Nonlinear Functional Analysis and Applications
Vol. 29, No. 4 (2024), pp. 1125-1136

ISSN: 1229-1595(print), 2466-0973(online) ,/l/ ‘w
~

https://doi.org/10.22771 /nfaa.2024.29.04.12

http://nfaa.kyungnam.ac.kr/journal-nfaa 1spress

ON FIXED POINT THEOREMS IN MR-METRIC SPACES

Abed Al-Rahman M. Malkawi', Diana Mahmoud?,
Ayat M. Rabaiah®, Rawya Al-Deiakeh? and Wasfi Shatanawi®

!Department of Mathematics, Faculty of Arts and Science, Amman Arab University,
Amman 11953, Jordan
e-mail: a.malkawiQaau.edu.jo and math.malkawiOgmail.com

?Department of Mathematics, Faculty of Arts and Science, Amman Arab University,
Amman 11953, Jordan
e-mail: d.mohammad@aau.edu.jo and Diana.zakarni@hotmail.com

3Department of Mathematics, The University of Jordan, Amman, Jordan
e-mail: ayatrabaiah@yahoo.com and aya9160322Qju.edu.jo

4Department of Mathematics, Irbid National University, Irbid 21110, Jordan
Nonlinear Dynamics Research Center (NDRC), Ajman University,
Ajman 346, United Arab Emirates
e-mail: r.aldeiakeh@inu.edu.jo and Rawyal990@yahoo.com

5Department of General Sciences, Prince Sultan University, Riyadh, Saudi Arabia
Department of Mathematics, Hashemite University, Zarqa, Jordan
e-mail: wshatanawi@psu.edu.sa, swasfi@hu.edu.jo and wshatanawi@yahoo.com

Abstract. we explore a generalization of the contraction principle within the context of MR~
metric spaces. The main objective is to establish results obtained by generalizing Rhoades’
fixed point theorems. Furthermore, we focus on proving fixed point theorems specifically
designed for MR-metric spaces developed by Malkawi. This research contributes to the
understanding and application of fixed point theory in the field of M R-metric spaces. By
extending existing principles and theorems, we aim to provide a broader perspective and

deeper insights into the properties and behavior of fixed points in these spaces.

1. INTRODUCTION

Malkawi et al. [10] established the notion of M R-metric space, which is
a generalization of a D-metric space [18], in a recent study and presented
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some fascinating work on M R-metric spaces. Dhage [6] showed the existence
of a unique fixed point of a self-map satisfying a contractive condition in
1992, using a version of metric space called a generalized metric space or D-
metric space. Rhoades [16, 17] generalized Dhage’s contractive condition and
came up with several fixed point theorems. Dhage also extended Rhoades’
contractive condition to two D-metric space maps. Dhage discovered a unique
common fixed point in a D-metric space by applying the concept of weak
compatibility of self-mappings. For further information, please consult the
following references ([1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15]).

2. PRELIMINARIES

N stands for all natural numbers in this work, (X, M) for an M R—metric
space and R for the set of all positive real numbers.

Definition 2.1. ([3]) Let X # ¢ be a set. A function D : XxXxX — [0, 00) is
called a D-metric, if the following properties are satisfied for each (,n,£ € X.

(D1) : D(¢,n,&) > 0.

(D2) : D(¢,n,&) =0if and only if ( =n =¢.

(D3) : D(¢,n,&) = D(p(¢,n,&)); for any permutation p(¢,n,&) of ¢,n,&.
(D4) : D(¢,n,€) < D(¢,n,€) + D(C,¢,6) + D(€,n,§).

A pair (X D) is called a D-metric space.

The following is the definition of M R-metric space.

Definition 2.2. ([16]) Let X # ¢ be a set and R > 1 be a real number. A
function M : X x X x X — [0,00) is called an M R-metric, if it satisfies the
following properties for each (,n,§ € X.

(M1) = M(¢,n,£) = 0.

(M2) : M(¢,n,&) =0if and only if ( =n =¢.

