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Abstract. Let P(z) be a polynomial of degree n and P,(z) its derivative. In this paper we
extend some well-known polynomial inequalities to operator B, which carries P into

e IO

where Ao, A1 and A2 are real or complex numbers such that all the zeros of

|
= 1 2) N\ 22 - n
U(z) = o+ C(n, )iz + C(n,2) X227, C(n,r) T
lie in the half plane
n
< |y =
<)o 3

and therefore obtain generalizations of these.

1. INTRODUCTION AND PRELIMINARIES

n .
Let P, be the space of polynomials ) a;jz’ of degree at most n. If P € P,,

7=0
then according to a famous result known as Bernstein’s inequality ([9,11,12])
max | P (z)| < n max|P(2)|. (1.1)
2]=1 l2|=1
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Also concerning the estimate of the maximum of |P(z)| on a large circle |z| =
R > 1, we have
max |P(z)| < R" max|P(z)] (1.2)
|z|=R>1 |z|=1

([for refrence see [9, p.158 Problem 269] or [10, p.346]). Inequalities (1.1) and
(1.2) are sharp and equality holds for P(z) = Az, A # 0.

For the class of polynomials P € P,, which does not vanish inside unit disk,
the inequality (1.1) and (1.2) can be replaced by

max |P'(2)| < = max|P(z)] (1.3)
|z|=1 2 |z=1
and
R +1

e 1P()] = — g}glP(Z)l, (1.4)
respectively. Equality in (1.3) and (1.4) holds for P(z) = Az"+pu, |A| = |u| = 1.
Inequality (1.3) was conjuctured by Erdos and later on verified by Lax [6].
Ankeny and Rivilin [1] used (1.3) to prove (1.4).
Inequalities (1.3) and (1.4) were improved by Aziz and Dawood [2], who
with the same hypothesis proved

max|P'(z)] < § |max| P(=)| - min |P(2)| (15)
|2|=1 2 ||z=1 |2|=1
and o .
+1 -1
Plz)l = P(z)] - in|P(z). (1.6
|ZTE?€§1| ()< —5 gllgcl (2)] o mnin |P(2)] (1.6)

Inequalities (1.3) and (1.4) were generalized by Jain [4] by proving that, if
P € P, and P(z) # 0 in |z| < 1, then for every real or complex number [ with
1Bl <1,|z] =1and R > 1,

zP’<z>+”fP<z>1s§{|1+§|+\§r}lzlgg;1w<z>| (L7)
and
‘P(Rz) 48 (R;1>n P(2)
n n 1.8
e (5 o) e

Concerning to minimum modulus of polynomials Jain [5] proved that, if P(z)
has all the zeros in |z| < 1, then for every real or complex number § with
B <1,

|I;|11:1’i 2P (2) + %P(z)

>n min |P(2)|. (1.9)

1 + -
2 |z|=1
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Jain [5] refines inequalities (1.7) and (1.8) and proved that, if P € P,, and has
all the zeros in |z| > 1, then for every real or complex number § with |5| < 1,

2P (2) + @P( )

p (1.10)

< 5[ i B maxipen - {11+ 51 151} min o]

and

max

o (o) +6 (111 PG
<af{lm e () Jeproo (07 e

s () [ res (5 [ e

Inequalities (1.6) and (1.7) were generalized recently by Mazerji, Baseri and
Zireh [8], which also leads to a refinement of (1.8).

}max|P( )| (1.11)

Theorem 1.1. If P € P, having all the zeros in |z| > k > 1, then for every
real or complex number B with |f] <1 and R > 1,

P(RK?2) + 8 <Rk * 1>n P(kﬂz)‘

max

|2|=1 k+1
SQ[{k‘ R +ﬁ(k—|—1) +‘1+5<k+1) }lmlaX]P( )| (1.12)

Al oo () [-pes (57) ]

In this paper, we consider an operator B which carries P € P, into

BIP)(z) = \oP(2) + Almpl(! Do () P’;(!Z), (1.13)
where \g, A1 and Ay are real or complex numbers such that all the zeros of
U(2) == Ao+ C(n, DAz + C(n,2)\222, C(n,r) = r'(nnlr)" (1.14)
lie in the half plane
2] < ’z —g , (1.15)

and extend some polynomial inequalities have been recently developed.
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2. LEMMAS

For the proof of these theorems we require the following lemmas. First
lemma is due to Aziz and Zargar [3].

