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Abstract. The paper is considered an expansion of the lattice random normed space con-

cepts, as we presented some certain topological structures.

1. Introduction

Random lattices have garnered considerable attention in recent years from
both a mathematical and algorithmic viewpoint. Probabilistic metrics were
first introduced in 1942 by Menger [9]. He also made important contributions
to the probabilistic metric space, and then the scientist Wald [12] followed.
Schweizer and Sklar [10] discussed the development of probabilistic metric
space which is presented in the first chapter of this book. And by them
the theory of random normed space (RN-space) was then developed current
version. which gave a new definition of random normed space.

Serstnev [11] defined random normed space as a generalization of a normed
linear space. In real normalized linear space, the vector normal is represented
by a non-negative real number, but in probabilistic normed space, the vec-
tor normal is represented by a probability distribution function instead of a
positive number. The importance of random normed theory lies in modeling
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uncertainty resulting from various problems in science field such as computer
programming, statistical convergence, nuclear physics, etc, such in 2009, Fil-
ipović et al. [5] worked on new independently random normed modules and
first used them in financial applications. Which prompted us to work on this
research which is primarily focused on examining the topological structure of
lattice random normed space, also contains some expansion of lattice random
normed space concepts. The study of lattice random normed spaces is impor-
tant to an understanding of nonlinear analysis. For more information about
RN space, check out [1, 2, 3, 6, 7].

2. Preliminaries

In order to make sense of the following section of this study, let us first
describe some well-known concepts and findings.

Definition 2.1. ([8]) Suppose that l = ( L,≥ L) be a complete lattice, i.e., a
partially ordered set in which every non-empty subset admits supremum and
infimum, also inf  L = 0l, sup  L = 1l.

∆+
 L is the set of distribution function

∆+
 L =

{
g|g : R

⋃
{−∞,∞} →  L, g (0) = 0l, g (+∞) = 1l,

g is non-decreasing and left-continuous on R
}
.

The subset D+
 L of ∆+

 L defined as D+
 L =

{
g ∈ ∆+

 L : limx→+∞ g (x) = 1l
}
.

The function ε◦(t) is given by

ε◦(t) =

{
0l, if t ≤ 0,

1l, if t > 0,

which represent the maximal element for D+
 L .

Definition 2.2. ([8]) A function N :  L→  L is called a negation function, if

(1) N (0l) = 1l, N (1l) = 0l.
(2) N (β) ≤ N (ώ) if β ≥ ώ.

This function is involutive, iff N (N (α̂)) = α̂, ∀ α̂ ∈  L.

Definition 2.3. ([8]) Let  L be a complete lattice. A mapping T :  L2 →  L is
called a triangular norm (t-norm), if satisfying the following:

(1) T (κ, 1l) = κ ,∀κ ∈  L (Boundary condition).
(2) T (κ, y) = T (y,κ) , ∀ (κ, y) ∈  L2 (Commutativity condition).
(3) T (κ, T (y, ·Z)) = T (T (κ, y) , ·Z) ,∀ (κ, y,Z) ∈  L3 (Associativity con-

dition).
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(4) y ≥ L y
′ =⇒ T (κ, y) ≤ L T (κ, y′) , ∀ (x, y, y′) ∈  L3 (Monotonicity con-

dition).

Definition 2.4. ([4]) Let (W,Q, T ) be a lattice random normed space (LRN-
space) where W is vector space, T is a continuous triangular norm, Q : W ×
R→ D+

 L is a mapping satisfies the conditions:

(1) Q (κ, t) = έ◦(t) if and only if κ = 0 for all t > 0,

(2) Q (α̂κ, t) = Q
(
κ, t
|α̂|

)
for all κ ∈W, t > 0, α̂ 6= 0,

(3) Q (κ + y, t+ Z) ≥ L T (Q (κ, t) , Q (y,Z)) for all κ, y ∈ X, t,Z ≥ 0.

Example 2.5. ([4]) Let ( L,≤ L) be defined by

 L =
{

(κ1,κ2) : (κ1,κ2) ∈ [0, 1]2 , κ1 + κ2 ≤ 1
}
,

(κ1,κ2) ≤ L (y1, y2) if and only if κ1 ≤ y1, y2 ≤ κ2 for all κ = (κ1,κ2) ,
y = (y1, y2) ∈  L2. Then ( L,≤ L) is a complete lattice.

We denoted its units by 0 L = (0, 1) , 1 L = (1, 0).