(M3) = M(¢,n, &) = M(p(¢, n,£)); for any permutation p(¢,,§) of ¢,7,¢&.

(M4) : M(Cﬂ%f) < R [M(C)nvgl) + M(Cvglag) + M(£17777£)] .

A pair (X, M) is called an M R-metric space.

In the following, we present two definitions of M R-convergence and M R-
Cauchy defined by Malkawi et. al [16].

Definition 2.3. ([16]) A sequence {(1,} in an M R-metric space (X, M) is
called an M R-convergence if there exists {1 in X such that for € > 0, there
exists a N > 0 integer number such that M ((y,,,C1,,,¢1) < € for all m > N,
n > N. So {(1, } is called an M R-convergence to (; and ¢; is a limit of {¢1,,} .
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Definition 2.4. ([16]) A sequence {(1, } in M R-metric space (X, M) is called
M R-Cauchy if for a given € > 0, there exists a positive integer /N such that
M(Cln?(lm?(lp) < e for all m,n,p > N.

The following theorem will be proved.
Theorem 2.5. Let X be a complete and bounded M R-metric space, f be a
self-map of X that is satisfying
M(T.,,T,,T,) < qmax{M(s,y,z2),M(3,Ty 2),M(y,Ty,z), (2.1)
M5, Ty, 2), M(y, T, 2)}
forall se,y, 2 € X, 0 < qg < 1. Then T has a unique fized point u in X, and T

1S continuous at u.

Proof. Let 7y € X and define s, 11 = Ts,. If 5,41 = 3, for some n, then
T has a fixed point. Assume that »,41 # 2, for each n. In (2.1), setting
H =My, Y = M, 2= Hyip-1, We have
M(%n’ Hn+1, %n-l—p) <gq maX{M(%n—l’ Hn, %n—i—p—l)’
M(%n—la Hn, %n—i—p—l)’ M(%na Hn+1, %TL-i-p—l)a
M(%n—la%n—i—ly%n-l—p—l)yM(%ny%na%n—i-p—l)}- (22)
But
M(%n—la Hn, %n—l—p—l) <gq maX{M(%n—Za Hn—1, %n—i-p—Q)a
M(%n—Za An—1, %n+p—2)7 M(%n—la Hn, %n+p—2)7

M(%n—Za An, %n+p—2)7 M(%n—lu Hn—1, %n+p—2)}7
(2.3)

M(%na Hn+1, J{n+pfl) < qmaX{M(%nfla Hn, %n+p72)7

M(%nfla Hn, %n+p72)7 M(%na An+1, %n+p72)a

M(%nfla An+1, J{114»1072% M(%na Hn, %n+p72)}, (24)

M(%n—lv An+1, %n—i-p—l) < qmaX{M(%n—2a Hn, %n+p—2)7
M(%n—2u Hn—1, %n+p—2)a M(%7'h An+1, %n+p—2>7

M(%n—2u An+1, %n+p—2)a M(%7'h Hn—1, %n+p—1>}
(2.5)

and

M(%rw Hn+1, %nerfl) <q maX{M(%nfb Hn—1, %n+p72)7
M (5tn -1, %0 Hn1p—2)}- (2.6)
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Substituting (2.3) — (2.6) into (2.2) gives

M(%na An+1, %n+p—1) < q2 T??M(%av Mp, %c)a

wheren —2<a<n,n—1<b<n+landc=n+p-—2.

Continuing this process, it follows that

M(%nv%n+17%n+p—l) < q2 maXM(%aa%b7%0)7 (27)

a,b,c
where now 0 <a<n,1<b<n+1andc=np.
Let M :=sup,,, ,ex M(5,y,2). Then, it follows from (2.7) that
M (520, stn41, 2tn4p) < q"M. (2.8)
Using (M4) and (2.8),

M (3¢, 361y ntprt) < M (50, snyps #ni1) + M (30, 3011, 0t prt)
+ M (41, Hn+p; %n+p+t)
<2Mq" + M (56041, Hn+p, %n—&-p—i-t)
< 2Mq" + M (341, #ntp, nt2)
+ M (5041, 042, #ntprt)
+ M (42, Hn+p; %n—l-p—O—t)
<2M(q" + ¢") + M (stnt2, %n 1, %)

§2M(q”+q”+1+-~—|—q”+p_1)

+ M (n1p-1, %ntp, #nipit)
n—+p

<2mS
k=n

n

< 2Mq

=1y

—0 as n — oo.

