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Abstract. The author studied a one-parameter family of divergences and the related me-
dian minimization problem of finite points over these divergences in a symmetric cone [14].
The unique solution of the minimization problem with a weight w is called the w-weighted
Wasserstein median. Recently, in the special symmetric cone of the positive definite ma-
trices, Hwang and Kim [8] explored several properties of the Wasserstein mean and found
bounds for the Wasserstein mean with respect to Lowner order. Also Kim and Lee [10]
presented some relations between the Wasserstein mean and other well-known matrix means
such as the power mean, harmonic mean and Karcher mean. Motivated by these results, as
an application of the previous work [14], we investigate several properties of the w-weighted
Wasserstein median which mainly extend the corresponding ones in [8, 10] into a general

symmetric cone 2 with a purely Jordan-algebraic technique.

1. INTRODUCTION

A divergence, which measures discrepancy between two points, plays a cru-
cial role in many problems such as information theory, statistics, optimization,
computational vision, and neural networks [1, 2, 3]. For the definition of diver-
gence, readers may refer to [14]. As is known, a divergence is almost a distance
function except the symmetry with respect to its arguments and the triangle
inequality. For instance, the square of a distance function is a (symmetric) di-
vergence. Thus a divergence ® gives rise to an important optimization problem
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like a least squares problem on a Riemannian manifold M :

m
argminijQ)(aj, x), (1.1)
zeM
7j=1
where aq,...,a;, € M and w = (wy,...,wy) € R™ is a positive probability
vector. So a minimizer whenever it exists provides alternatively a barycenter
or averaging on M, which is called the w-weighted ®-median of ay,...,an.

In a recent work [14], this median optimization problem on a special Rie-
mannian manifold called symmetric cones is studied. The main result in [14]
is briefly summarized as follow: Let V be a Euclidean Jordan algebra and let
Q be the symmetric cone (see section 2 for basic facts regarding Euclidean
Jordan algebras and symmetric cones). Consider the function ®; : 2 x 2 — R
defined by

_ t
®y(a,b) = tr (1 — t)a + th) — tr (P(a%f)b) . 0<t<l, (1.2)
where tr is the trace functional and P is the quadratic representation of V.

Theorem 1.1. ([14]) For every 0 < t < 1, ®; is a divergence on §2. Moreover,
the minimization problem

argminijtIDt(aj,a:) (1.3)
zeQ)
7j=1

has a unique minimaizer.

A meaningful reason to take the divergence (1.2) into account stems from
N
the followings: The term F(a,b) = tr (P(a%)b) in (1.2) is known as sand-

wiched quasi-relative entropy in the theory of quantum information; for posi-
tive (semi)definite matrices A and B,

_ Nt
Fy(A,B) = tr (A%BA%) . te(0,1). (1.4)
1 1 i
This is a parameterized version of the fidelity F1(A, B) = tr (Ai BAi) . Fi-
2
delity and sandwiched quasi-relative entropies play an essential role in quan-
tum information theory and quantum computation [7, 20, 21, 22]. In addition,

the extended version dy on the set of positive definite matrices of the Bures
distance in quantum information is defined by

dy (A, B) = [tr(A—;B> Ctr (AéBA%)Q] ,
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which is also known as the Wasserstein distance in statistics and the theory of
optimal transport [5, 12, 19]. Clearly, d3,(A, B) = CID%(A, B). This implies that
the divergence (1.2) may have a rich background in various areas mentioned
above even thought its square root is not a distance in general [14]. From now
on, we call the unique minimizer of (1.3) the w-weighted Wasserstein median
of ai, ..., Qm.

A motivation of this paper is as follows. Recently, in the special symmetric
cone of the positive definite matrices, Hwang and Kim [8] explored several
properties of the Wasserstein mean and found bounds for the Wasserstein mean
with respect to Lowner order. Also Kim and Lee [10] presented some relations
between the Wasserstein mean and other well-known matrix means such as
the power mean, harmonic mean and Karcher mean. Motivated by these
results, as a continuation or an application of the previous work [14], in the
present paper, we investigate several important properties of the w-weighted
Wasserstein median of aq, .. ., a,, which mainly extend the corresponding ones
in [8, 10] into the setting of a general symmetric cone € with a purely Jordan-
algebraic technique.