Lemma 2.1. If P(2) is a polynomial of degree n having all zeros in |z| < k <
1, then for R>1 and |z| =1

P () P

Next Lemma follows from Corollary 18.3 of [7].

Lemma 2.2. If P(z) is a polynomial of degree n, having all zeros in the disk
|z| < k,k >0, then all zeros of B[P](z) lie in |z| < k.

Lemma 2.3. Let P(z) and G(z) be two polynomials such that the degree of

P(z) does not exceed to that of G(z). If G(2) has all its zeros in |z| < k,k >0

and |P(z)| < |G(z)| for |z| = k, then for real or complex numbers «, 3 with
la| <1,|8] <1 and R > k, we have for |z| > 1,
R+ k\"

BIPI(R:) - Pl + 5{ (FF) - lal}BlP1ce)
R+E

< ‘B[G](Rz) — aB[G)(z) + /3{ (Hk>n - \a\}B[G](z>

Proof. Since |P(z)| < |G(z)| for |z| = k, and G(z) has all the zeros in |z| < k.
Using Rouche’s theorem, it follows that

F(z) = G(z) + A\P(2)

has all the zeros in |z| < k, |A\| < 1. Applying Lemma 2.1 to F(z), we have for
|z| =1,R > k,

(2.1)

R+ E\"

F > ——— | |F(2)].

P (55F) 1P
Therefore, for any a with || < 1, we have for |z| =1,

R+ E\"
F(R:) = ()] 2 1F(R9)] - all P = { () = lal JFel
Equivalently
k/' n
F(re) - ar@) = { (T57) - lalfIFEL (2.2

Since F(Rz) has all its zeros in |z| < 1. Again by Rouche’s Theorem, it follows
from (2.2) that for real or complex numbers «, 5 with |a| < 1, |5] < 1 and
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R > k, that all zeros of polynomial
R+k
F —aF - F
() - () + 6 (T14) ~lal b
lie in |z| < 1. Applying Lemma 2.2, we have

S(2) = B|F(R2) — aF(2) + 5{(?15) ]a!}F(z)]

= B[F(Rz)| — aB[F ()Hﬂ{(}fi:) IaI}B[F(z)]

has all the zeros in |z| < 1, for real or complex numbers «, 8 with |a| < 1, |8] <
1 and R > k. We conclude that all the zeros of the polynomial

S(z) = B[G(Rz)] + AB[P(Rz)] — a(B[G(z)] + AB[P(2)])

s ()~ el BlG0a) + ABPGID BIPI(R:)

aB[G](z)+B{ (?::)n |Oz|}B[G](z) (2.3)

a[Bipire - asirl) + 0 (FL) - i} BiPie)

lie in |z| < 1 for real or complex numbers «, 5 with |a| < 1,|8| <1 and R > k.
This gives

BIPI(R:) — (Pl + 6] (g )~ lal | BIPICa)

BlGI(R:) — o))+ 8] (T4 ) - lal } 6o

for real or complex numbers «, 5 with || < 1, |f| < 1 and R > k. If inequality
(2.4) is not true, then there is a point z = zy with |z9| > 1 such that

BIP|(Ra0) — aB{Pl(ao) + 5] (TF) ~ lal BlPIGa)

(2.4)
<

> |BIGIRz0) — aBIG o) + 5 (T55) - lal} Bicican)

We take
B[G(Rz0) — aB[G)(20) + S{({5E)" — |ol} B[G](20)
B[P)(Rz) — aB[P](20) + B{(X5£)" — |el} B[P](20)’

so that A is a well defined real or complex number with |A| < 1 and with this
choice of A, from (2.3), we get contradiction to the fact that all the zeros of
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S(z) lie in |z| < 1. Thus for real or complex numbers «a, § with |o| < 1,[5]| <1
and R > k,