Assume that (W, ‖ · ‖) is a normed space,

T (κ, y) = (min {κ1, y1} ,max {κ2, y2})

for all κ = (κ1,κ2) , y = (y1, y2) ∈ [0, 1]2 and

Q (κ, t) =

(
t

t+ ‖κ‖
,
‖κ‖

t+ ‖κ‖

)
, ∀t ∈ R+.

Then (W,Q, T ) is an LRN-Space.

3. Lattice random topological structures

The section provides various topological structures in lattice random normed
spaces.

Definition 3.1. The open ball B (κ, r, t) in LRN-Space (W,Q, T ) is defined
by

B (κ, r, t) = {y ∈W : Q (κ − y, t) > L N (r)} .
Also the closed ball B [κ, r, t] in LRN-space is defined by

B [κ, r, t] = {y ∈W : Q (κ − y, t) ≥ L N (r)}
for all κ ∈W, r ∈  L/ {0l, 1l} , t > 0.

Theorem 3.2. Assume that B (κ, r, t) is an open ball in LRN-space (W,Q, T ).
Then it is an open set in LRN-space.
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Proof. Suppose that B (κ, r, t) is an open ball with center κ ∈W , and radius
r ∈  L/ {0l, 1l} , t > 0.

Suppose that y ∈ B (κ, r, t). Then Q (κ − y, t) > L N (r). Since Q (κ − y, t)
> L N (r) , there exist 0 < t◦ < t such that

Q (κ − y, t◦) > L N (r) .

Put N (r◦) = Q (κ − y, t◦), since N (r◦) > L N (r) , then there exists s ∈
 L/ {0l, 1l} such that N (r) > L N (s) > L N (r). If there exists r1 ∈  L/ {0l, 1l} ,
then T (N (r◦) ,N(r1)) > L N (s) . Consider the open ball B (y, r1, t− t◦). Then
we will prove B (y, r1, t− t◦) ⊂ B (κ, r, t). In fact, if Z ∈ B (y, r1, t− t◦) then
Q (y −Z, t− t◦) >l N (r1) . Hence we have

Q (κ −Z, t) ≥ L T (Q (κ − y, t◦) , Q (y −Z, t− t◦))
≥L T (N (r◦) ,N (r1))

> L N (s)

> L N (r) .

Therefore, Z ∈ B (κ, r, t). �

Remark 3.3. There are different species of topologies in LRN-space. Each
lattice random norm Q on W produce a topology on W , that has a base of
the family of open sets (neighborhoods) which is denoted by

{B (κ, r, t)}κ∈W,t>0,r∈ L/{0l,1l} .

Theorem 3.4. If (W,Q, T ) is an LRN-Space, then W is a Hausdorff space.

Proof. Let (W,Q, T ) an LRN-space, and κ 6= y ∈W . Then

1l > L Q (κ − y, t) > L 0l, ∀t > 0.

Put N (r) = Q (κ − y, t), for each r◦ ∈ (0l, r), N (r◦) > L N (r) . Then there
exists r1 such that T (N (r1) ,N (r1)) ≥ L N (r◦) .

Let B
(
κ, r1,

t
2

)
, B
(
y, r1,

t
2

)
be open balls. Then, we can prove that

B

(
κ, r1,

t

2

)
∩B

(
y, r1

t

2

)
= ∅.

If

Z ∈ B
(
κ, r1,

t

2

)
∩B

(
y, r1,

t

2

)
,

then, we have

Q

(
κ −Z, t

2

)
> L N (r1) , Q

(
y −Z, t

2

)
> L N (r1) .
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Therefore,

N (r) = Q (κ − y, t)

≥ L T

(
Q

(
κ −Z, t

2

)
, Q

(
y −Z, t

2

))
≥ L T (N (r1) ,N (r1))

≥ L N (r◦)

> L N (r) ,

which is a contradiction, hence (W,Q, T ) is a Hausdorff space. �

Definition 3.5. Let A ⊂ W , and (W,Q, T ) be an LRN-space. Then A is
called LR-bounded if there exist t > 0, r ∈  L/ {0l, 1l} such that Q (κ − y, t) > L

N (r) for all κ, y ∈ A.

Theorem 3.6. If (W,Q, T ) is an LRN-space, and A is a compact subset of
W, then A is LR-bounded.

Proof. Assume that A is a compact subset of (W,Q, T ). Consider an open
cover {B (κ, r, t) : κ ∈ A} for all t > 0, r ∈  L/ {0l, 1l}. Then, there exist
κ1,κ2, . . . ,κn ∈ A such that A ⊆

⋃n
}=1B (κ}, r, t).