Therefore, {3,} is M-Cauchy. Since X is complete, {s,} converges. Call the
limit . From (2.1),

M<%n7 An+1, TU) < qmaX{M(%n—la Hn, u)7 M(%na An+1, u)a
M(%n—la An+1, u), M(%m Hn, u)}

Taking the limit as n — 0o, and using the fact that M is continuous, yield
M (u,u,Tu) < 0, which implies that u = Tu.
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To prove uniqueness, assume that w # wu is also a fixed point of T. From
(2.1),

M (u,w,u) = M(Tu, Tw, Tu)
< gmax{M (u, w,u), M (uTu,u), M(w, Tw,u),
M (u, Tw,u), M(w, Tu,u)}
= gmax{M (u,w,u), M(w,w,u)} = ¢M(w,w,u). (2.9)
But
M(w,w,u) = M(w,u,w) = M(Tw, Tu, Tw)
< gmax{M (w,u,w), M (w, Tw,w),
M (u, Tu,w), M (u, Tw,w)}
= gmax{M (w,u,w), M (p,u,w)}
= qM (u,u,w). (2.10)
Combining (2.9) and (2.10) yields M (u,w,u) < ¢>M (u, w,u), which is a con-
tradiction. Therefore u = w.
To show that T is continuous at u, let {y,} C X with limy, = u. Then,
substituting in (2.1), with » = z = u, y = y,, we obtain
M(Tu, Tyy, Tu) < gmax{M (u, ypn,w), M)u, Tu,w), M (yn, Tyn, u),
M (w, Tyn,w), M (yn, Tu,u)}. (2.11)
Taking the limsup of (2.11), we obtain
lim sup M (u, Ty, u) < gmax{0, 0, limsup M (u, Ty, u),0},

which implies that lim Ty, = v = T'u, and T is continuous at wu. g

3. MAIN RESULTS

All over this section (X, M) designates an M R-metric space and ® denotes
a family of mappings such that for each ¢ € ®, ¢ : (RT)* — RT is continuous
and increasing in each co-ordinate variable. Also v(t) = ¢(t,t,t,t) < t for
every t € RT.

Example 3.1. Let ¢ : (RT)* — R* be defined by

1
P(t1,ta,t3,t4) = ﬁ(tl +to +t3 + ta).

Then we have ¢ € ®.

The following is our main result for a complete M R-metric space on X.
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Definition 3.2. Let (X, M) be an M R-metric space. Then M is called the
first type if for every p, » € X, we have

M(p, p, ) < M(p, ,)

for every & € X.

Theorem 3.3. Let A, B,C,S,T and Q be self-mappings of a complete M R-
metric space (X, M) where M is first type with:

(i) AX) € T(X), B(X) C 5(X), C(X) € Q(X) and A(X) or B(X) or
C(X) is a closed subset of X,
(i) M(Ap, B, CS) < $¢(RM(Qg, T, SS), RM(Qp, T, Bx),
RM (T,53,CS), RM (S, Qp, Ap)), for every p, 72,3 € X, some 0 <
q<1and¢eP,
(iii) the pair (A,Q), (B,T) and (S,C) are weak compatible.
Then A, B,C,S, T and Q have a unique common fixed point in X.