2. EUCLIDEAN JORDAN ALGEBRAS AND SYMMETRIC CONES

Before stating the motivation of this work, first we briefly describe (following
mostly [6, 14]) some Jordan-algebraic concepts relevant to our purpose. A
Jordan algebra V' over R is a non-associative commutative algebra satisfying
22(zy) = x(2?y) for all xz,y € V. For & € V, let L, be the linear operator
defined by L,y = xy, and let P(z) = 2L2 — L,>. The map P is called the
quadratic representation of V. An element x € V is said to be invertible if
there exists an element y (denoted by y = x71) in the subalgebra generated
by x and e (the Jordan identity) such that zy = e.

The following appears at [6, Propositions 11.3.1, 11.3.2].

Proposition 2.1. Let V be a Jordan algebra.

(i) An element z in V is invertible if and only if P(z) is invertible. In
this case: P(x)~t = P(z~1).
(2) If x and y are invertible, then P(z)y is invertible and (P(x)y)~! =
Pz Yy L.
(iii) For any elements x and y, P(P(x)y) = P(x)P(y)P(z). In particular,
P (x) = P(z™), m>1.

An element ¢ € V is called an idempotent if ¢> = c¢. We say that c1,...,cp
is a complete system of orthogonal idempotents if ¢? = ¢;, c;c; = 0, i # j and
c1+ -+ ¢ = e. An idempotent is said to be primitive if it is non-zero and
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cannot be written as the sum of two non-zero idempotents. A Jordan frame
is a complete system of orthogonal primitive idempotents.

A finite-dimensional Jordan algebra V with an identity element e is said to
be Euclidean if there exists an inner product (-,-) such that (zy, z) = (y,zz)
for all x,y,z € V.

Theorem 2.2. (Spectral theorem, first version [6, Theorem II1.1.1]) Let V be a

Euclidean Jordan algebra. Then for x € V, there exist real numbers A1, ..., Ak
all distinct and a unique complete system of orthogonal idempotents c1, ..., cp
such that

k
xr = Z)\zcz (2.1)
i=1

The numbers \; are called the eigenvalues and (2.1) is called the spectral de-
composition of x.

Theorem 2.3. (Spectral theorem, second version [6, Theorem III.1.2]) Any
two Jordan frames in a Fuclidean Jordan algebra V' have the same number
of elements (called the rank of V', denoted by rank(V')). Given x € V, there
exists a Jordan frame ci,...,c. and real numbers Ay, ..., \., where r is the
rank of V., such that x = >_;_, Nic;. The numbers X\; (with their multiplicities)
are uniquely determined by x.

Definition 2.4. Let V be a Euclidean Jordan algebra of rank(V') = r. The
spectral mapping A : V' — R" is defined by A(z) = (A1(x),..., Ar(x)), where
Ai(z)’s are eigenvalues of x (with multiplicities) as in Theorem 2.3 in non-
increasing order Amax(x) = Ai(z) > Aa(x) > -+ > A\ (2) = Amin(x). Further-
more, det(z) = [_; \i(z) and tr(z) = >"7_; Xi(z).

Let @ be the set of all square elements of V. Then () is a closed convex cone
of V with @ N —Q = {0}, and is the set of elements = € V such that L(x) is
positive semi-definite. It turns out that @ has non-empty interior Q := int(Q),
and € is a symmetric cone, that is, the group G(2) = {g € GL(V) | g(©) = Q}
acts transitively on it and €2 is a self-dual cone with respect to the inner
product (-,-) (see [6]). We say that g € GL(V) is a Jordan automorphism if
g(zy) = g(x)g(y) for all x,y € V. For an element g € G(Q?), g is a Jordan
automorphism if and only if g(e) = e [6, Propositions VIII.2.4, 2.8] or [11]).

Note that Q@ = {z € V | \i(x) > 0,i=1,...,7}. For 2,y € V, we define the
Lowner order by
r<y if y—2€
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andz <yify—zr € Q Clearly Q={z €V |2>0}and Q= {z €V | z > 0}.
Furthermore, for any a € Q, P(a) € G(Q2) so that P(a) is an order preserving
linear operator.

On the other hand, the symmetric cone  in V' admits a G(Q)-invariant
Riemannian metric defined by

(u,v)p = (P(x) tu,v), € Q, u,v V. (2.2)

So 2 is a Riemannian manifold [6]. It is shown in [16, Proposition 2.6] that
the unique geodesic joining a and b is

t = aftib = P(a'/?)(P(a"?)b)Y, (2.3)

where a! = > i1 Aj(a)te; for the spectral decomposition a = > j=1Aj(a)ej in
Theorem 2.3. The geometric mean of a and b is defined to be a#b := a# b,
which is a unique geodesic middle between a and b. It is well-known that a#b
is the unique solution on € of the following quadratic equation, called the
Riccati equation:

P(z)a™t =b. (2.4)
3. MAIN RESULTS

For simplicity, in what follows, we restrict our attention only to the case
t =1/2. In this case, we denote by W(w;ai,...,an) the unique minimizer of
(1.3), that is, the w-weighted Wasserstein median of aq, ..., an,

m
W(w;ai,...,am) = argminij 1 (aj,x)
2

z€Q j=
m ' 1 %
= argminij (tr <a] i x) —tr (P(af)x) > (3.1)
e j=1 2

Let A = (a1,...,a;,) € Q™ and let o be a permutation on {1,...,m}. We
need the following notations:

W(w;A) =W(w;aq,...,am),
Ay = (aa(l)a s 7ao(m))7

AF = (a1, ... am,...,a1,...,an) € QF™,
Wo = (w0(1)7 s 7w0'(m))a
1
Wk = E(wl,...7wm7...,w1,...,wm) e RF™,
where the number of blocks of the above expressions is a positive integer k,
and w = (wy,...,wy) € R™ is a positive probability vector as before. We

begin with simple observations.
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Theorem 3.1. The following properties of the w-weighted Wasserstein median
of ai,...,a, are satisfied.
(i) W(w;aA) =aW (w;A) for any o > 0 (Positive homogeniety).
(i) W(we;Ag) = W(w;A) for any permutation o on {1,...,m}
(Permutation invariancy).
(iii) W (w*; A*) = W(w; A) for any k € N (Repetition invariancy).

Proof. First observe that according to [14, (5.3)], the w-weighted Wasserstein
median xg = W(w; A) is characterized by the equivalence:

xo = iwj (P(x(l)/2)aj>é . (3.2)
j=1

This tells us that g = W(w;A) is the unique solution on 2 of the nonlinear
equation

m

x = ij (P(xl/Q)aj) . (3.3)
j=1

D=

(i) By (3.2), we have

a2P

I
Ms

axg w;

< ”f
w; (Pla0})0ay))’
(7

<.
Il
-

I
Ms

<.
Il
—

I
Ms

w; ( P(axg)! ])>7.

II
—

This implies that axg satlsﬁes (3.3) for aay,...,aa,. Hence, W(w;aA) =
aW(w; A).

(ii) This is clear from the definition of W (w;A) by (3.1).

(iii) Put z. = W (w¥; A¥). From (3.2), we obtain that

=[5 () ][5 (rte) ]
|

[ (e )

wj (Pa}?)a;)" .

N[

[N

'MS

7=1
which implies that z, = W (w;A) by (3.2). O
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Theorem 1.1 tells us the existence of W(w;A). However, there does not
exist a closed form of W (w; A) in general. Only in two variable case, the exact
formula of W(w;A) is calculated in [14, Theorem 8.1] on 2. Nonetheless, as
in the case of positive definite matrices when the matrices A;’s commute (see
[4]), an analogous result can be derived in the symmetric cone €. To this end,
we recall that elements x and y are said to operator commute if L, and L,
commute, that is,, Ly L, = LyL,. It is known that x and y operator commute
if and only if z and y have their spectral decompositions with respect to a
common Jordan frame [6, Lemma X.2.2]. Equivalently, we say that x and y
are simultaneously diagonalizable. In this case, x and y lie in an associative
subalgebra of V. With this property, we obtain the following.

Theorem 3.2. (Consistency with scalars) Assume that a’;s operator commute.
Then we have
m / 2
1/2
W(w;A) = <ij a; > .
j=1
Proof. Due to (3.2), it suffices to show that
m 2 m m %
(Cwa?) =S (P(Lwal)a) " on
j=1 j=1 i=1

Indeed, by the definition of the quadratic representation P, we have

m
1/2
P<szaz/ >aj = <2L m w,-a1/2L ;leiag/z _L(Z;nlwia;/2)2>(aj)
=1

=1 "t g
m m m 2
= 2<Zwi a3/2> ((sz a3/2>aj> — <Z W ail/2> a;
i=1 i=1 i=1
m 2 m 2
= 2<Zwiag/z> a; — <Zwiail/2> a;
i=1 i=1
m 2
= <Z w; ail/2> aj,
i=1

where third equality comes from the assumption that a;’s operator commute
so that they have a common Jordan frame and lie in an associative subalgebra
of V' as mentioned before. Thus, we get

m 1 m 2 1 m
(P(Z w; a3/2)aj) g ((sz a3/2> aj) - (Z wj a}/2>a]1-/2. (3.5)
1=1 i=1 i=1
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The second equality is repeatedly obtained from the fact that a;’s have a
common Jordan frame. Summing up (3.5) on both sides yields that

nfr(Smei)e) = Sy (St = (S at”)’
Jj=1
which entails the claim (3.4), as desired. This completes the proof. O

Remark 3.3. In [4, 10] the authors just mentioned and quoted the consistency
with scalars for the case of positive definite matrices which is a special case
of the symmetric cone (2. We provided a basic and elegant proof of Theorem
3.2 in 2. So Theorem 3.2 extends the corresponding one in [4, 10] into the
general setting of Q.

