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Abstract. The author studied a one-parameter family of divergences and the related me-

dian minimization problem of finite points over these divergences in a symmetric cone [14].

The unique solution of the minimization problem with a weight ω is called the ω-weighted

Wasserstein median. Recently, in the special symmetric cone of the positive definite ma-

trices, Hwang and Kim [8] explored several properties of the Wasserstein mean and found

bounds for the Wasserstein mean with respect to Löwner order. Also Kim and Lee [10]

presented some relations between the Wasserstein mean and other well-known matrix means

such as the power mean, harmonic mean and Karcher mean. Motivated by these results, as

an application of the previous work [14], we investigate several properties of the ω-weighted

Wasserstein median which mainly extend the corresponding ones in [8, 10] into a general

symmetric cone Ω with a purely Jordan-algebraic technique.

1. Introduction

A divergence, which measures discrepancy between two points, plays a cru-
cial role in many problems such as information theory, statistics, optimization,
computational vision, and neural networks [1, 2, 3]. For the definition of diver-
gence, readers may refer to [14]. As is known, a divergence is almost a distance
function except the symmetry with respect to its arguments and the triangle
inequality. For instance, the square of a distance function is a (symmetric) di-
vergence. Thus a divergence Φ gives rise to an important optimization problem
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like a least squares problem on a Riemannian manifold M :

arg min
x∈M

m∑
j=1

wjΦ(aj , x), (1.1)

where a1, . . . , am ∈ M and ω = (w1, . . . , wm) ∈ Rm is a positive probability
vector. So a minimizer whenever it exists provides alternatively a barycenter
or averaging on M, which is called the ω-weighted Φ-median of a1, . . . , am.

In a recent work [14], this median optimization problem on a special Rie-
mannian manifold called symmetric cones is studied. The main result in [14]
is briefly summarized as follow: Let V be a Euclidean Jordan algebra and let
Ω be the symmetric cone (see section 2 for basic facts regarding Euclidean
Jordan algebras and symmetric cones). Consider the function Φt : Ω×Ω→ R
defined by

Φt(a, b) = tr ((1− t)a+ tb)− tr
(
P (a

1−t
2t )b

)t
, 0 < t < 1, (1.2)

where tr is the trace functional and P is the quadratic representation of V .

Theorem 1.1. ([14]) For every 0 < t < 1, Φt is a divergence on Ω. Moreover,
the minimization problem

arg min
x∈Ω

m∑
j=1

wjΦt(aj , x) (1.3)

has a unique minimizer.

A meaningful reason to take the divergence (1.2) into account stems from

the followings: The term Ft(a, b) = tr
(
P (a

1−t
2t )b

)t
in (1.2) is known as sand-

wiched quasi-relative entropy in the theory of quantum information; for posi-
tive (semi)definite matrices A and B,

Ft(A,B) = tr
(
A

1−t
2t BA

1−t
2t

)t
, t ∈ (0, 1). (1.4)

This is a parameterized version of the fidelity F 1
2
(A,B) = tr

(
A

1
2BA

1
2

) 1
2
. Fi-

delity and sandwiched quasi-relative entropies play an essential role in quan-
tum information theory and quantum computation [7, 20, 21, 22]. In addition,
the extended version dW on the set of positive definite matrices of the Bures
distance in quantum information is defined by

dW (A,B) =

[
tr

(
A+B

2

)
− tr

(
A

1
2BA

1
2

) 1
2

] 1
2

,
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which is also known as the Wasserstein distance in statistics and the theory of
optimal transport [5, 12, 19]. Clearly, d2

W (A,B) = Φ 1
2
(A,B). This implies that

the divergence (1.2) may have a rich background in various areas mentioned
above even thought its square root is not a distance in general [14]. From now
on, we call the unique minimizer of (1.3) the ω-weighted Wasserstein median
of a1, . . . , am.