B[P](Rz) — aB[P](z) + UER n—lal B[P](2)
| {7

< ‘B[G](Rz)—ozB[ (2 )+ﬁ{<R+k) —IaI}B[G](Z)-

1+ k
Hence the result. O

Lemma 2.4. If P(z) is a polynomial of degree n, having no zeros in the disk
|z| < k, k <1, then for real or complex numbers o, 5 with |a] < 1,|8| < 1,
R>Fk and|z| > 1

BIPIR:) - aBiPl) + 6] (5~ 1o} By

)

< ’B[Q](Rz) — aB[Q](z) + ,B{ (fi:) \a\}B[Q](Z)

where Q(z) = (£)" P (%)

Proof. Since Q(2) = ()" P (%), obviously Q(z) has all the zeros in |z| < k.
Also [P(z)] = |Q( | for

BIPI(R:) - Pl + 8] (T ) - lal f1PYo

< B - e+ 8 (1) - ot bmie)|

|z| = k. Using Lemma 2.3, we get

0

Lemma 2.5. If P € P, does not vanish in |z| < k,k > 1, then for real or
complex numbers o, 8 with |a| < 1,8 <1, R>1, and |z| > 1,

Rk 1) ol BIPI(R2)

k+1

B[P](RK*z) — aB[P](k*z) + B{(

Rk +1 (25)
< K1BIQI(R) — aBlQ)e)+ 51 (AL ) - laliae)

)

where Q(z) = 2"P (1).

Proof. Since P(z) does not vanish in |z| < k,k > 1, therefore QQ(z) having all
its zros in |z| < 1 < 1. As k"|Q(z)| = |P(k?2)] for |z| = +. Applying Lemma
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2.3 with G(z) replaced by k"Q(z), we get for real or complex numbers «,
with |a] < 1,|8| <1, R>k>1and |z| > 1,

BIPI(RIZ:) - aBlPI0%) + ()~ ) BIPI:)
< KBIQ)(R:) - aBll() + 5B ) el Bl
Hence the result. O

Lemma 2.6. If P € P,, then for real or complex numbers «, 3 with |a| <
LIBI<L,R>1,k>1and|z| >1,

RE+1
kE+1

) - lal}Blrioe)

}B[P](Rk%) — aB[P](k%z) + /5{ <

+ 1 BlIRs) - il + 8] (1)~ ol i

k+1
< [l —a o (BE52) —1an 1Bt
tli-ass{ (F50) = lalfol| | maxieel

where Q(z) = z"P ().
Proof. Let M = max,—|P(z)|, then |P(z)| < M for |2| = k. Therefore by
Rouche’s Theorem, the polynomial

does not vanish in |z| < k, for real or complex numbers ¢ such that |¢| >
1. Applying Lemma 2.5 to the polynomial F(z), we get for real or complex
numbers «, § with |a| < 1,|8] <1, R > 1, and |z| > 1,

‘B[F(Rk%)] — aB[F(k22)] + B{ <ik++1l>n _ |a|}B[F(k2z)]

< k"

)

Bl6(re)] - a6t + 8] ()~ ot} o)

where

| =

G(z) = 2"F ( ) = Q(z) — CM 2",



460 Irshad Ahmad, A. Liman and W. M. Shah

This implies,

\B[P(Rk?) CM] - aBP(2) — (M

wof () - lat}mpaes) - o)

< k| BIQURZ) ~ MR — aBIQE) — (M=
+{ (G7) ~lel}Blae) - ),

Since B is a linear operator, we have

’{B[p(Rsz)]—aB[ 20+ 5{ (Rk“) —!a}B[P(kzz)]}

i aeaf (B2 }}

slare) - asla) + ] (5551 )~ ol Bioc)

5M{Rn +5{ (Rk:ll) ]a}}B[z”].

