Nonlinear Functional Analysis and Applications Vol. 29, No. 4 (2024), pp. 1137-1147 ISSN: 1229-1595(print), 2466-0973(online)

https://doi.org/10.22771/nfaa.2024.29.04.13 http://nfaa.kyungnam.ac.kr/journal-nfaa

A STUDY OF FIXED POINTS FOR FAMILY OF MAPPINGS

Ho Geun Hyun¹, Arvind Bhatt² and Radha³

¹Department of Mathematics Education, Kyungnam University, Changwon, Gyeongnam, 51767, Korea e-mail: hyunhg8285@kyungnam.ac.kr

²Department of Mathematics, School of science, Uttarakhand Open University, Haldwani, Uttarakhand, India, 263139 e-mail: arvindbhatt@uou.ac.in

³Department of Mathematics, School of science, Uttarakhand Open University, Haldwani, Uttarakhand, India, 263139 e-mail: radhajoshi321@gmail.com

Abstract. In this manuscript, we prove a fixed point theorem for a family of contractive self-mappings in a complete metric space or a complete *b*-metric space. We generalize the Caristi fixed point theorem, the Meir-Keeler type fixed point theorem, and the result of Pant. In our result, we use a generalization of the Meir-Keeler type contraction map for a family of self-mappings.

1. INTRODUCTION

Fixed point theory is a principal branch of Mathematics. The appearance or disappearance of a fixed point is an inherent characteristic of a map. However, many essential or abundant conditions for presence of such points comprises a mixture of algebraic, order theoretic, or topological properties of the mappings or its domain. The Banach contraction mapping theorem [1] itself does

⁰Received March 10, 2024. Revised July 9, 2024. Accepted July 12, 2024.

⁰2020 Mathematics Subject Classification: 47H09, 47H10, 37C25.

⁰Keywords: Continuous mappings, fixed point theorem, Caristi fixed point theorem, the Meir-Keeler type fixed point theorem, completeness b-metric space.

⁰Corresponding author: Avind Bhatt(arvindbhatt@uou.ac.in).

not characterize metric completeness [8]. Kannan [11, 12] proved that a selfmapping f of a complete metric space (X, d) satisfying the contractive condition have a unique fixed point. Kannan's results is marvellous for two purpose: that is, signalize the metric completeness [23], it was the beginning of the once open problem on the existence of contractive mappings which are discontinuous at fixed point [21]. After that many researchers explored in the concept of metric completeness and its properties e.g. [3, 5, 13, 19, 20, 22, 23, 24]. Browder and Petryshyn [4] defined the concept of asymptotically regular.

In 1969 Meir and Keeler [14] defined the contraction mapping. In 1976 Caristi [5] proved the fixed point theorem. In 1999, Pant [15] resolved the problem of continuity of contractive mappings at fixed points. In 2019, Pant et al. [17] gives the following result which is a generalization [5, 6, 7].

In this manuscript our results are the generalization of the result of Pant et al. [17, 18] because we are finding fixed points for family of mappings and we are using the contractive condition which is mentioned in the research paper of Pant [15] that condition is general than Meir-Keeler type contractive condition.

We now give some relevant definitions:

Definition 1.1. ([16]) A self-mapping f of a metric space (X, d) is called kcontinuous, k = 1, 2, 3, ..., if $f^k x_n \to ft$ whenever $\{x_n\}$ in X such that $f^{k-1}x_n \to t$.

Definition 1.2. ([6, 7]) A self-mapping f of a metric space (X, d), then the set $O(x, f) = \{f^n x : n = 0, 1, 2, ...\}$ is called the orbit of f at x and f is called orbitally continuous if $u = \lim_i f^{m_i} x$ implies $fu = \lim_i ff^{m_i} x$.

Definition 1.3. ([17]) A self-mapping f of a metric space (X, d) is called weakly orbitally continuous, if the set $\{y \in X : \lim_i f^{m_i}y = u \Rightarrow \lim_i ff^{m_i}y = fu\}$ is nonempty whenever the set $\{x \in X : \lim_i f^{m_i}x = u\}$ is nonempty.