In [8, Proposition 2.3|, the unitary congruence invariancy of Ww; A),
W(w; UAU*) = UW (w; A)U* holds true when U is an unitary matrix and
A = (Ay,...,Ay,) is an m-tuple of positive definite matrices A;’s. This can
be generalized in ) as follows:

Theorem 3.4. (Automorphism invariancy) W(w;g(A)) = g(W(w;A)) for
any Jordan automorphism g, where g(A) = (g(a1),...,g(am)).

Proof. Claim 1. P(g(z)) = gP(x)g~! for z € V.
First observe that gL,g~' = Ly(z)- Indeed, for y € V, we have

(9Lzg~")(y) = 9(xg (1) = 9(x)9(97' (¥)) = 9(2)y = Lyg(z) (1)-
Thus, we get
gP(x)g " = g(2L; — L,2)g~" = 2gLyLog™" — gLy,2g™"
=2(gL2g " )(9Lag™") — Ly
= 2L} ) — Ly = P(g(2)).

Claim 2. P(a#b)a=! = b for a,b € Q.
In fact, a proof of this claim is presented implicitly in [17, Proposition 6 (i)].
For reader’s convenience, we provide a detailed one.

P(a#tb)a™" = P(a#b)P(a™"?)e
= (P(a)#P(b))P(a”"/?)e
(P(a'/?)[P(a”?)Pb)P(a” )]V 2 P(a' /) P(a”"?)e
P(a”Q)[P(P(a‘”Q)b REC
= P(a'?)P([P(a”"/?)b]'/?)e
P(a'?)P(a™?)b =1,

(
(
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where the second equality is from [16, Proposition 2.5], and the third, fourth
and fifth ones come from Proposition 2.1.

Claim 3. g(a#b) = g(a)#g(b) for a,b € Q.
Clearly g € G(2). Then we adopt the technique in [17, Proposition 6 (vi)].
By the Riccati equation (2.4), we have

P(g(a)#g(b))g(a)™" = g(b).
On the other hand, by Claims 1 and 2, we also obtain that
P(g(a#b))g(a)"" = gP(a#tb)g ™ g(a™")
= gP(a#b)a™t
=g(b).

As g(a#b) belongs to Q, this implies that g(a#b) is a solution of the same
Riccati equation P(x)g(a)~! = g(b). Hence, we get g(a#b) = g(a)#g(b).

Claim 4. W(w;g(A)) = g(W (w; A)).
Let xyp = W(w; A). Note that from [14, (5.2)] we have

xo=W(w;A) & e= ij (aj#tzyt). (3.6)
j=1
Since g is a Jordan automorphism, it follows from Claim 3 that

e=gle) = g(Z w; (aj#fﬂol)> =Y wigla#ag’)
= =
- ij g(aj)#g(zy ))

= Zw] g(aj)#g(wo)~ 1)'

This means that g(z¢) = W(w; g(A)) by (3.6). Therefore, we conclude that

gW(w; A)) = g(zo) = W(w; g(A)).
This finishes the proof. O

Also we get two basic inequalities as below.

Theorem 3.5. (Arithmetic-Wasserstein median inequality)

A) S ij aj.
7=1
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Proof. First, the map f(z) = 22 on V is operator-convex in the sense that
f((A—=t)a+th) < (1 —t)f(a) +tf(b) forallte[0,1], a,be V.

In fact,

(1=t f(a)+tf(b) — f(1—t)a+th) = (1—t)a®+tb>—((1—t)a+th)°
= t(1—t)(a—b)?
> 0.

Put xg = W(w; A). Then by (3.2) and the operator-convexity of f, we get
12, V)"
w (Pea)")
1
1/2
wj (P (2! )%‘)
j

-t (§n)

Taking the order preserving linear operator P(z, Y 2) on the both sides yields
that

oN
|
Ms

I |
NIERE

1

o = P(xy %)a

< PV P(aY/?) <ij aj)
=D wja,
j=1

as desired. O

Remark 3.6. Theorem 3.5 is an extension of corresponding result in [4, §]
into the symmetric cone ).