A motivation of this paper is as follows. Recently, in the special symmetric
cone of the positive definite matrices, Hwang and Kim [8] explored several
properties of the Wasserstein mean and found bounds for the Wasserstein mean
with respect to Löwner order. Also Kim and Lee [10] presented some relations
between the Wasserstein mean and other well-known matrix means such as
the power mean, harmonic mean and Karcher mean. Motivated by these
results, as a continuation or an application of the previous work [14], in the
present paper, we investigate several important properties of the ω-weighted
Wasserstein median of a1, . . . , am which mainly extend the corresponding ones
in [8, 10] into the setting of a general symmetric cone Ω with a purely Jordan-
algebraic technique.

2. Euclidean Jordan algebras and symmetric cones

Before stating the motivation of this work, first we briefly describe (following
mostly [6, 14]) some Jordan-algebraic concepts relevant to our purpose. A
Jordan algebra V over R is a non-associative commutative algebra satisfying
x2(xy) = x(x2y) for all x, y ∈ V. For x ∈ V, let Lx be the linear operator
defined by Lxy = xy, and let P (x) = 2L2

x − Lx2 . The map P is called the
quadratic representation of V. An element x ∈ V is said to be invertible if
there exists an element y (denoted by y = x−1) in the subalgebra generated
by x and e (the Jordan identity) such that xy = e.

The following appears at [6, Propositions II.3.1, II.3.2].

Proposition 2.1. Let V be a Jordan algebra.

(i) An element x in V is invertible if and only if P (x) is invertible. In
this case: P (x)−1 = P (x−1).

(2) If x and y are invertible, then P (x)y is invertible and (P (x)y)−1 =
P (x−1)y−1.

(iii) For any elements x and y, P (P (x)y) = P (x)P (y)P (x). In particular,
Pm(x) = P (xm), m ≥ 1.

An element c ∈ V is called an idempotent if c2 = c. We say that c1, . . . , ck
is a complete system of orthogonal idempotents if c2

i = ci, cicj = 0, i 6= j and
c1 + · · · + ck = e. An idempotent is said to be primitive if it is non-zero and
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cannot be written as the sum of two non-zero idempotents. A Jordan frame
is a complete system of orthogonal primitive idempotents.

A finite-dimensional Jordan algebra V with an identity element e is said to
be Euclidean if there exists an inner product 〈·, ·〉 such that 〈xy, z〉 = 〈y, xz〉
for all x, y, z ∈ V.

Theorem 2.2. (Spectral theorem, first version [6, Theorem III.1.1]) Let V be a
Euclidean Jordan algebra. Then for x ∈ V, there exist real numbers λ1, . . . , λk
all distinct and a unique complete system of orthogonal idempotents c1, . . . , ck
such that

x =

k∑
i=1

λici. (2.1)

The numbers λi are called the eigenvalues and (2.1) is called the spectral de-
composition of x.

Theorem 2.3. (Spectral theorem, second version [6, Theorem III.1.2]) Any
two Jordan frames in a Euclidean Jordan algebra V have the same number
of elements (called the rank of V , denoted by rank(V )). Given x ∈ V, there
exists a Jordan frame c1, . . . , cr and real numbers λ1, . . . , λr, where r is the
rank of V , such that x =

∑r
i=1 λici. The numbers λi (with their multiplicities)

are uniquely determined by x.

Definition 2.4. Let V be a Euclidean Jordan algebra of rank(V ) = r. The
spectral mapping λ : V → Rr is defined by λ(x) = (λ1(x), . . . , λr(x)), where
λi(x)’s are eigenvalues of x (with multiplicities) as in Theorem 2.3 in non-
increasing order λmax(x) = λ1(x) ≥ λ2(x) ≥ · · · ≥ λr(x) = λmin(x). Further-
more, det(x) =

∏r
i=1 λi(x) and tr(x) =

∑r
i=1 λi(x).