Proof. Let po € X be an arbitrary point. By (i), there exists p1, p2, p3 € X
such that

Apo = T@l = o, Bpl = Spl = and Cpg = ng = 9.
Inductively, construct sequence {s,} in X such that
s3n = Apsn = TP3nt1, 3nt+1 = Bpsnt1 = SEsn+t2
and

s3n42 = Cp3nie = Qp3nt3
forn=0,1,....
Now, we prove {s¢,} is a Cauchy sequence. Let M, = M (361, #m+1, #m+2)-
Then, we have

Mz, = M (530, 3n+1, #3n+2)
= M(Ap3n, Bpsn+1, Cpsni2)
RM(Qp3n, Tpsn+1, Spsn+2), RM(Q@sn, To3n+1, BPsnt1),
( RM(T'p3n+1, Sp3n+2, Cpsnt2), RM (Sp3n+2, Qpan, Apsn) )

L q ¢< RM (5301, 30, #3n41), RM (32301, 530, #3041), )
"R

RM (5t3y,, #3n41, #3n+2), RM (363041, %3n—1, %31,

<

==
<

M (5¢3n—1, 230, #3n41), M (53n—1, 230, #3n+1),
<q¢

M (5¢3, 53041, #3n+2), M (563041, #3n—1, #3n,)

= qop(Msp—1, M3y—1, M3y, M3, —1).
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Then we prove that Lz, < Ms,_1, for every n € N. If Ms,, > M3, _1 for some
n € N, by above inequality we have M3, < ¢Mj3,, which is a contradiction.
Now, if m = 3n + 1, then
Mszpq1 = M (53041, #3042, #3n+3)
= M (53013, 23n+1, %3n+2)
= M(Ap3n+3, Bpsnt1, Cpsni2)

q (BM(Qpsnt3, To3n+1, S93n+2), RM(Q3n+3, T93n+1, Bosnt1),
R\ RM(Tp3n+1, Sp3nt2, Cosny2), RM(Spsni2, Q93n+t3, Apsnis)

IN

q (RM(%?m—i-Z’%?ma%3n+1)7RM(%3n+27%3n’%3n+1)a )
R

RM (523, #3041, #3n+2), RM (53041, 23n+2, #3n+3)

_ M (5630425 %30, #3n41), M (53042, 53n; #3n41),
>~q
M (531, #3041, #3n+2)s M (53041, #3042, #3n43)

= q¢(Msp, M3n, Mszn, M3ni1).
Similarly, if M3, +1 > Mas, for some n € N, we have M3, 11 < ¢M3,41 which
is a contradiction. If m = 3n + 2, Then, we have
Manyo = M (53042, %3043, #3n-+4)
= M (53043, #3n+4, #3n+2)
= M(Ap3n+3, Bosnta, Coan+2)

Ly RM(Qpsn+3, Tpsn+a, So3n+2), RM(Qp3n+3, Tosn+4, Bosn+4))
R" \RM(Tp3n14,503n+2, Cp3ni2), RM(Sp3n12, Q03n+3, AP3n+3)

<l5 M (5e3n42, #3n+3, #3n+1), RM (563542, 23n43, #3n+4),
RM (563043, #3041, #3n+2), RM (53541, 3042, #3n+3)

IN

¢ %3n+2, #3043, #3n+1), M (363n42, #3043, 3n44))
M (523543, #3n+1, #3n+2)s M (563041, #3n+2, #3n+3)

= qp(Msp11, M3y r2, M3y i1, M3pi1).

And also, similarly, if Ms,+2 > Ms,+1 for some n € N, we have Mg, 10 <
qMsy, 12 which is a contradiction. Hence, for every n € N, we have M, <
qM,,—1. That is,

M, = M(%Th Hn+1, %n+2> < M(%nfb An, %nJrl) <...< an(%O, 1, %2)-
Since M is a first type, we have

M(%’n? %’na %’Vl-f-l) S an(%()? %17 %2)'
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Therefore,
M (3, 50, 32m) < M (5tn, 30n, tn41) + M (5041, %041, #n+2)
+ o+ M (%m—1, #m—1, #m)-
Hence,
M (32, 30, 22m) < ¢"M (509, 521, 500) + ¢ M (509, 521, 520)
+ o g M (520, 521, 5%2)
= (" + " T M (0, 501, 522)

n

< M (51, 511, 222)

1—g¢q
— 0.