Choosing arguement of ¢ on the right hand side of inequality (2.6) such that

(2.6)
< k"

k’n

slare)] - aplo) + 8] () - 1ol BloG)

e (252)
= wieiar{ - o s{ (FEEL) — jar} sty

Blara) - aBi)] + 6] (1) - lalbBla],

— k"

which is possible by Lemma 2.3., we get
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HB[P(Rk:Qz)] — aB[P(K*2)] + ﬂ{ (ik :11)” - IaI}B[P(k22>]H
_‘gM{l_aw{ (R’”ll ”_|a|}}AO

k+
gk"|§|M‘{R”—a+ﬁ{ <ik+1>n } [2"]]

1)
slare)] - sl + 5] (B~ ol ploc)

— k"

This gives,

g +
RE+1
< i [ir|m —a+ of (FEED) ol imten)

+‘1 - a+6{ (ik:11>n - |a|}

where Q(z) = z"P (1). Letting [¢| — 1, we get the desired result. O

ol | max P2,

3. STATEMENT AND PROOF OF MAIN RESULTS

Theorem 3.1. If P € P, has all its zeros in |z| < k, k > 1, then for real or
complex numbers «, 8 with |a| < 1,|8] <1 and R > 1,

g'li:% B[P)(Rk*z) — aB[P](k*z) + ,8{ (ik:ll)n — yay}B[P](k:?z)
> k™| R"— o+ 5{ <ik:11>n— |a|} Ao + AJ;Q + Azns(“S_ D ‘ min | P(2)]
(3.1)

Equivalently

)\O(P(Rk2z) P(k?2) {(Rk:I) —|a I} )
) el 22)

min
|z]=1

+)\1%k2 <RP’(RI<;2 —aP (kK22) {
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o <”;>2k4 (R2P" (Rk2z) — aP"(k:?) +6{(8)" ~ Jal}) '

woes o (55) v

Proof. Let m = min,_; |P(z)], the result is obvious if P(z) has a zero on
|z| = k,k > 1. We assume that P(z) has all zeros in |z| < k,k > 1, therefore
P(k?z) has all the zeros in |2| < 1 <1 and m = min‘Z|:% |P(k*z)| > 0. This

gives for [z| = 1

3(n

n? n’(n —1)
A AM— +do——— 2| min |P .
o+ 'y 420 0 i (o)

(3.2)

> k"

m < |P(k:2,z)].

By Rouche’s Theorem it follows that for every real or complex number A such
that |A| <1

F(z) = P(k*z) — mAk"2"
has all its zeros in |z| < % < 1. Applying Lemma 2.1 to the polynomial F'(z),

we get for |z| =1
R+ k\"
F > — F(z)|.
PRz (T ) 1P

This implies, for R > 1 and |z] =1
|F(Rz)| > [F(2)].

Thus by Rouche’s Theorem for every real or complex number o with |a| < 1,
all the zeros of

G(z) := F(Rz) — aF(2)
lie in |z| < 1. Therefore for |z2| =1 and R > 1
R+E\"
F(R:) = aP()| 2 1F(R) - lar)| > { (T ) = lal il

Once again by Rouche’s Theorem, for every real or complex number § with
|B] < 1, the zeros of the polynomial

H(2) : = F(R2) — aF () + ,8{ @k:ll)n - |a|}F(z)

= {p(Rk%) —aP(k*2) + 5{ <ik:11)n = |a!}P(k52z)}

- )\k"{R" —a+ ,3{ <}Zk++11>n - |a|}}z" ggﬁ |P(2)]
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lie in |z| < 1. Therefore by Lemma 2.2, all the zeros of B[H(z)| lie in |2| < 1,
that is, all the zeros of

{Blpwa) - appua) + 6 (5551) -~ ol b pipasa

e o sf (BEEL) b} e i o)

lie in |z] < 1. This gives for |z] > 1

B[P(RK?z)] — aB[P(k*2)] + B{ (Rk ki 1>n — |ay}B[P(k22)}

min
|z|=1 k+1
RE+1\" n? n3(n—1)
> Ek"|R" — — Ao+ A1— + do———| min |P(2)|.
> k"R a+5{<k+1> Ial}‘l 0+ A+ A [ min |P(2)]

(3.3)
If inequality (3.3) is not true, then there is a point z = zy with |z9| > 1 such
that

B[P(Rk*z)] — aB[P(k*z)] + ,6{ (ik++11> — ]a!}B[P(kZz)}

RE+1\" n? n3(n —1)
R" — — Ao+ A1— + do———| min |P(2)|.
a+s{ (B1) ot} o+ a2 =D i (o)

min
|z|=1

< k"