Theorem 3.7. (Determinantal inequality)

det W(w; A) H deta]

Proof. Put xg = W(w;A). As is well known, the function g(x) = —logdet z is
strictly convex on €2 because the Hessian V2g(z) = P(x~1) is positive definite
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[15]. Thus
m m
log det (Z w; aj> > Z w; logdeta;.
j=1 j=1
Appealing to [14, (5.2)] and the argument in [9], we get
0 =logdete
m
= log det (Z w; (aj#xgl)>
j=1

> w; log det (aj#xo_l)

NE

1

<.
I

I
N =

w;log(det a;)(det x5 1)

<
Il
—

1
log(det ;)" — 5 log det xq

Il
DO | =

<
Il
—

m

1 _ 1
= 2log<l—[1(det aj)w1> —5 log det zg,
]:

which entails the desired inequality. ]

Remark 3.8. Theorem 3.7 is a generalization of [8, Proposition 2.3 (5)] under
the circumstances of symmetric cone 2.

The following theorem in [14] is concerned with the location of W (w;A),
which is sort of a sharpened extension of [10, Lemma 2.4] on €. For the sake
of readers, we give a proof.

Theorem 3.9. Let «a :=min{A\nin(a;)| j=1,...,m}, B := max{Anax(a;)|
Jj=1,...,m}, where Ain(a;j) and Amax(a;j) denote the minimum and mazxi-
mum eigenvalues of a;, respectively. Then

W(w;A) € e, fe] = {x | ae <z < fe}.
Proof. First note that a; € [ae,fe], j = 1,...,m. Define a mapping F :
[ae, Be] — [ae, Be] by

m

F(z) = Y w; (P@a'/?)a;)

i=1

(NI
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To see that F' is a self-map, let x € [ae, fe|. By the order preserving property
of P(z'/2), we have
o’e = afae)
< az = aP(z'/?)e = P(2'/?) ()
< P(2'?)a; < P(z'/?)(Be) = BP(a'/?)e = B
< B(Be) = fe.

Therefore,

l\)\»—‘

ae:i ae_Zw] o? e
< 3y (P hs) (= Fl0)

<D wj (B%) ijﬁe—ﬁe

By Brouwer’s fixed point theorem, there exists a point xg € [ae, Be] such that
xg = F(xp). It follows from (3.3) that x( is the unique solution of (3.3), that
is, g = W(w; A). This completes the proof. O

N =

M\H

As noted in [4], the Wasserstein-harmonic mean inequality does not hold.
However, a lower and an upper bound for W(w; A) is derived in [8]. Using the

same argument, we get an extension of [8, Theorem 3.4] in the symmtric cone
Q.

Theorem 3.10. W (w;A) satisfies the following order relation.

m m -1
2e — Z wja;1 <W(w;A) < <2e - Z wjaj)
j=1

j=1

as long as 2e — YU wja; has an inverse.

Proof. Let xy = W(w;A). According to the arithmetic-geometric-harmonic

mean inequalities [16, Theorem 2.8] in €2, we have, for j =1,...,m,
-1 —1 -1
a;  + xg a; +x
J —1 J 0
(2) S a#n S Ty

Hence, we obtain

Uy 2o\ 1 m
Zw]< ) < e:ij(aj#x Zw]aj—i- xo ,
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where the equality e = > 1" | w; (aj#xy") comes from (3.6). From the second
inequality, we get easily the upper bound for xg = W(w;A). By the order-
reversing property of the inversion [18, Lemma 11], taking inverse on the
both sides of the first inequality together with the arithmetic-harmonic mean
inequalities [16, Theorem 2.8] yields the following inequalities:

S5 ]

e <
j=1
m -1
aj + Zo

< wj 5

j=1

lew 4 1
= wa]aJ + -%o

2]‘:1 2

Soving this for zyp = W (w;A), we obtain the desired lower bound. This com-
pletes the proof. O

4. FINAL REMARK

As mentioned in the introduction, ®1(a, b)% is not a metric on  [14].
2

Nonetheless, it shares many interesting properties with usual means as seen in
the current work. In the theory of matrix mean, Karcher mean or multivariate
geometric mean is the most significant one [10]. However, its symmetric cone
version has not been investigated up to now except only in [13]. In [10],
an order relation between the Wasserstein mean and Karcher mean by way
of the power mean is presented. But, the power mean is not defined on €2,
yet. So with the theory development of Karcher mean and power mean on
the symmetric cone {2, a comparison study of the Wasserstein median with
Karcher mean and power mean becomes an interesting future research.

Acknowledgments: This work was conducted during the research year of
Chungbuk National University in 2024.
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