Suppose that κ, y ∈ A. Then κ ∈ B (κ}, r, t) , y ∈ B (κJ , r, t) , },J ≥ 1.
Thus, we have

Q (κ − κ}, t) > L N (r) , Q (y − κJ , t) > L N (r) .

Let

β = min {Q (κ} − κJ , t) : 1 ≤ },J ≤ n}.
Then we get

β > L 0l.

Note that, there exist s ∈  L/ {0l, 1l} such that

T 2 (N (r) , β,N (r)) > L N (s) .

Hence, we have

Q (κ − y, 3t) ≥ L T
2 (Q (κ − κ}, t) , Q (κ} − κJ , t) , Q (y − κJ , t))

≥ L T (N (r) , β,N (r))

> L N (s) .

Taking t′ = 3t, we get Q (κ − y, t′) > L N (s) for all κ, y ∈ W . Hence, A is
LR-bounded. �

Definition 3.7. Let (W,Q, T ) be an LRN-space.
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(1) Let {κn} be any sequence in W called as convergent to κ ∈ W ,
if for any έ > 0, r ∈  L/ {0l, 1l} , there exists N ∈ Z+ such that
Q (κn − κ, έ) > L N (r) for all n ≥ N .

(2) Let {κn} be any sequence in W called as Cauchy, if for any έ > 0,
r ∈  L/ {0l, 1l} , there exist N ∈ Z+ such that Q (κn − κm, έ) > L N (r)
for all n ≥ m ≥ N .

(3) Let {κn} be a Cauchy sequence in LRN-space (W,Q, T ). Then W is
called complete, if κn → κ ∈W .

Theorem 3.8. Assume that {κn} is a Cauchy sequence in LRN-space (W,Q, T ),
and it has a convergent subsequence. Then (W,Q, T ) is complete.

Proof. Suppose that {κ}n} ⊂ {κn} such that κ}n → κ, κ ∈ W . We should
prove that κn → κ.

Let

έ ∈  L/ {0l, 1l} , t > 0,

T (N (r) ,N (r)) ≥ L N (έ) , r ∈  L/ {0l, 1l} .
Since {κn} is a Cauchy sequence, there exists n◦ ≥ 1 such thatQ (κz − κn, t) > L

N (r) for all z, n ≥ n◦. Since κ}n → κ, there exists }s ∈ Z+ such that }s > n◦,

Q

(
κ}s − κ,

t

2

)
> L N (r) .

If n ≥ n◦, then we have

Q (κn − κ, t) ≥ L T

(
Q

(
κn − κ}s ,

t

2

)
, Q

(
κ}s − κ,

t

2

))
> L T (N (r) ,N (r))

≥ L N (έ) .

Therefore, κn → κ, and (W,Q, T ) is complete. �

Lemma 3.9. Assume that (W,Q, T ) is an LRN-space, for all κ, y ∈W, t > 0

K (κ, y, t) = Q (κ − y, t) .

Then K is an LR-metric space on W, which is said to be LR-metric induced
by LR-norm Q.

Proof. Let (W,Q, T ) be an LRN -space and K (κ, y, t) = Q (κ − y, t) .
Let T (F,G)(κ) = T (F (κ), G(κ)) for all κ ∈W. Then

(1) Q(κ − y, t) = εo(t) iff κ = y, t > 0 ⇒ K(κ, y, t) = εo(t) iff κ = y.
(2) K(κ, y, t) = Q(κ − y, t) = Q(y − κ, t) = K(y,κ, t).



Some new topological structures in lattice random normed space 1101

(3) K(κ, z, t+ s) = Q(κ − z, t+ s)
= Q(κ − y + y − z, t+ s)
≥ T (Q(κ − y, t), Q(y − z, s))
= T (K(κ, y, t),K(y, z, s)).

�

Theorem 3.10. A LR-metric K which is induced by a LR-norm Q has these
properties:

(1) K (κ + Z, y + Z, t) = K (κ, y, t) .
(2) K (άκ, άy, t) = K

(
κ, y, t

|ά|

)
such that ά 6= 0, κ, y,Z ∈W.

Proof. By Lemma 3.9

(1) K (κ + Z, y + Z, t) = Q (κ + Z − y −Z, t) = Q (κ − y, t) = K (κ, y, t) .
(2) K (άκ, άy, t) = Q (άκ − άy, t) = Q

(
κ − y, t

|ά|

)
= K

(
κ, y, t

|ά|

)
.

