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Abstract.In this manuscript, we prove a fixed point theorem for a family of contractive

self-mappings in a complete metric space or a complete b-metric space. We generalize the

Caristi fixed point theorem, the Meir-Keeler type fixed point theorem, and the result of

Pant. In our result, we use a generalization of the Meir-Keeler type contraction map for a

family of self-mappings.

1. Introduction

Fixed point theory is a principal branch of Mathematics. The appearance or
disappearance of a fixed point is an inherent characteristic of a map. However,
many essential or abundant conditions for presence of such points comprises
a mixture of algebraic, order theoretic, or topological properties of the map-
pings or its domain. The Banach contraction mapping theorem [1] itself does
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not characterize metric completeness [8]. Kannan [11, 12] proved that a self-
mapping f of a complete metric space (X, d) satisfying the contractive condi-
tion have a unique fixed point. Kannan’s results is marvellous for two purpose:
that is, signalize the metric completeness [23], it was the beginning of the once
open problem on the existence of contractive mappings which are discontinu-
ous at fixed point [21]. After that many researchers explored in the concept
of metric completeness and its properties e.g. [3, 5, 13, 19, 20, 22, 23, 24].
Browder and Petryshyn [4] defined the concept of asymptotically regular.

In 1969 Meir and Keeler [14] defined the contraction mapping. In 1976
Caristi [5] proved the fixed point theorem. In 1999, Pant [15] resolved the
problem of continuity of contractive mappings at fixed points. In 2019, Pant
et al. [17] gives the following result which is a generalization [5, 6, 7].

In this manuscript our results are the generalization of the result of Pant
et al. [17, 18] because we are finding fixed points for family of mappings
and we are using the contractive condition which is mentioned in the research
paper of Pant [15] that condition is general than Meir-Keeler type contractive
condition.

We now give some relevant definitions:

Definition 1.1. ([16]) A self-mapping f of a metric space (X, d) is called k−
continuous, k = 1, 2, 3, ..., if fkxn → ft whenever {xn} in X such that fk−1xn
→ t.

Definition 1.2. ([6, 7]) A self-mapping f of a metric space (X, d), then the
set O(x, f) = {fnx : n = 0, 1, 2, ...} is called the orbit of f at x and f is called
orbitally continuous if u = limi f

mix implies fu = limi ff
mix.

Definition 1.3. ([17]) A self-mapping f of a metric space (X, d) is called
weakly orbitally continuous, if the set {y ∈ X : limi f

miy = u⇒ limi ff
miy =

fu} is nonempty whenever the set {x ∈ X : limi f
mix = u} is nonempty.

Example 1.4. Let X = [0, 2] equipped with the Euclidean metric. Define
f : X → X by

f(x) =


(1+x)

2 , if x < 1,

0, if 1 ≤ x < 2,

2, if x = 2.

Then fn(0) → 1 and f(fn(0)) → 1. Therefore, f is not orbitally continuous.
However, f is weakly orbitally continuous. If we consider the any sequence
fn(0), then for any integer k ≥ 1, we have fk−1(fn(0)) → 1 6= f(1). This
shows that f is not k-continuous.
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Example 1.5. Let X = [0,∞) equipped with the Euclidean metric. Define
f : X → X by

f(x) =

{
1, if x ≤ 1,
x
3 , if x > 1.

Then it is easy to see that f is orbitally continuous. Let k ≥ 1 be any integer.
Consider the sequence {xn} given by xn = 3k−1+ 1

n . Then fk−1xn = 1+ 1
n3k−1 ,

fkxn = 1
3 + 1

(n3k)
. This implies fk−1xn → 1, fkxn → 1

3 6= f(1) as n → ∞.

Hence, f is not k-continuous.

Remark 1.6. It is shown in the research paper [16] that continuity of fk and
k-continuity of f are independent conditions when k > 1. It is also clear in the
research paper [6, 7] that continuous mapping is orbitally continuous but not
conversely. The concept of weakly orbitally continuous is more general than
orbitally continuous is shown in the research paper [17].