Example 1.4. Let X = [0, 2] equipped with the Euclidean metric. Define $f: X \to X$ by

$$f(x) = \begin{cases} \frac{(1+x)}{2}, & \text{if } x < 1, \\ 0, & \text{if } 1 \le x < 2, \\ 2, & \text{if } x = 2. \end{cases}$$

Then $f^n(0) \to 1$ and $f(f^n(0)) \to 1$. Therefore, f is not orbitally continuous. However, f is weakly orbitally continuous. If we consider the any sequence $f^n(0)$, then for any integer $k \ge 1$, we have $f^{k-1}(f^n(0)) \to 1 \ne f(1)$. This shows that f is not k-continuous. **Example 1.5.** Let $X = [0, \infty)$ equipped with the Euclidean metric. Define $f: X \to X$ by

$$f(x) = \begin{cases} 1, & \text{if } x \le 1, \\ \frac{x}{3}, & \text{if } x > 1. \end{cases}$$

Then it is easy to see that f is orbitally continuous. Let $k \ge 1$ be any integer. Consider the sequence $\{x_n\}$ given by $x_n = 3^{k-1} + \frac{1}{n}$. Then $f^{k-1}x_n = 1 + \frac{1}{n3^{k-1}}$, $f^k x_n = \frac{1}{3} + \frac{1}{(n3^k)}$. This implies $f^{k-1}x_n \to 1$, $f^k x_n \to \frac{1}{3} \neq f(1)$ as $n \to \infty$. Hence, f is not k-continuous.

Remark 1.6. It is shown in the research paper [16] that continuity of f^k and k-continuity of f are independent conditions when k > 1. It is also clear in the research paper [6, 7] that continuous mapping is orbitally continuous but not conversely. The concept of weakly orbitally continuous is more general than orbitally continuous is shown in the research paper [17].

Definition 1.7. ([9, 10]) Let X be a nonempty set and $s \leq 1$ be a given real number. A function $d: X \times X \to [0, \infty)$ is called a *b*-metric if for all $x, y, z \in X$, the following conditions are satisfied:

- (i) d(x, y) = 0 if and only if x = y,
- (ii) d(x,y) = d(y,x),
- (iii) $d(x,z) \le s[d(x,y) + d(y,z)].$

The triplet (X, d, s) is called a *b*-metric space.

Definition 1.8. ([9, 10]) Let (X, d, s) be a *b*-metric space. The sequence $\{x_n\}$ in X is called convergence if for all $\epsilon > 0$, there exists $k \in N$ such that $d(x_n, x) < \epsilon$ for all $n \ge k$. In this case, we write $\lim_{n\to\infty} x_n = x$ and x is called the limit of $\{x_n\}$.

Definition 1.9. ([9, 10]) Let (X, d, s) be a *b*-metric space. The sequence $\{x_n\}$ in X is called Cauchy in X if for all $\epsilon > 0$, there exists $k \in N$ such that $d(x_m, x_n) < \epsilon$ for all $m, n \ge k$.

Definition 1.10. ([9, 10]) The *b*-metric space (X, d, s) is said to be complete if every Cauchy sequence is convergent to some x in X.

2. Main results

Theorem 2.1. Let $\{f_r : 0 \le r \le 1\}$ be a family of self-mappings in a complete metric space (X, d) such that for any given mapping f_r , the following conditions are satisfied:

$$d(f_r x, f_r y) \le \max\{d(x, f_r x), d(y, f_r y)\}$$
(2.1)

for $\max\{d(x, f_r x), d(y, f_r y)\} > 0$, and given $\epsilon > 0$ there exists a $\delta > 0$ such that,

$$\epsilon < \max\{d(x, f_r x), d(y, f_r y)\} < \epsilon + \delta \quad \Rightarrow \quad d(f_r x, f_r y) < \epsilon.$$
(2.2)