Thus the sequence {sz,} is Cauchy and by the completeness of X, {¢,} con-

verges to s in X. That is, lim s, = s,
n—oo

lim s, = lim Aps, = lim Bgps,+1 = lim Cps,t2
n—0o0 n—0o0 n—oo n—oo
= nlg]go Tpsni1 = nlgngo QE3nt3 = nlgl;O S3ni2 = 7.
Let C'(X) be a closed subset of X, hence there exist u € X such that Qu = .
We prove that Au = . For
M (Au, Bpznt1, Cpsni2)
< q¢< RM(Qu, Tp3n+1, Spsn+2), RM(Qu, Tp3ni1, Bpsnt1), >
- R RM(Tp3n+1, So3n+2, Coanta), RM(Spany2, Qu, Au) ) -
By letting n — oo, we get
q RM(Q“? %7 %)’ RM(Q“? %? %)’
M (Au, 32, 3) < Ed) ( RM (¢, 52, ), RM (52, Qu, Au) |~

If M (5,5, Au) > 0, then we have M(Au, s, ) < qM (5, s, Au) which is a
contradiction. Thus Au = 3. By the weak compatibility of the pair (Q, A),
we have AQu = QAu. Hence Ax = Q.
We prove that Az = s, if As #£ s, then
M(As, Bosni1, Cpania)

< q¢< RM(Qs, Tp3n+1, Spant2), RM(Qs, Tpsni1, Bpsni1), )
R RM(Tp3n+1, Spsn+2, Cpant2), RM (Spant2, Qs, Asx) ) °

As n — 00, we have

RM (52, 3¢, 3¢), RM (3¢, Q ¢, Ax)
S qM(A%7 %7 %)7

M (A, 5, %) < }q%¢< RM(Qs¢, 3¢, ), RM(Qx, , %), >
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which is a contradiction. Therefore, Qs = A = 3, that is, s is a common
fixed of @, A.

Since » = Ax € A(X) C Q(X), there exist v € X such that Tv = 3. We
prove that Bv = s. For

M (3, Bv,Cpsni2) = M(Asx, Bv, Cpsnia)

< 2(!5 RM(Qs,Tv, Spsn+2), RM(Qs,Tv, Bv),
— R"\RM(Tv, Span+2, Cpsnt2), RM(Spsni2, Qsx, Ax))

By letting n — 0o, we get

a , ( RM(5, 5, ), RM (5, %, Bo),
M (5, B, ) < R¢< RM (5¢, 5, 3¢), RM (3¢, 5¢, »)

Thus, Bv = ». By the weak compatibility of the pair (B,T'), we have T Bv =
BTwv. Hence, By = Ts. We prove that Bsr = s, if B # s, then

M (A, By, Cpsnyi2)

< g¢ RM(Q%,T%, Sp3n+2)>RM(Q%7T%7 B%)7
— R"\ RM (T, Sp3ni2,Cpanta), RM(Sp3nie, Qr, Asx) )

) < qM (3¢, ¢, Bv).

As n — oo, we have
q RM (Qs¢, T, ), RM(Qs, B, Bx),
M (5, Bz, 22) < §¢ ( RM (B, 5, ), RM (5, 3, )
< qM (5, B, »),
which a contradiction. Therefore, By = T3¢ = s, that is, > is a common fixed
of B,T.
Similarly, since » = Bx € B(X) C S(X), there exists w € X such that
Sw = 2. We prove that Cw = . For
M (3¢, 3¢, Cw) = M (A, B, Cw)
< gqb RM (Qs,Ts,w), RM(Qs, T, Bx),
- R RM (T >, Sw,Cw), RM (Sw, Q, Asx)
< qM (32, 2, Cw).
Thus, Cw = ». By the weak compatibility of the pair (C,.S), we have C'Sw =
SCw. Hence Cs = S»x. We prove that Cs = s, if Cs # 5, then
M (3, 5¢,C») = M (A, Bs,Cx)
< g¢ RM (Qs,T,S»), RM(Qs,T,Bxx),
— R RM (T, S,Cs), RM(Ss,Qx, Ax)
S qM(%7 %7 C%)7
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which is a contradiction. Therefore, C'sc = S = s, that is, s is a common
fixed of C,S. Thus

Ax=8Sx=Tx=Bx=Cx=Qx = s.