Definition 1.7. ([9, 10]) Let X be a nonempty set and s ≤ 1 be a given
real number. A function d : X × X → [0,∞) is called a b-metric if for all
x, y, z ∈ X, the following conditions are satisfied:

(i) d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x),

(iii) d(x, z) ≤ s[d(x, y) + d(y, z)].

The triplet (X, d, s) is called a b-metric space.

Definition 1.8. ([9, 10]) Let (X, d, s) be a b−metric space. The sequence
{xn} in X is called convergence if for all ε > 0, there exists k ∈ N such that
d(xn, x) < ε for all n ≥ k. In this case, we write limn→∞ xn = x and x is called
the limit of {xn}.

Definition 1.9. ([9, 10]) Let (X, d, s) be a b−metric space. The sequence
{xn} in X is called Cauchy in X if for all ε > 0, there exists k ∈ N such that
d(xm, xn) < ε for all m,n ≥ k.

Definition 1.10. ([9, 10]) The b−metric space (X, d, s) is said to be complete
if every Cauchy sequence is convergent to some x in X.

2. Main results

Theorem 2.1. Let {fr : 0 ≤ r ≤ 1} be a family of self-mappings in a com-
plete metric space (X, d) such that for any given mapping fr, the following
conditions are satisfied:

d(frx, fry) ≤ max{d(x, frx), d(y, fry)} (2.1)
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for max{d(x, frx), d(y, fry)} > 0, and given ε > 0 there exists a δ > 0 such
that,

ε < max{d(x, frx), d(y, fry)} < ε+ δ ⇒ d(frx, fry) < ε. (2.2)

Then fr possesses a fixed point if and only if fr is weakly orbitally continuous.
Moreover, the fixed point is unique and fr is continuous at the fixed point,

say z, if and only if

lim
x→z

max {d(x, frx), d(z, frz)} = 0

or equivalently,

lim
x→z

sup d(frz, frx) = 0.

Proof. Select any mapping fr where 0 ≤ r ≤ 1. It is obvious that fr satisfies
contractive condition (2.1),

d(frx, fry) < max{d(x, frx), d(y, fry)} (2.3)

for max{d(x, frx), d(y, fry)} > 0.
Let x0 be any point in X. Define a sequence {xn} in X recursively by

xn = frxn−1,

xn = fr{frxn−2}=f2r xn−2,
...

xn = fnr x0.

If xn = xn+1 for some n then,

xn = xn+1 = xn+2 = ...,

that is, {xn} = {fnr x0} is a Cauchy sequence and xn is a fixed point of fr, we
can, therefore assume that xn 6= xn+1 for each n. Then, using (2.3), we get

d(xn, xn+1) = d(frxn−1, frxn)

< max{d(xn−1, frxn−1), d(xn, frxn)}
= d(xn−1, xn).

Thus, {d(xn, xn+1} is a strictly decreasing sequence of positive real numbers
and, hence, tends to a limit r ≥ 0. Suppose r > 0. Then there exist a positive
integer N such that,

n ≥ N ⇒ r < d(xn, xn+1) < r + δ(r). (2.4)

Now with reference of (2.2),

d(xn, xn+1) < r, (2.5)
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which is a contradiction of (2.4). Hence d(xn, xn+1)→ 0 as n→∞. Now if p
is any positive integer then,

d(xn, xn+p) = d(frxn−1, frxn+p−1)

< max{d(xn−1, frxn−1), d(xn+p−1, frxn+p−1)}
= max{d(xn−1, xn), d(xn+p−1, xn+p)}
= d(xn−1, xn).

This implies that d(xn, xn+p) → 0. Therefore, {xn} = {fnr x0} is a Cauchy
sequence. Since X is complete, there exists z in X such that xn → z. Moreover,
for each integer p ≥ 1, we have fpr xn → z also using (2.3) it follows easily that
fnr y → z for any y in X.