�

Theorem 3.11. Assume that (W,Q, T ) is an LRN-space. Then we get:

(1) the mapping (κ, y)→ κ + y is continuous.
(2) the mapping (ά,κ)→ άκ is continuous.

Proof. (1) Suppose that κn → κ, yn → y, n→∞. Then, we get

Q ((κn + yn)− (κ + y) , t) ≥ L T

(
Q

(
κn − κ,

t

2

)
, Q

(
yn − y,

t

2

))
→ 1.

(2) Suppose that κn → κ, άn → ά, n→∞, άn 6= 0. Then we get

Q (κnάn − άκ, t) = Q (άn (κn − κ) + κ (άn − ά) , t)

≥ L T

(
Q

(
άn (κn − κ) ,

t

2

)
, Q

(
κ (άn − ά) ,

t

2

))
= T

(
Q

(
κn − κ,

t

2 |άn|

)
, Q

(
κ,

t

2 |άn − ά|

))
→ 1.

�

Definition 3.12. The LR-Banach space (W,Q, T ) is a complete LR-metric
space induced by LR-norm.
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Lemma 3.13. Let (W,Q, T ) be an LRN-space. And define

Eß,Q : W → R+ ∪ {0}
is defined by:

Eß,Q (κ) = inf {t > 0 : Q (κ, t) > L N (ß)}
for all ß ∈  L/ {0l, 1l} , κ ∈W. Then, we have

(1) Eß,Q (α̂κ) = |α̂|Eß,Q for all κ ∈W, α̂ ∈ R.
(2) For any γ ∈  L/ {0l, 1l} , there exist ß ∈  L/ {0l, 1l} such that

Eγ,Q (κ1 + . . .+ κn) ≤ L Eß,Q (κ1) + . . .+ Eß,Q (κn)

for all κ ∈W, n ≥ 1.
(3) Assume that {κn} is convergent sequence in LRN-space (W,Q, T ), if

and only if Eß,Q (κn − κ)→ 0.

Proof. (1) By definition of Eß,Q,

Eß,Q (άκ) = inf {t > 0 : Q (άκ, t) > L N (ß)}

= inf

{
t > 0 : Q

(
κ,

t

|ά|

)
> L N (ß)

}
= |ά| inf {t > 0 : Q (κ, t) > L N (ß)}
= |ά|Eß,Q (κ) .

(2) For all γ ∈  L/ {0l, 1l}, we can find ß ∈  L/ {0l, 1l} such that

Tn−1 (N (ß) , . . . ,N (ß)) ≥ L N (γ)

and

Q (κ1 + . . .+ κn, Eß,Q (κ1) + . . .+ Eß,Q (κn) + nξ)

≥ L T
n−1 (Q (κ1, Eß,Q (κ1) + ξ) , . . . , Q (κn, Eß,Q (κn) + ξ))

≥ L T
n−1 (N (ß) , . . . ,N (ß))

≥ L N (γ) .

This means that, for ξ > 0,

Eγ,Q (κ1 + . . .+ κn) ≤ L Eß,Q (κ1) + . . .+ Eß,Q (κn) + nξ.

Since ξ > 0, we have for all κ ∈W, n ≥ 1

Eγ,Q (κ1 + . . .+ κn) ≤ L Eß,Q (κ1) + . . .+ Eß,Q (κn) .

(3) Since Q is continuous,

Eß,Q (κ) ∈ {t > 0 : Q (κ, t) > L N (ß)} , ∀κ ∈W,κ 6= 0.

Therefore, we have Q (κn−κ, έ) ≥ L N (ß) if and only if Eß,Q (κn−κ) < έ.
This completes the proof. �
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Definition 3.14. Suppose that the mapping f : W → Θ from LRN-space
(W,Q, T ) to LRN-space (Θ, V, T ′) is called uniformly continuous, if for all
r ∈  L/ {0l, 1l}, t > 0,κ, y ∈W, there exist r◦ ∈  L/ {0l, 1l} , t◦ > 0 such that

Q (κ − y, t◦) > L N (r◦)→ V (f (κ)− f (y) , t) > L N (r) .

Theorem 3.15. If the mapping f from compact LRN-space (W,Q, T ) to an
LRN-space (Θ,V, T ′) is continuous, then f will be uniformly continuous.

Proof. Suppose that s ∈  L/ {0l, 1l} , t > 0. Then, we can find r ∈  L/ {0l, 1l}
such that

T ′ (N (r) ,N (r)) > L N (s) .