We take

(BIP(RK?2)] — aBIP(K*2)) + 51 (252 )" — |al} BIP(#2)]} =,

A= n
min(Br = a+ B{(BE1)" o] (0 + M % + 220D

9

2=20

then |A| < 1 and with this choice of A\, we have B[H(zp)] = 0, with |zo| > 1,
which is a contradiction, since all the zeros of B[H (z)] lie in |z| < 1. Thus for
|z >1,R>1

min

B[P(RK?2)] — aB[P(k*2)] + ﬁ{ (Rk i 1>n — yay}B[P(kQZ)}

|z|=1 k+1

RE+1\" n? n3(n —1)
> k"|R" — — Ao+ A1— + Ao———=| min |P(2)|.
> k"R a+ﬁ{<k+1> |a|}‘|0+ 1+l | min [P(2)
This completes the proof the theorem. O

Now taking A1 = Ay = 0 in (3.2) and noting that all zeros of U(z) defined
by (1.14) lie in the half plane (1.15) we get the following intresting result:
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Corollary 3.2. If P € P, has all its zeros in |z| < k, k > 1, then for real or
complex numbers o, B with |a| < 1,|8| <1 and R > 1,

P(RI22) — aP(k22) + 5{ @'ff)n _ |a|}P(k2z)

R« +ﬁ{ (i’fll)n _ |a|}

The result is best possible as shown by polynomial P(z) = az",a # 0.
If we divide both sides of the inequality (3.4) by R—1 with @ = 1 and make
R — 1, we get

min
|z|=1

(3.4)

> k"

=" i |P(2)].

Corollary 3.3. If P € P, has all its zeros in |z| < k,k > 1, then for real or
complex numbers «, f with |o| < 1,5 <1 and R > 1,

min |k2P (k22) + —"2 P(k22)| > k1)1

min ] min |P(z)]. (3.5)

Remark 3.4. For k = 1, inequality (3.5) reduces to inequality (1.9).

Setting 8 = 0 in inequality (3.4), we get:

Corollary 3.5. If P € P, has all its zeros in |z| < k,k > 1, then for every
real or complex number o with |a| <1 and R > 1,

\H|HI} |P'(RK*2) — aP(k%z)| > k"|R" — o ‘nlnn |P(z)].

Theorem 3.6. If P € P, does not vanish in |z| < k,k > 1, then for real or
complex numbers o, B with |a| < 1,8 <1, R>1 and |z| > 1,

P - aslPlo2s) + 6] (BE5) - latbsipio)

1 Rk +1
< = — _
_2[|)\0]1 “*5{(/“1) II‘

R”—oH—ﬂ{ (i’“*ll) ~a \} ]max|P< It

+k"
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Equivalently
min

min (P(Rk%) _aP { (Rk: 1) _ |a|}P(k2,z)>
+ )\1%/@2 (RP’(Rk2 )—aP' (k22) { (Rk + l)n— a|}P’(k2z))

k+1
» <m)2k4<R2P"<Rk2 2) —aP' (12 >+5{(’2ﬁﬁ1)”—\a\}>‘
1 2 Rk+1\" ; 30
oo (3522 )
Rk +1\"
Fkn Rn—a+5{ ( k:++1 ) —yay}
nznz"1 nz\2n(n —1)z"2
<o+ MR g (2)* 20 T e o)

Proof. Since P(z) does not vanish in |z| < k,k > 1, therefore by Lemma 2.5,
we have

BIP(RE22)] — aB[P(K22)] + ,@{ <ik:11> - |a|}B[P(k2z)]

slara)] - ala) + of (FE5) - et} slae)

for real or complex numbers «, 5 with |a] < 1,|8] <1, R>1 and |z| > 1,

where Q(z) = 2"P (1). Above inequality (3.7) in conjuction with Lemma 2.6
gives for real or complex numbers «, 5 with |a] < 1,|8| <1, R > 1and |z| > 1

BIP(RK?2)] — aB[P(k?2)] + ﬁ{ (}Zk:ll)n - |a|}B[P(k:2z)]