Suppose that fr is weakly orbitally continuous. Since fnr x0 → z for each x0,
by virtue of weak orbital continuity of fr we get fnr y0 → z and fn+1

r y0 → frz
for some y0 in X. This implies z = frz, since fn+1

r y0 → z. Therefore, z is a
fixed point of fr.

Uniqueness of the fixed point follows easily. Conversely, suppose that the
mapping fr possesses a fixed point, say z. Then {fnr z = z} is a constant
sequence such that limn f

n+1
r z = z = frz. Hence, fr is weak orbitally con-

tinuous. It is also easy to verify that fr is continuous at z if and only if
limx→z max{d(x, frx), d(z, frz)} = 0 or, equivalently, limx→z sup d(frz, frx) =
0.

This can alternatively be stated as: fr is discontinuous at z if and only if
limx→zsupd(frz, frx) = 0. This proves the theorem. �

Example 2.2. Let X = [0,∞) equipped with the usual metric and let fr :
X → X be defined by

fr(x) = x
3 for each x in X.

Then it is easy to verify that X is complete, fr satisfies (2.2), fr is continuous,
and fr has unique fixed point x = 0.

Example 2.3. Let X = [0, 2] and d be the usual metric. Define fr : X → X
by

fr(x) =

{
1, if 0 ≤ x ≤ 1,

x− 1, if 1 < x ≤ 2.

Then fr satisfy all the conditions of the above theorem and has a unique fixed
point z = 1 at which fr is discontinuous.

Theorem 2.4. Let (X, d) be a complete metric space or a complete b-metric
space and {fr : 0 ≤ r ≤ 1} be a family of asymptotically regular self-mappings
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of X satisfying

d(frx, fry) ≤ λmax{d(x, frx), d(y, fry)}, λ > 0 (2.6)

for each r. If fr is weak orbitally continuous for some integer k ≥ 1, then fr
has a unique fixed point. Moreover, if every pair of mappings (fr, fs) satisfies
the condition:

d(frxr, fsy) ≤ λmax{d(x, frx), d(y, fsy)}, λ > 0, (2.7)

then the mappings have a unique common fixed point which is also the unique
fixed of each fr.

Proof. Select any mapping fr. Let x0 be any point in X. Define a sequence
{xn} in X recursively by xn = frxn−1. If xn = xn+1 for some n then xn is a
fixed point of fr. If xn 6= xn+1 for each n, then using (2.4), for each positive
integer p we get,

d(xn, xn+p) = d(frxn−1, frxn+p−1)

≤ max{d(xn−1, frxn−1), d(xn+p−1, frxn+p−1)}
= λmax{d(xn−1, xn), d(xn+p−1, xn+p}.

By asymptotic regularity of fr, this implies that limn→∞ d(xn, xn+1) = 0.
This further implies that limn→∞ d(xn, xn+p) = 0. That is, {xn} is a Cauchy
sequence. Since X is complete, there exists t in X such that

lim
n→∞

xn = lim
n→∞

fpr xn = t, p = 1, 2, 3, ....

Suppose that fr is weakly orbitally continuous. Since fnr x0 → z for each x0,
by virtue of weak orbital continuity of fr, we get fnr y0 → z and fn+1

r y0 → frz
for some y0 in X. This implies z = frz since fn+1

r y0 → z. Therefore, z is a
fixed point of fr.