Then f_r possesses a fixed point if and only if f_r is weakly orbitally continuous. Moreover, the fixed point is unique and f_r is continuous at the fixed point, say z, if and only if

$$\lim_{x \to z} \max \left\{ d(x, f_r x), d(z, f_r z) \right\} = 0$$

or equivalently,

$$\lim_{x \to z} \sup \, d(f_r z, f_r x) = 0.$$

Proof. Select any mapping f_r where $0 \le r \le 1$. It is obvious that f_r satisfies contractive condition (2.1),

$$d(f_r x, f_r y) < \max\{d(x, f_r x), d(y, f_r y)\}$$
(2.3)

for $\max\{d(x, f_r x), d(y, f_r y)\} > 0.$

Let x_0 be any point in X. Define a sequence $\{x_n\}$ in X recursively by

$$x_n = f_r x_{n-1},$$

$$x_n = f_r \{f_r x_{n-2}\} = f_r^2 x_{n-2},$$

$$\vdots$$

$$x_n = f_r^n x_0.$$

If $x_n = x_{n+1}$ for some *n* then,

$$x_n = x_{n+1} = x_{n+2} = \dots,$$

that is, $\{x_n\} = \{f_r^n x_0\}$ is a Cauchy sequence and x_n is a fixed point of f_r , we can, therefore assume that $x_n \neq x_{n+1}$ for each n. Then, using (2.3), we get

$$d(x_n, x_{n+1}) = d(f_r x_{n-1}, f_r x_n)$$

< max{d(x_{n-1}, f_r x_{n-1}), d(x_n, f_r x_n)}
= d(x_{n-1}, x_n).

Thus, $\{d(x_n, x_{n+1})\}$ is a strictly decreasing sequence of positive real numbers and, hence, tends to a limit $r \ge 0$. Suppose r > 0. Then there exist a positive integer N such that,

$$n \ge N \quad \Rightarrow \quad r < d(x_n, x_{n+1}) < r + \delta(r).$$
 (2.4)

Now with reference of (2.2),

$$d(x_n, x_{n+1}) < r, (2.5)$$

which is a contradiction of (2.4). Hence $d(x_n, x_{n+1}) \to 0$ as $n \to \infty$. Now if p is any positive integer then,

$$d(x_n, x_{n+p}) = d(f_r x_{n-1}, f_r x_{n+p-1})$$

< max{ $d(x_{n-1}, f_r x_{n-1}), d(x_{n+p-1}, f_r x_{n+p-1})$ }
= max{ $d(x_{n-1}, x_n), d(x_{n+p-1}, x_{n+p})$ }
= $d(x_{n-1}, x_n).$

This implies that $d(x_n, x_{n+p}) \to 0$. Therefore, $\{x_n\} = \{f_r^n x_0\}$ is a Cauchy sequence. Since X is complete, there exists z in X such that $x_n \to z$. Moreover, for each integer $p \ge 1$, we have $f_r^p x_n \to z$ also using (2.3) it follows easily that $f_r^n y \to z$ for any y in X.

Suppose that f_r is weakly orbitally continuous. Since $f_r^n x_0 \to z$ for each x_0 , by virtue of weak orbital continuity of f_r we get $f_r^n y_0 \to z$ and $f_r^{n+1} y_0 \to f_r z$ for some y_0 in X. This implies $z = f_r z$, since $f_r^{n+1} y_0 \to z$. Therefore, z is a fixed point of f_r .

Uniqueness of the fixed point follows easily. Conversely, suppose that the mapping f_r possesses a fixed point, say z. Then $\{f_r^n z = z\}$ is a constant sequence such that $\lim_n f_r^{n+1} z = z = f_r z$. Hence, f_r is weak orbitally continuous. It is also easy to verify that f_r is continuous at z if and only if $\lim_{x\to z} \max\{d(x, f_r x), d(z, f_r z)\} = 0$ or, equivalently, $\lim_{x\to z} \sup d(f_r z, f_r x) = 0$.

This can alternatively be stated as: f_r is discontinuous at z if and only if $\lim_{x\to z} \sup d(f_r z, f_r x) = 0$. This proves the theorem.

Example 2.2. Let $X = [0, \infty)$ equipped with the usual metric and let $f_r : X \to X$ be defined by

 $f_r(x) = \frac{x}{3}$ for each x in X.

Then it is easy to verify that X is complete, f_r satisfies (2.2), f_r is continuous, and f_r has unique fixed point x = 0.