< 'B[P(Rk%)] — aB[P(K?2)] + ,8{ @k :f)n - IaI}B[P(k2z)]

slare)] - sl + 8] (BE) ~ ol | pioGe)

o (25 )

ross{ (82 g

Hence the result. O

(3.7)
< k"

+ K"

< [|)\0|

+k"

Putting A\; = A2 = 0, in inequality (3.6), we get:
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Corollary 3.7. If P € P, does not vanish in |z| < k,k > 1, then for real or
complex numbers o, B with |a| < 1,18 <1, R>1 and |z| > 1,

’P(Rsz)—aP(k2 )+ ﬁ{(Rkjll) _ |a]}P(k22)

e () )

Rk + 1
+k”R”—a+B{(k++1) ~|a y}yz”y]max\p( )l

Choosing a = k = 1 in Corollory 3.7 and divide two sides of inequality
(3.8) by R — 1 and then making R — 1, we obtain inequality (1.7), whereas
inequality (1.8) follows from Corollary 3.7, when o = 0 and k = 1.

Taking A\g = A2 = 0, in inequality (3.6), we get the following result:

Corollary 3.8. If P € P, does not vanish in |z| < k,k > 1, then for real or
complex numbers o, 8 with |a| < 1,8 <1, R>1, and |z| > 1,

’RP' (RK*z) — aP'(k%z2) + 5{ (ik:;)n - \a|}P’(k;2z)

e () )

Theorem 3.9. If P € P, does not vanish in |z| < k,k > 1, then for real or
complex numbers o, B with |a| < 1,18 <1, R>1 and |z| =1,

BIPIRR) - alPl62) + 6] (1) ol i)
oA () e
N ‘1 —a+5{ (i’“jf)n - |a|}’|>\0!}max|P

el —as{ (557) -l
[eees{ (50 WNW@%MP}

< nk" 2R

2"~ max |P(2).

)\o—l-)\l +)\2

3(n8— 1)‘
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Equivalently

Xo (P(RkZZ) —aP(k2) + 6{ (ikjll)n —Ja| }P(k:2z))
+ Al%zﬁ <RP/(Rk2,z)aP/(k22)+ﬁ{ @k:ll)n |ay}P’(k2z)>

R2P"(RK?z) — aP' (k22 LEST RN
a2y T ) — P 2!)+6{( Bel)” | |}>‘

2
{wlo—ass{ (F57) -
_ 2 n3(n—1)}

n
X+ A\ —+ )
X |Ag + 12+2 3

+[1-as] (R’““)”—\a\}\w}maxrmzn

k+1 |z|=k
I Rk +1\" n? n3(n —1)
Lol s s (Y e

e (E2) ]

Proof. The result is obvious if P(z) has a zero on |z| = k,k > 1. Therefore we
assume that P(z) has all zeros in |z| > k. Then m = minj,—, |P(z)| > 0 and
for |z| =k

(3.9)

m < |P(2)].
This gives for every A with |A\| < 1,
[Alm < [P(z)],
for |z| = k . By Rouche’s Theorem, it follows that all the zeros of polynomial
S(z) = P(z) — Am

lie in |z| > k for every real or complex number A with |[A| < 1. Applying
Lemma 2.5 to the polynomial S(z), we get for real or complex numbers «, 8
with |a] < 1,|8| <1, R>1and |z| > 1

‘B[S(Rk%)] — aB[S(K22)] + 5{ @’fﬁ)n - |a|}B[S(k2z)]

< k"

)

B[T(RK2)] — aB[T(}22)] + 5{ <ik++11> _ |ay}B[T(k2z)]
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where T(z) = 2"S (1). That is, for |z| =1

E+1

- AAo{l _a+5{ (iﬂ*ﬁ)n _ yay}}m
slare) - asla) + 5] (B51) ol Bioc)

n 2 3 _
—A{R”—a+5{ (i’fﬁ) —|a|}}[/\o+)\1n2+)\2n (”8 1)]m’.