Uniqueness of the fixed point follows easily from (2.7). Let u, v are different
fixed point of fr. Then

d(u, v) = d(fru, fsv) ≤ λmax{d(u, fru), d(v, fsv)} = 0. (2.8)

Hence u = v and the family of mappings {fr} has a unique common fixed
point which is also the unique fixed point of each fr. �

Theorem 2.5. Let {fr : 0 ≤ r ≤ 1} be a family of self-mapping in a complete
metric space (X, d) such that for any given mapping fr the following conditions
are satisfied, for given ε > 0 there exists a δ > 0 such that

ε < max{d(x, frx), d(y, fry)} < ε+ δ ⇒ d(frx, fry) < ε. (2.9)

Then there exists a point, say z in X such that for each x, y in X the sequence
of iterates {fnr x} is Cauchy and limn→∞ f

n
r x = z.
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Example 2.6. Let X = [0, 2] equipped with the Euclidean metric d. Define
fr : X → X by

frx =

{
1+x
2 , if x < 1,

0, if 1 ≤ x ≤ 2.

Then X is complete metric space and fr satisfies the contractive condition
with δ(ε) = 1− ε for ε < 1 and δ(ε) = ε for ε ≥ 1 but does not posses a fixed
point. It is easy to verify that for each x in X, the sequence {fnr x} is Cauchy
and fnr x→ 1. It is easily seen that fr is not weakly orbitally continuous.

Example 2.7. Let X = [1, 2] ∪{1 − 1
2n : n = 0, 1, 2, ...} and d be the usual

metric. Define fr : X → X by

frx = 0 if 1 ≤ x ≤ 2, fr

(
1− 1

2n

)
=

{
1− 1

2n+1
, n = 0, 1, 2, ...

}
.

Then range of fr is the countable set fr(X) = 1− 1
2n : n = 0, 1, 2, ... and fr

has no fixed point. The mapping fr in this example satisfies the contractive
condition (2.9) with δ(ε) = ε if ε ≥ 1 and δ(ε) = 1

2n − ε if 1
2n+1 ≤ ε < 1

2n ,
n = 0, 1, 2, ....

Now we are using the condition of Bisht and Rakocevic [2] for family of
mappings: Given x, y in X and 0 ≤ a < 1,

K(x, y) = max[ad(x, frx) + (1− a)d(y, fry), (1− a)d(x, frx) + ad(y, fry)].

Theorem 2.8. Let {fr : 0 ≤ r ≤ 1} be a family of self-mappings in a com-
plete metric space (X, d) such that for any given mapping fr, the following
conditions are satisfied: given ε > 0 there exists a δ > 0 such that

ε < K(x, y) < ε+ δ ⇒ d(frx, fry) < ε. (2.10)

If a = 0, then fr has a unique fixed point whenever fr is k−continuous or fkr
is continuous for some k ≥ 1, or fkr is weakly orbitally continuous. If a > 0,
thev fkr possesses a unique fixed point at which fr is continuous.

Proof. If we take a = 0 in K(x, y) then condition (2.10) reduces to condition
(2.1). When a > 0 the proof is similar to the case a = 0. As seen in Theorem
2.1, fr need not be continuous at the fixed point if a = 0. We now show that
fr is continuous at the fixed point when a > 0. Suppose a > 0 and z is the
fixed point of f . Let {xn} be any sequence in X such that xn → z as n→∞.
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For the sufficient large values of n, we get

d(z, frxn) = d(frz, frxn)

< max[ad(z, frz)+(1−a)d(xn, frxn), (1−a)d(x, frz)+ad(xn, frxn)]

= max[(1− a)d(xn, frxn), ad(xn, frxn)]

≤ max[ε1 + (1− a)d(z, frxn), ε2 + ad(z, frxn],

where ε1, ε2 → 0 as n→∞. This yields d(z, frxn) < ε1 or (1− a)d(z, frxn) <
ε2. Taking n → ∞, we get limn→∞ frxn = z = frz. Hence, fr is continuous
at the fixed point. If fr is k−continuous or fkr is continuous for some k ≥ 1,
then fkr is weakly orbitally continuous and the proof follows. This establishes
the theorem. �

Theorem 2.9. Let {fr : 0 ≤ r ≤ 1} be a family of self-mappings in a complete
metric space (X, d). Suppose φ : X → [0,∞) is a function such that for each
x, y in X, we have

d(x, frx) ≤ φ(x)− φ(fx). (2.11)

If fr is weakly orbitally continuous or fkr is continuous or f is k−continuous
for some k ≥ 1, then fr has a fixed point.