Example 2.3. Let X = [0, 2] and d be the usual metric. Define $f_r : X \to X$ by

$$f_r(x) = \begin{cases} 1, & \text{if } 0 \le x \le 1, \\ x - 1, & \text{if } 1 < x \le 2. \end{cases}$$

Then f_r satisfy all the conditions of the above theorem and has a unique fixed point z = 1 at which f_r is discontinuous.

Theorem 2.4. Let (X, d) be a complete metric space or a complete b-metric space and $\{f_r : 0 \le r \le 1\}$ be a family of asymptotically regular self-mappings

H. G. Hyun, Arvind Bhatt and Radha

of X satisfying

$$d(f_r x, f_r y) \le \lambda \max\{d(x, f_r x), d(y, f_r y)\}, \ \lambda > 0$$
(2.6)

for each r. If f_r is weak orbitally continuous for some integer $k \ge 1$, then f_r has a unique fixed point. Moreover, if every pair of mappings (f_r, f_s) satisfies the condition:

$$d(f_r x_r, f_s y) \le \lambda \max\{d(x, f_r x), d(y, f_s y)\}, \ \lambda > 0, \tag{2.7}$$

then the mappings have a unique common fixed point which is also the unique fixed of each f_r .

Proof. Select any mapping f_r . Let x_0 be any point in X. Define a sequence $\{x_n\}$ in X recursively by $x_n = f_r x_{n-1}$. If $x_n = x_{n+1}$ for some n then x_n is a fixed point of f_r . If $x_n \neq x_{n+1}$ for each n, then using (2.4), for each positive integer p we get,

$$d(x_n, x_{n+p}) = d(f_r x_{n-1}, f_r x_{n+p-1})$$

$$\leq \max\{d(x_{n-1}, f_r x_{n-1}), d(x_{n+p-1}, f_r x_{n+p-1})\}$$

$$= \lambda \max\{d(x_{n-1}, x_n), d(x_{n+p-1}, x_{n+p})\}.$$

By asymptotic regularity of f_r , this implies that $\lim_{n\to\infty} d(x_n, x_{n+1}) = 0$. This further implies that $\lim_{n\to\infty} d(x_n, x_{n+p}) = 0$. That is, $\{x_n\}$ is a Cauchy sequence. Since X is complete, there exists t in X such that

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} f_r^p x_n = t, p = 1, 2, 3, \dots$$

Suppose that f_r is weakly orbitally continuous. Since $f_r^n x_0 \to z$ for each x_0 , by virtue of weak orbital continuity of f_r , we get $f_r^n y_0 \to z$ and $f_r^{n+1} y_0 \to f_r z$ for some y_0 in X. This implies $z = f_r z$ since $f_r^{n+1} y_0 \to z$. Therefore, z is a fixed point of f_r .

Uniqueness of the fixed point follows easily from (2.7). Let u, v are different fixed point of f_r . Then

$$d(u, v) = d(f_r u, f_s v) \le \lambda \max\{d(u, f_r u), d(v, f_s v)\} = 0.$$
 (2.8)

Hence u = v and the family of mappings $\{f_r\}$ has a unique common fixed point which is also the unique fixed point of each f_r .

Theorem 2.5. Let $\{f_r : 0 \le r \le 1\}$ be a family of self-mapping in a complete metric space (X, d) such that for any given mapping f_r the following conditions are satisfied, for given $\epsilon > 0$ there exists a $\delta > 0$ such that

$$\epsilon < \max\{d(x, f_r x), d(y, f_r y)\} < \epsilon + \delta \quad \Rightarrow \quad d(f_r x, f_r y) < \epsilon.$$
(2.9)

Then there exists a point, say z in X such that for each x, y in X the sequence of iterates $\{f_r^n x\}$ is Cauchy and $\lim_{n\to\infty} f_r^n x = z$.