Since f is continuous for any κ ∈ W , there exist rκ ∈  L/ {0l, 1l} , tκ > 0 such
that

Q (κ − y, tκ) > L N (rκ)→ V (f (κ)− f (y) , t) > L N (r) .

Since rκ ∈  L/ {0l, 1l}, so we can find sκ < rκ such that

T (N (sκ) ,N (sκ)) > L N (rκ) .

Since W is compact, finite open covers
{
B
(
κ, sκ, tκ2

)
: κ ∈W

}
exist. That

is, there exist κ1,κ2, . . . ,κm ∈W such that

W = ∪m}=1B

(
κ}, sκ} ,

tκ}

2

)
, ∀ } = 1, 2, . . . ,m.

Putting s◦ = min sκ} , t◦ = min
tκ}
2 , so if Q (κ − y, t◦) > L N (s◦) for all κ, y ∈

W , then Q
(
κ − y, tκ}

2

)
> L N (sκ}) . For all κ ∈W, there exist κ} ∈W,

Q (y − κ}, tκ}) ≥ L T

(
Q

(
κ − y, tκ}

2

)
, Q

(
κ − κ},

tκ}

2

))
≥ L T (N (sκ}) ,N (sκ}))

> L N (rκ}) .

Therefore,

V

(
f (y)− f (κ}) ,

t

2

)
> L N (r)

and

V (f (κ)− f (y) , t) ≥ L T
′
(

V

(
f (κ)− f (κ}) ,

t

2

)
,V

(
F (y)−F (κ}) ,

t

2

))
≥ L T

′ (N (r) ,N (r))

> L N (s) .

Thus F is uniformly continuous. �
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Theorem 3.16. Suppose that (W,Q, T ) is a compact LRN-space. Then W is
separable.

Proof. Assume that (W,Q, T ) is a compact LRN-space and r ∈  L/ {0l, 1l},
t > 0. Since W is compact, there exist κ1,κ2, . . . ,κn ∈W such that

W = ∪n}=1B (κ}, r, t) .

Let An ⊂W for all n ≥ 1, W = ∪a∈AnB
(
a, rn,

r
n

)
for all rn ∈  L/ {0l, 1l}.

Let A = ∪n≥1An, therefore A is countable. Now, we should prove that
W ⊂ Ā, if κ ∈ W , then for all n ≥ 1, there exist an ∈ An such that κ ∈
B
(
an, rn,

t
n

)
. So an → κ ∈ W . But since an ∈ A, n ≥ 1, then κ ∈ Ā, and so

Ā = W . Hence W is separable. �

Definition 3.17. Suppose that f : Z → Θ is function from Z 6= ∅ to LRN-
space (Θ,V, T ′). Then fn → f is called convergent uniformly to f, if for all
r ∈  L/ {0l, 1l} , t > 0, there exist n◦ ≥ 1 such that

V (fn (κ)− f (κ) , t) > L N (r) , ∀ n ≥ n◦.
Definition 3.18. Family F of functions from an LRN-space (W,Q, T ) to a
complete LRN-space (Θ,V, T ′) is called equicontinuous for all r ∈  L/ {0`, 1`},
t > 0, there exist r◦ ∈  L/ {0l, 1l} , t◦ > 0 such that

Q (κ − y, t◦) > L N (r◦)→ V (f (κ)− f (y) , t) > L N (r)

for all f ∈ F .

Theorem 3.19. Suppose that {fn} is an equicontinuous sequence of functions
from an LRN-space (W,Q, T ) to a complete LRN-space (Θ,V, T ′). If {fn}
converges to each point of a dense subset A of W , then {fn} converges to each
point of W and the limit function become continuous.

Proof. Assume that we have s ∈  L/ {0l, 1l} , t > 0. Then we can find r ∈
 L/ {0l, 1l} such that

T ′2 (N (r) ,N (r) ,N (r)) > L N (s) .