Proof. Let x0 ∈ X. Define a sequence {xn} by x1 = frx0, x2 = frx1, ..., that
is xn = fnr x0. Then,

d(x0, x1) = d(x0, frx0) ≤ φ(x0)− φ(frx0) = φ(x0)− φ(x1).

Similarly, we have
d(x1, x2) ≤ φ(x1)− φ(x2),

d(x2, x3) ≤ φ(x2)− φ(x3),

...

d(xn−1, xn) ≤ φ(xn−1)− φ(xn),

d(xn, xn+1) ≤ φ(xn)− φ(xn+1).

Adding these inequalities, we get

d(x0, x1) + d(x1, x2) + · · ·+ d(xn, xn+1) ≤ φ(x0)− φ(xn+1)

≤ φ(x0).

Taking n→∞, we get
n=∞∑
n=0

d(xn, xn+1) ≤ φ(x0). (2.12)

This implies that {xn} is a Cauchy sequence. Since X is complete, there
exists t ∈ X such that limn→∞ xn = t and limn→∞ f

n
r xn = t. Suppose that
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fr is weakly orbitally continuous. Since {f rnx0} converges for each x0 in X,
weak orbital continuity implies that there exists y0 ∈ X such that fnr y0 → z,
fn+1
r y0 → frz for some z in X. This implies that z = frz, that is, z is a fixed

point of fr. �

Example 2.10. Let X = [0,∞) equipped with the Euclidean metric. Define
f : X → X by,

fr(x) =

{
1, if if x ≤ 1,
x
3 , if if x > 1.

Then, it is easy to show that fr is weakly orbitally continuous but not k−continuous
or orbitally continuous. Let us define φ : X → [0,∞) by,

φ(x) =

{
1− x, if x < 1,

1 + x, if x ≥ 1.

Then d(x, frx) ≤ φ(x)− φ(frx) for each x in X, fr satisfies all the conditions
of above theorem and has a fixed point x = 2.

From the above theorem, we can ger the following corollary.

Corollary 2.11. Let {fr : 0 ≤ r ≤ 1} be a family of contractive type self-
mappings in a complete metric space (X, d). Suppose φ : X → [0,∞) is a
function such that for each x in X, we have

d(x, frx) ≤ φ(x)− φ(frx). (2.13)

If fr is weakly orbitally continuous or fkr is continuous or fr is k−continuous
for some k ≥ 1, then fr possesses a unique fixed point.

Theorem 2.12. Suppose {fr : 0 ≤ r ≤ 1} is a family of self-mappings in a
complete metric space (X, d) satisfies the Banach contraction condition:

d(frx, fry) ≤ ad(x, y), 0 ≤ a < 1. (2.14)

Then there exists a function φ : X → [0,∞) such that for each x in X, we
have

d(x, frx) ≤ φ(x)− φ(frx). (2.15)

Proof. For any x in X we have d(frx, f
2
r x), that is,

(
1

a
)d(frx, f

2
r x) ≤ d(x, frx).
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By virtue of the inequality, we get

d(x, frx) =
1

1− a
d(x, frx)− a

1− a
d(x, frx)

≤ 1

1− a
d(x, frx)− a

1− a
1

a
d(frx, f

2
r x)

=
1

1− a
d(x, frx)− 1

1− a
d(frx, f

2
r x)

= φ(x)− φ(frx),

where φ : X → [0,∞) is defined by φ(x) = 1
1−ad(x, frx). �

3. Conclusion

Since weak orbital continuity is general than k−continuity. Therefore, above
results are generalized than the Pant et al. [18]. In the above theorem we are
using family of mapping so this result is better than the result of Pant et al.
[17].
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