Example 2.6. Let X = [0, 2] equipped with the Euclidean metric d. Define $f_r : X \to X$ by

$$f_r x = \begin{cases} \frac{1+x}{2}, & \text{if } x < 1, \\ 0, & \text{if } 1 \le x \le 2. \end{cases}$$

Then X is complete metric space and f_r satisfies the contractive condition with $\delta(\epsilon) = 1 - \epsilon$ for $\epsilon < 1$ and $\delta(\epsilon) = \epsilon$ for $\epsilon \ge 1$ but does not posses a fixed point. It is easy to verify that for each x in X, the sequence $\{f_r^n x\}$ is Cauchy and $f_r^n x \to 1$. It is easily seen that f_r is not weakly orbitally continuous.

Example 2.7. Let $X = [1,2] \cup \{1 - \frac{1}{2^n} : n = 0, 1, 2, ...\}$ and d be the usual metric. Define $f_r : X \to X$ by

$$f_r x = 0$$
 if $1 \le x \le 2$, $f_r \left(1 - \frac{1}{2^n} \right) = \left\{ 1 - \frac{1}{2^{n+1}}, n = 0, 1, 2, \dots \right\}$.

Then range of f_r is the countable set $f_r(X) = 1 - \frac{1}{2^n} : n = 0, 1, 2, ...$ and f_r has no fixed point. The mapping f_r in this example satisfies the contractive condition (2.9) with $\delta(\epsilon) = \epsilon$ if $\epsilon \ge 1$ and $\delta(\epsilon) = \frac{1}{2^n} - \epsilon$ if $\frac{1}{2^{n+1}} \le \epsilon < \frac{1}{2^n}$, n = 0, 1, 2, ...

Now we are using the condition of Bisht and Rakocevic [2] for family of mappings: Given x, y in X and $0 \le a < 1$,

$$K(x,y) = \max[ad(x, f_r x) + (1-a)d(y, f_r y), (1-a)d(x, f_r x) + ad(y, f_r y)].$$

Theorem 2.8. Let $\{f_r : 0 \le r \le 1\}$ be a family of self-mappings in a complete metric space (X, d) such that for any given mapping f_r , the following conditions are satisfied: given $\epsilon > 0$ there exists a $\delta > 0$ such that

$$\epsilon < K(x,y) < \epsilon + \delta \quad \Rightarrow \quad d(f_r x, f_r y) < \epsilon.$$
 (2.10)

If a = 0, then f_r has a unique fixed point whenever f_r is k-continuous or f_r^k is continuous for some $k \ge 1$, or f_r^k is weakly orbitally continuous. If a > 0, they f_r^k possesses a unique fixed point at which f_r is continuous.

Proof. If we take a = 0 in K(x, y) then condition (2.10) reduces to condition (2.1). When a > 0 the proof is similar to the case a = 0. As seen in Theorem 2.1, f_r need not be continuous at the fixed point if a = 0. We now show that f_r is continuous at the fixed point when a > 0. Suppose a > 0 and z is the fixed point of f. Let $\{x_n\}$ be any sequence in X such that $x_n \to z$ as $n \to \infty$.

For the sufficient large values of n, we get

$$\begin{aligned} d(z, f_r x_n) &= d(f_r z, f_r x_n) \\ &< \max[ad(z, f_r z) + (1 - a)d(x_n, f_r x_n), (1 - a)d(x, f_r z) + ad(x_n, f_r x_n)] \\ &= \max[(1 - a)d(x_n, f_r x_n), ad(x_n, f_r x_n)] \\ &\leq \max[\epsilon_1 + (1 - a)d(z, f_r x_n), \epsilon_2 + ad(z, f_r x_n], \end{aligned}$$

where $\epsilon_1, \epsilon_2 \to 0$ as $n \to \infty$. This yields $d(z, f_r x_n) < \epsilon_1$ or $(1-a)d(z, f_r x_n) < \epsilon_2$. Taking $n \to \infty$, we get $\lim_{n\to\infty} f_r x_n = z = f_r z$. Hence, f_r is continuous at the fixed point. If f_r is k-continuous or f_r^k is continuous for some $k \ge 1$, then f_r^k is weakly orbitally continuous and the proof follows. This establishes the theorem. \Box

Theorem 2.9. Let $\{f_r : 0 \le r \le 1\}$ be a family of self-mappings in a complete metric space (X,d). Suppose $\phi : X \to [0,\infty)$ is a function such that for each x, y in X, we have

$$d(x, f_r x) \le \phi(x) - \phi(f x). \tag{2.11}$$

If f_r is weakly orbitally continuous or f_r^k is continuous or f is k-continuous for some $k \ge 1$, then f_r has a fixed point.