Since F = {fn} is an equicontinuous family for all r ∈  L/ {0l, 1l} , t > 0, there
exist r1 ∈  L/ {0l, 1l} , t1 > 0 such that for all κ, y ∈W ,

Q (κ − y, t1) > L N (r1)→ V

(
fn (κ)− fn (y) ,

t

3

)
> L N (r)

for all fn ∈ F . Since Ā = W, there exist y ∈ B (κ, r1, t1) ∩ A, and to
prove fn (y) → f(y), we should prove {fn (y)} is a Cauchy sequence for all
r ∈ L/ {0l, 1l} , t > 0, there exist n◦ ≥ 1 such that

V

(
fn (y)− fm (y) ,

t

3

)
> L N (r) , ∀ n,m ≥ n◦
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and

V (fn (κ)− fm (κ) , t) > L T
′2
(

V

(
fn (κ)− f (y) ,

t

3

)
,

V

(
fn (y)− fm (y) ,

t

3

)
,V

(
fn (κ)− fn (y) ,

t

3

))
≥ L T

′2 (N (r) ,N (r) ,N (r))

> L N (s) .

Thus, {fn (κ)} is a Cauchy sequence in Θ, then {fn (κ)} is convergent se-
quence, since (Θ,V, T ′) is complete LRN- space.

We submit f is continuous. Suppose that s◦ ∈  L/ {0l, 1l} , t◦ > 0. Then we
can find r◦ ∈  L/ {0l, 1l} , s◦ > r◦ such that

T ′2 (N (r◦) ,N (r◦) ,N (r◦)) > L N (s◦) .

Since F is equicontinuous, for any r◦ ∈  L/ {0l, 1l} , t◦ > 0, there exist r2 ∈
 L/ {0l, 1l} , t2 > 0 such that

Q (κ − y, t2) > L N (r2)→ V

(
fn (κ)− fn (y) ,

t◦
3

)
> L N (r◦)

for all fn ∈ F . Since fn (κ)→ f (κ) for all r◦ ∈  L/ {0l, 1l} , t◦ > 0, there exist
n1 ≥ 1 such that

V

(
fn (κ)− f (κ) ,

t◦
3

)
> L N (r◦) .

Also, since fn (y) → f (y) for all r◦ ∈  L/ {0l, 1l} , t > 0, there exist n2 ≥ 1
such that

V

(
fn (y)− fn (y) ,

t◦
3

)
> L N (r◦)

for all n ≥ n◦. Now, for all n ≥ max {n1, n2}, we get

V (f (κ)− f (y) , t◦) ≥ L T
′2
(

V

(
f (κ)− fn (κ) ,

t◦
3

)
,V

(
fn (κ)− fn (y) ,

t◦
3

)
,

V

(
fn (y)− f (y) ,

t◦
3

))
≥ L T

′2 (N (r◦) ,N (r◦) , N (r◦))

> L N (s◦) .

Hence, f is continuous. �

Theorem 3.20. Assume that A ⊂ R is LR-bounded in (R, Q, T ) if and only
if it is bounded in R.
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Proof. Suppose that A ⊂ R is LR-bounded in (R, Q, T ) . Then there exist
r◦ ∈  L/ {0l, 1l} , t◦ > 0 such that

Q (κ, t◦) > L N (r◦) , ∀ κ ∈ A.
Thus, we get

t◦ ≥ Er◦,Q (κ) = |κ|Er◦,Q (1) .

So, Er◦,Q (1) 6= 0. If we put δ = t◦
Er◦,Q(1) , then we have |κ| ≤ δ for all κ ∈ A.

Hence, A is bounded in R.

Conversely, suppose that A ⊂ R, which is bounded, we claim that A is
LR-bounded in (R, Q, T ). Then |κ| ≤ δ for all κ ∈ A. From

t◦ ≥ |κ|Er◦,Q (1) = Er◦,Q (κ) ,

we have Q (κ, t◦) > L N (r◦) . Hence, A is LR-bounded in (R, Q, T ). �

Theorem 3.21. Assume that {ζn} is sequence in an LRN-space (R, Q, T ).
Then {ζn} is convergent if and only if {ζn} is convergent in (R, |·|).

Proof. Suppose that ζn → ζ in R. Then by Lemma 3.13 (1), we have

Eß,Q (ζn − ζ) = |ζn − ζ|Eß,Q (1)
P−→0.

Thus by Lemma 3.13 (3), ζn → ζ.

Conversely, suppose that ζn → ζ, by Lemma 3.13,

lim
n→+∞

|ζn − ζ|Eζ,Q (1) = lim
n→+∞

Eζ,Q (ζn − ζ) = 0.

Since Eζ,Q (1) 6= 0, limn→+∞ (ζn − ζ) = 0. Hence, we have ζn → ζ in R. �

4. Conclusion

We discussed the topological structure of an LRN-space, and we are trying
to present the results related to the topological isomorphism, also we want to
generalized the results to other spaces, such as lattice random Banach Algebra,
lattice random para normed space, etc.
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