Let Q be the set of all square elements of V. Then Q is a closed convex cone
of V with Q ∩ −Q = {0}, and is the set of elements x ∈ V such that L(x) is
positive semi-definite. It turns out that Q has non-empty interior Ω := int(Q),
and Ω is a symmetric cone, that is, the group G(Ω) = {g ∈ GL(V ) | g(Ω) = Ω}
acts transitively on it and Ω is a self-dual cone with respect to the inner
product 〈·, ·〉 (see [6]). We say that g ∈ GL(V ) is a Jordan automorphism if
g(xy) = g(x)g(y) for all x, y ∈ V . For an element g ∈ G(Ω), g is a Jordan
automorphism if and only if g(e) = e [6, Propositions VIII.2.4, 2.8] or [11]).

Note that Ω = {x ∈ V | λi(x) ≥ 0, i = 1, . . . , r}. For x, y ∈ V , we define the
Löwner order by

x ≤ y if y − x ∈ Ω
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and x < y if y−x ∈ Ω. Clearly Ω = {x ∈ V | x ≥ 0} and Ω = {x ∈ V | x > 0}.
Furthermore, for any a ∈ Ω, P (a) ∈ G(Ω) so that P (a) is an order preserving
linear operator.

On the other hand, the symmetric cone Ω in V admits a G(Ω)-invariant
Riemannian metric defined by

〈u, v〉x = 〈P (x)−1u, v〉, x ∈ Ω, u, v ∈ V. (2.2)

So Ω is a Riemannian manifold [6]. It is shown in [16, Proposition 2.6] that
the unique geodesic joining a and b is

t 7→ a#tb := P (a1/2)(P (a−1/2)b)t, (2.3)

where at =
∑r

j=1 λj(a)tcj for the spectral decomposition a =
∑r

j=1 λj(a)cj in
Theorem 2.3. The geometric mean of a and b is defined to be a#b := a#1/2b,
which is a unique geodesic middle between a and b. It is well-known that a#b
is the unique solution on Ω of the following quadratic equation, called the
Riccati equation:

P (x)a−1 = b. (2.4)

3. Main results

For simplicity, in what follows, we restrict our attention only to the case
t = 1/2. In this case, we denote by W (ω; a1, . . . , am) the unique minimizer of
(1.3), that is, the ω-weighted Wasserstein median of a1, . . . , am,

W (ω; a1, . . . , am) = arg min
x∈Ω

m∑
j=1

wj Φ 1
2
(aj , x)

= arg min
x∈Ω

m∑
j=1

wj

(
tr

(
aj + x

2

)
− tr

(
P (a

1
2
j )x

) 1
2
)
. (3.1)

Let A = (a1, . . . , am) ∈ Ωm and let σ be a permutation on {1, . . . ,m}. We
need the following notations:

W (ω;A) = W (ω; a1, . . . , am),

Aσ = (aσ(1), . . . , aσ(m)),

Ak = (a1, . . . , am, . . . , a1, . . . , am) ∈ Ωkm,

ωσ = (wσ(1), . . . , wσ(m)),

ωk =
1

k
(w1, . . . , wm, . . . , w1, . . . , wm) ∈ Rkm,

where the number of blocks of the above expressions is a positive integer k,
and ω = (w1, . . . , wm) ∈ Rm is a positive probability vector as before. We
begin with simple observations.
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Theorem 3.1. The following properties of the ω-weighted Wasserstein median
of a1, . . . , am are satisfied.

(i) W (ω;αA) = αW (ω;A) for any α > 0 (Positive homogeniety).
(ii) W (ωσ;Aσ) = W (ω;A) for any permutation σ on {1, . . . ,m}

(Permutation invariancy).
(iii) W (ωk;Ak) = W (ω;A) for any k ∈ N (Repetition invariancy).

Proof. First observe that according to [14, (5.3)], the ω-weighted Wasserstein
median x0 = W (ω;A) is characterized by the equivalence:

x0 =
m∑
j=1

wj

(
P (x

1/2
0 )aj

) 1
2
. (3.2)

This tells us that x0 = W (ω;A) is the unique solution on Ω of the nonlinear
equation

x =
m∑
j=1

wj

(
P (x1/2)aj

) 1
2
. (3.3)

(i) By (3.2), we have

αx0 =
m∑
j=1

wj

(
α2P (x

1/2
0 )aj

) 1
2

=
m∑
j=1

wj

(
P (α1/2x

1/2
0 )(αaj)

) 1
2

=
m∑
j=1

wj

(
P (αx0)1/2)(αaj)

) 1
2
.