Proof. Let $x_0 \in X$. Define a sequence $\{x_n\}$ by $x_1 = f_r x_0, x_2 = f_r x_1, ...,$ that is $x_n = f_r^n x_0$. Then,

$$d(x_0, x_1) = d(x_0, f_r x_0) \le \phi(x_0) - \phi(f_r x_0) = \phi(x_0) - \phi(x_1).$$

Similarly, we have

$$d(x_1, x_2) \le \phi(x_1) - \phi(x_2),$$

$$d(x_2, x_3) \le \phi(x_2) - \phi(x_3),$$

$$\vdots$$

$$d(x_{n-1}, x_n) \le \phi(x_{n-1}) - \phi(x_n),$$

$$d(x_n, x_{n+1}) \le \phi(x_n) - \phi(x_{n+1}).$$

Adding these inequalities, we get

$$d(x_0, x_1) + d(x_1, x_2) + \dots + d(x_n, x_{n+1}) \le \phi(x_0) - \phi(x_{n+1}) \le \phi(x_0).$$

Taking $n \to \infty$, we get

$$\sum_{n=0}^{n=\infty} d(x_n, x_{n+1}) \le \phi(x_0).$$
(2.12)

This implies that $\{x_n\}$ is a Cauchy sequence. Since X is complete, there exists $t \in X$ such that $\lim_{n\to\infty} x_n = t$ and $\lim_{n\to\infty} f_r^n x_n = t$. Suppose that

 f_r is weakly orbitally continuous. Since $\{f_n^r x_0\}$ converges for each x_0 in X, weak orbital continuity implies that there exists $y_0 \in X$ such that $f_r^n y_0 \to z$, $f_r^{n+1}y_0 \to f_r z$ for some z in X. This implies that $z = f_r z$, that is, z is a fixed point of f_r .

Example 2.10. Let $X = [0, \infty)$ equipped with the Euclidean metric. Define $f: X \to X$ by,

$$f_r(x) = \begin{cases} 1, & \text{if } if \ x \le 1, \\ \frac{x}{3}, & \text{if } if \ x > 1. \end{cases}$$

Then, it is easy to show that f_r is weakly orbitally continuous but not k-continuous or orbitally continuous. Let us define $\phi: X \to [0, \infty)$ by,

$$\phi(x) = \begin{cases} 1 - x, & \text{if } x < 1, \\ 1 + x, & \text{if } x \ge 1. \end{cases}$$

Then $d(x, f_r x) \leq \phi(x) - \phi(f_r x)$ for each x in X, f_r satisfies all the conditions of above theorem and has a fixed point x = 2.

From the above theorem, we can ger the following corollary.

Corollary 2.11. Let $\{f_r : 0 \le r \le 1\}$ be a family of contractive type selfmappings in a complete metric space (X, d). Suppose $\phi : X \to [0, \infty)$ is a function such that for each x in X, we have

$$d(x, f_r x) \le \phi(x) - \phi(f_r x). \tag{2.13}$$

If f_r is weakly orbitally continuous or f_r^k is continuous or f_r is k-continuous for some $k \ge 1$, then f_r possesses a unique fixed point.

Theorem 2.12. Suppose $\{f_r : 0 \le r \le 1\}$ is a family of self-mappings in a complete metric space (X, d) satisfies the Banach contraction condition:

$$d(f_r x, f_r y) \le a d(x, y), \ \ 0 \le a < 1.$$
 (2.14)

