < (1+4M?) Ky,
|(@[uce) (t)p(, t)) \<2 (1+2M*)KyK,,

[N B

1091

and putting E,, = H(i)"HH(O,T) = ||®n[tn] — @uco]ll f2(0,r) » We obtain the esti-

mations for the terms in the right-hand side of (4.39) as follows

Ji :/o [(®[uso]) (8)au(s;vn(s), vn(s)) + Pluse)(s)ay (s;vn(s), vn(s))] ds

t
<201+ 2M2)KMKH/ Y, (s)ds
0

t 1
= S ’LLSLUS/’U"L’SQI'
b—AdA(@meh)Hﬁdyﬂd

t
<201+ 2M2)KMKM/ Y, (s)ds
0

h:—zé¢ma@mm@%awA%@mu

< 28K [ ons(s) | ] 9)] ds
g%?n(t) ;* (Rvk,) /Y
h:2A¢aaglw@wawﬂ%@—A¢@Ms

ds

§4MKP/|@M$HW%@WHMV

16

i o
< =Y, () +
<) + 2

(ME,E ) .
It follows from (4.39) and (4.40) that

() < 22 (MKE) +o2d (M /Y( ds,

(4.40)

(4.41)
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where
dy (M) = ; [1+2M2+ i —KuK } KuK,.
Using Gronwall’s lemma, it *follows from (4.41) that
Vi(t) < iQ (ME, ) exp(2Tdy (M) E2. (4.42)
Combining (3.7), (4.38) and (4.42), we get
lonllg, < j_jﬂMf(u exp(Td) (M) E,. (4.43)
Theorem 4.2 is proved. U

Remark 4.3. The arguments and methods used for proving the unique exis-
tence of solutions of (P,,) can be applied to the problem (P,) in which (S,u)(t),
(S,u)(t) are replaced by the following arithmetic-mean terms

(Spu)(t) = ifﬁ (2 J;@::) L Gaw)(t) = ;Tfui (Z —;éi,t> ,

=0 1=0

respectively, where 6;, 6; € [0,1), i = 0,n — 1 are given constants.

Remark 4.4. The methods used in the above sections can be applied again
to obtain the same results for the following problem

o= At~ [ (.1, (Su) (1), (Su) (1)) ]

(Py) —f(wtuut,ugc,(Su)()( u)(1), 0<z <1, 0<1<T,
uz(0,t) — Cu(0,t) = u(l,t) =
u(x,0) = tp(z), uz, O)—ul( ),

where A > 0, ( > 0 are given constants, ®, u, f, tg, U1 are given functions and

(St = L3 (%00), o) = LS (Z2).

=0 1=0

with 6;, 6; € [0,1), i = 0,n — 1 are given constants. Furthermore, the weak
solution of (P,) converges strongly in appropriate spaces to the weak solution
of the following problem

9
= Atz = 5= [0 (.t a1 o 8)]”)

(P) = F (st Ju(@) | e (8)]?) , 0 <2 <1, 0<t< T,
uz(0,t) — Cu(0,t) = u(1,t) =0,
ul(,0) = o), wi(,0) = i (),
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where [Ju(t)[|* = [y u?(y, )dy, [ua(8)]* = [y u3(y, t)dy.
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