This implies that αx0 satisfies (3.3) for αa1, . . . , αam. Hence, W (ω;αA) =
αW (ω;A).
(ii) This is clear from the definition of W (ω;A) by (3.1).
(iii) Put x∗ = W (ωk;Ak). From (3.2), we obtain that

x∗ =

[ m∑
j=1

wj
k

(
P (x

1/2
∗ )aj

) 1
2

]
+ · · ·+

[ m∑
j=1

wj
k

(
P (x

1/2
∗ )aj

) 1
2

]

= k · 1

k

[ m∑
j=1

wj

(
P (x

1/2
∗ )aj

) 1
2

]

=

m∑
j=1

wj

(
P (x

1/2
∗ )aj

) 1
2
,

which implies that x∗ = W (ω;A) by (3.2). �
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Theorem 1.1 tells us the existence of W (ω;A). However, there does not
exist a closed form of W (ω;A) in general. Only in two variable case, the exact
formula of W (ω;A) is calculated in [14, Theorem 8.1] on Ω. Nonetheless, as
in the case of positive definite matrices when the matrices Aj ’s commute (see
[4]), an analogous result can be derived in the symmetric cone Ω. To this end,
we recall that elements x and y are said to operator commute if Lx and Ly
commute, that is,, LxLy = LyLx. It is known that x and y operator commute
if and only if x and y have their spectral decompositions with respect to a
common Jordan frame [6, Lemma X.2.2]. Equivalently, we say that x and y
are simultaneously diagonalizable. In this case, x and y lie in an associative
subalgebra of V . With this property, we obtain the following.

Theorem 3.2. (Consistency with scalars) Assume that a′js operator commute.
Then we have

W (ω;A) =

( m∑
j=1

wj a
1/2
j

)2

.

Proof. Due to (3.2), it suffices to show that( m∑
j=1

wj a
1/2
j

)2

=
m∑
j=1

wj

(
P

( m∑
i=1

wi a
1/2
i

)
aj

) 1
2

. (3.4)

Indeed, by the definition of the quadratic representation P , we have

P

( m∑
i=1

wi a
1/2
i

)
aj =

(
2L∑m

i=1 wi a
1/2
i

L∑m
i=1 wi a

1/2
i

− L
(
∑m

i=1 wi a
1/2
i )2

)
(aj)

= 2

( m∑
i=1

wi a
1/2
i

)(( m∑
i=1

wi a
1/2
i

)
aj

)
−
( m∑
i=1

wi a
1/2
i

)2

aj

= 2

( m∑
i=1

wi a
1/2
i

)2

aj −
( m∑
i=1

wi a
1/2
i

)2

aj

=

( m∑
i=1

wi a
1/2
i

)2

aj ,

where third equality comes from the assumption that aj ’s operator commute
so that they have a common Jordan frame and lie in an associative subalgebra
of V as mentioned before. Thus, we get(

P

( m∑
i=1

wi a
1/2
i

)
aj

) 1
2

=

(( m∑
i=1

wi a
1/2
i

)2

aj

) 1
2

=

( m∑
i=1

wi a
1/2
i

)
a

1/2
j . (3.5)
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The second equality is repeatedly obtained from the fact that aj ’s have a
common Jordan frame. Summing up (3.5) on both sides yields that

m∑
j=1

wj

(
P

( m∑
i=1

wi a
1/2
i

)
aj

) 1
2

=
m∑
j=1

wj

(( m∑
i=1

wi a
1/2
i

)
a

1/2
j

)
=

( m∑
i=1

wi a
1/2
i

)2

,

which entails the claim (3.4), as desired. This completes the proof. �

Remark 3.3. In [4, 10] the authors just mentioned and quoted the consistency
with scalars for the case of positive definite matrices which is a special case
of the symmetric cone Ω. We provided a basic and elegant proof of Theorem
3.2 in Ω. So Theorem 3.2 extends the corresponding one in [4, 10] into the
general setting of Ω.