Then there exists a function $\phi: X \to [0,\infty)$ such that for each x in X, we have

$$d(x, f_r x) \le \phi(x) - \phi(f_r x). \tag{2.15}$$

Proof. For any x in X we have $d(f_r x, f_r^2 x)$, that is,

$$(\frac{1}{a})d(f_rx, f_r^2x) \le d(x, f_rx).$$

By virtue of the inequality, we get

$$d(x, f_r x) = \frac{1}{1-a} d(x, f_r x) - \frac{a}{1-a} d(x, f_r x)$$

$$\leq \frac{1}{1-a} d(x, f_r x) - \frac{a}{1-a} \frac{1}{a} d(f_r x, f_r^2 x)$$

$$= \frac{1}{1-a} d(x, f_r x) - \frac{1}{1-a} d(f_r x, f_r^2 x)$$

$$= \phi(x) - \phi(f_r x),$$

where $\phi: X \to [0, \infty)$ is defined by $\phi(x) = \frac{1}{1-a}d(x, f_r x)$.

3. Conclusion

Since weak orbital continuity is general than k-continuity. Therefore, above results are generalized than the Pant et al. [18]. In the above theorem we are using family of mapping so this result is better than the result of Pant et al. [17].

References

- S. Banach, Sur les oprations dans les ensembles abstraits et leurs applications aux quations intgrales, Fund. Math., 3 (1922), 133-181.
- [2] R.K. Bisht and V. Rakocevic, Generalized Meir-Keeler type contractions and discontinuity at fixed point, Fixed Point Theory, 19 (2018), 57-64.
- [3] D.W. Boyd and J.S. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 20 (1969), 458-464.
- [4] F.E. Browder and W.V. Petrysyn, The solution by iteration of nonlinear functional equation in Banach spaces, Bull. Amer. Math. Soc., 72 (1966), 571-576.
- [5] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 215 (1976), 241-251.
- [6] Lj. Ciric, On contraction type mappings, Math. Balkanica, 1 (1972), 52-57.
- [7] Lj. Ciric, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267-273.
- [8] E.H. Connel, Properties of fixed point spaces, Proc. Amer. Math. Soc., 10 (1959), 974-979.
- [9] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. et Inform. Universitaties Ostraviensis, 1 (1993), 5-11.
- [10] C. Jinakul, A. Wiwatwanich and A. Kaewkhao, Common fixed point theorems for multivalued mappings in b-metric spaces, Int. J. Pure. Appl. Math., 113 (2017), 167-179.
- [11] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71-76.
- [12] R. Kannan, Some results on fixed points -II, Amer. Math. Monthly, 76 (1969), 405-408.
- [13] W.A. Kirk, Caristi's fixed point theorem and metric convexity, Colloq. Math., 36 (1976), 81-86.
- [14] A. Meir and E. Keeler, A Theorem on Contraction Mapping, J. Math. Anal. Appl., 28 (1969), 326-329.
- [15] R.P. Pant, Discontinuity and fixed points, J. Math. Anal. Appl., 240 (1999), 284-289.

- [16] A. Pant and R.P. Pant, Fixed Points and Continuity of Contractive Maps, Filomat, 31 (2017), 3501-3506.
- [17] A. Pant, R.P. Pant and M.C. Joshi, Caristi Type and Meir-Keeler Type Fixed Point Theorems, Filomat, 31 (2019), 3711-3721.
- [18] A. Pant, R.P. Pant, M.C. Joshi and V. Rakocevic, Fixed points of a family of mappings and equivalent characterizations, Filomat, 37 (2023), 1391-1397.
- [19] S. Park, Extensions of Ordered Fixed Point Theorems, Nonlinear Funct. Anal. Appl., 28(3) (2023), 831-850.
- [20] H. Qawaqneh, W.G. Alshanti, M. Abu Hammad and R. Khalil, Orbital contraction in metric spaces with applications of fractional derivatives, Nonlinear Funct. Anal. Appl., 29(2) (2024), 649-672.
- [21] B.E. Rhoades, Contractive definitions and continuity, Contemp. Math., 72 (1988), 233-245.
- [22] S. Sedghi, N. Shobkolaei and S.H. Sadati, A Generalization of Caristi Kirk's Theorem for Common Fixed Points on G-metric spaces, Nonlinear Funct. Anal. Appl., 20(4) (2015), 551-559.
- [23] P.V. Subrahmanyam, Completeness and fixed points, Montash. Math., 80 (1975), 325-330.
- [24] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136 (2008), 1861-1869.