Next, to prove the uniqueness, let v be another common fixed point of
T,A,B,C,Q,S.
If M (5¢,¢,v) > 0, then

M (52, 2¢,v) = M (A, Bs,Cv)
< 2¢ RM(Q%7 T, SU),RM(Q%, T, Bg)?
- R RM (T'5, Sv,Cv), RM(Sv,Qs, Ax)
S qM(%7 %’ v)?

which is a contradiction, Therefore, ¢ = v is the unique common fixed point
of self-maps T, A, B,C, @, S. O

Corollary 3.4. Let S,T,Q and {Aa},er, {Bg}se; and {Cy} i be the set
of all self-mappings of a complete M* —metric space (X, M), where M is first
type satisfying:
(i) there exists ag € I, By € J and o € K such that Ay, (X) C T'(X),
By (X) C S(X) and 1y (X) € Q(X).
(ii) Ao, or Bg, or Cy,(X) is a closed subset of X,
(iii) M(Ap, B, CS) < §6(RM(Qp, T3, $3), RM*(Qp, T, By),
RM (T5,5%,C,S), RM(SS, Qp, Aagp)) for every p,x,3 € X, some
0<qg<l,¢ped, andeveryacl, e J, veEK,
(iv) the pair (Aay, Q), (Bgs,,T) and (Cy,,S) are weak compatible.

Then A, B,C,S,T and Q have a unique common fized point in X.

Proof. By Theorem 3.3, @, S,T and A,,, Bg, and C,, for some o € I, By € J,
Y0 € K have a unique common fixed point in X. That is, there exist a unique
a € X such that Q(a) = S(a) = T'(a) = Agy(a) = Bg,(a) = Cyy(a) = a. Let
there exist A € J such that A # Sy and M*(a, By,a) > 0 then we have
M(a, Bya,a) = M(Aqya, Bra, Cyyv)
< g¢ RM(Qa,Ta,Sa), RM(Qa,Ta, Bya),
- R RM(Ta,Sa,Cyya), RM(Sa,Qa, Ay,a)
< qM(CL, a, B)\a),

which is a contradiction. Hence, for every A € J, we have B)(a) = a. Similarly,
for every § € I and » € K, we get As(a) = C,(a) = a. Therefore, for every
0, A€ Jand »x € K, we have As(a) = By(a) = Q(a) = S(a) = T(a) =
a. O
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Example 3.5. Let s = Bx € B(X) C S(X). This means that there exists
w € X such that Sw = ». We want to prove that Cw = . For

M (52, 3¢, Cw) = M (A, By, Cw)

< g¢ RM (Qs,Ts,w), RM(Qs,T, Bx),
— R RM (T'5,Sw,Cw), RM (Sw, Q, Asx)

< gM (52, 2, Cw).

Therefore, we can conclude that Cw = 3. Due to the weak compatibility of
the pair (C,5), we have CSw = SCw.

So, we can say that C» = S». Now, we need to prove that Csx = 5. If
C # », then

M (5, 5¢,C) = M (A, Bs,Cx)

<4 RM (Qs¢,Ts,Ss), RM(Qs, T, Bx),
- R¢ RM (T s, Sw,Cw), RM (Sw,Qs, Asx) |’

To prove the uniqueness, let’s consider another common fixed point of
T,A,B,C,Q,S, denoted as v. If M (s, ,v) > 0, then we have:

M (3¢, 5¢,v) = M (A, Bs,Cv)

< g(b RM (Qs,Ts,Sv), RM(Qs, T, By),
- R RM (Ts,Sv,Cv), RM(Sv, Qs, Ax)

< qM (32, 52, v).

This leads to a contradiction, which implies that s = v is the unique common
fixed point of the self-maps T, A, B, C, @, S.
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