(3.10)
Since all the zeros of Q(%) lie in |z| < k,k > 1, then applying Theorem 3.1
to Q(i%), for R > 1, we have

‘B[P(Rk%)] — aB[P(k*2)] + 5{ <Rk T 1>n — yay}B[P(kQ,z)}

< k"

slore)] - sl + 8] (1)~ ol Blot)

Rk +1\" n? n3(n —1) z

> LN pn - e .
el et () = ol e+ g 420 i ()
= |R"—a+8 Rk“nfya\ I\ +)\n—2+>\n3(n_1)]min\P(z)|
- k+1 0T Al TR =k ‘
(3.11)

Choosing the arguement of A on the right hand side of inequality (3.10) such
that

k:n

slare) - asla) + ] (551) ol Bioc)

- /\m{R” _a +5{ @"fll)n - yay}}[AO + Alf + Agng(”g_ 1)]'

= || - asioe) + 5] (B )~ ol i

sl s (20) oo ns e

|
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for |z| = 1, which is possible by inequality (3.11). We get for |z| =1,

BlP()] - aBiP2)] + 5{ (1)~ 1ol BiPuss)

e (228 )
< K| BlQ(R2)] - aBQ()] + {(k L)~ lal}BioG)
(s (PEEY Y

Equivalently for |z| = 1, we have

’B[P(Rk:Qz)] — aB[P(K*2)] { (

;) -~ lal {BIPG22)

slara)] - i)+ s (L) —|@ Q)

<o [{1-a-vaf (5 -}
oo () i oeen )

(3.12)
Letting |[A| — 1 in (3.12), we obtain for every real or complex number «,

with |a] < 1,|8| <1,R>1and |z| =1,

—_ k"

’B[P(Rk%)] — aB[P(k*2)] + ﬁ{ (ikj:l)n - \a\}B[P(kQZ)]

slare)] - sl + 8] (L)~ ol oG

e (rr) el

oo () o i

— k"

(3.13)

Sde[
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Inequality (3.13) in conjuction with lemma 2.6 yields

max | B[P](Rk?2) — aB[P](k22) + ,8{ <]Zk:11>n - |a|}B[P}(k2z)
himass{ (B —1a \}'\Ao\}maxrp

kE+1 8
Rk +1 n3(n—1
—{k” R" — a—l—ﬁ{(k i > —|a|}’])\0—|—)\1 _|_)\2(n8)|

e (37 e

The following result is immediate by taking Ay = A2 = 0, in inequality (3.9).

Corollary 3.10. If P € P, does not vanish in |z| < k,k > 1, then for real or
complex numbers o, B with |a| < 1,18 <1, R>1 and |z| =1,

|2|]=1 P(RE*z) — aP(k*z) + B{ (ik++11)n — ya\}P(kﬂz)

el (53 1)

wi-arsf (BE) - ot} b maxipco (3.14)
el -es{ (557) 1ol
[ s{ (557) -tei}} e

Now taking a = 0, Corollary 3.10 reduces to Theorem 1.1.
Dividing the two sides of inequality (3.14) by R — 1, and taking o = 1 and
also letting R — 1, we get:

max
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Corollary 3.11. If P € P, does not vanish in |z| < k,k > 1, then for real or
complex numbers o, B with |a| < 1,18 <1, R>1 and |z| =1,

max k2P (k2) + /ff 1P(k2z)
n n—1 Bk 5
ngk 1+k+1‘+'k+1’}ﬁl|i}/§’]3(z)| (3.15)
n—1 /Bk B :
- - ] e

Remark 3.12. For k£ = 1, inequality (3.15) reduces to inequality (1.11).

The following result is consequence of of Corollary 3.10 by taking g = 0
and k= 1.

Corollary 3.13. If P € P,, does not vanish in |z| < k,k > 1, then for real or
complex number o with |of <1, R > 1,

n o __ 1 _
max | P(R2) — aP(2)]| < ('R O";' O") max | P(2)]

B (\R"—a|—|1—a) i [P, (3.16)

2

Remark 3.14. For a = 0, inequality (3.16) reduces to inequality (1.6). Also
if we divide the two sides of inequality (3.16) by R — 1, and taking o = 1 and
also letting R — 1, we get inequality (1.5).
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