In [8, Proposition 2.3], the unitary congruence invariancy of W (ω;A),
W (ω;UAU∗) = UW (ω;A)U∗ holds true when U is an unitary matrix and
A = (A1, . . . , Am) is an m-tuple of positive definite matrices Aj ’s. This can
be generalized in Ω as follows:

Theorem 3.4. (Automorphism invariancy) W (ω; g(A)) = g(W (ω;A)) for
any Jordan automorphism g, where g(A) = (g(a1), . . . , g(am)).

Proof. Claim 1. P (g(x)) = gP (x)g−1 for x ∈ V .
First observe that gLxg

−1 = Lg(x). Indeed, for y ∈ V , we have

(gLxg
−1)(y) = g(xg−1(y)) = g(x)g(g−1(y)) = g(x)y = Lg(x)(y).

Thus, we get

gP (x)g−1 = g(2L2
x − Lx2)g−1 = 2gLxLxg

−1 − gLx2g−1

= 2(gLxg
−1)(gLxg

−1)− Lg(x2)

= 2L2
g(x) − Lg(x)2 = P (g(x)).

Claim 2. P (a#b)a−1 = b for a, b ∈ Ω.
In fact, a proof of this claim is presented implicitly in [17, Proposition 6 (i)].
For reader’s convenience, we provide a detailed one.

P (a#b)a−1 = P (a#b)P (a−1/2)e

= (P (a)#P (b))P (a−1/2)e

= (P (a1/2)[P (a−1/2)P (b)P (a−1/2)]1/2P (a1/2))P (a−1/2)e

= P (a1/2)[P (P (a−1/2)b)]1/2e

= P (a1/2)P ([P (a−1/2)b]1/2)e

= P (a1/2)P (a−1/2)b = b,



Properties of Wasserstein medians on symmetric cones 1193

where the second equality is from [16, Proposition 2.5], and the third, fourth
and fifth ones come from Proposition 2.1.

Claim 3. g(a#b) = g(a)#g(b) for a, b ∈ Ω.
Clearly g ∈ G(Ω). Then we adopt the technique in [17, Proposition 6 (vi)].
By the Riccati equation (2.4), we have

P (g(a)#g(b))g(a)−1 = g(b).

On the other hand, by Claims 1 and 2, we also obtain that

P (g(a#b))g(a)−1 = gP (a#b)g−1g(a−1)

= gP (a#b)a−1

= g(b).

As g(a#b) belongs to Ω, this implies that g(a#b) is a solution of the same
Riccati equation P (x)g(a)−1 = g(b). Hence, we get g(a#b) = g(a)#g(b).

Claim 4. W (ω; g(A)) = g(W (ω;A)).
Let x0 = W (ω;A). Note that from [14, (5.2)] we have

x0 = W (ω;A)⇔ e =
m∑
j=1

wj (aj#x
−1
0 ). (3.6)

Since g is a Jordan automorphism, it follows from Claim 3 that

e = g(e) = g

( m∑
j=1

wj (aj#x
−1
0 )

)
=

m∑
j=1

wj g(aj#x
−1
0 )

=
m∑
j=1

wj (g(aj)#g(x−1
0 ))

=
m∑
j=1

wj (g(aj)#g(x0)−1).

This means that g(x0) = W (ω; g(A)) by (3.6). Therefore, we conclude that

g(W (ω;A)) = g(x0) = W (ω; g(A)).

This finishes the proof. �

Also we get two basic inequalities as below.

Theorem 3.5. (Arithmetic-Wasserstein median inequality)

W (ω;A) ≤
m∑
j=1

wj aj .

.
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Proof. First, the map f(x) = x2 on V is operator-convex in the sense that

f((1− t)a+ tb) ≤ (1− t)f(a) + tf(b) for all t ∈ [0, 1], a, b ∈ V.

In fact,

(1− t)f(a) + tf(b)− f((1− t)a+ tb) = (1− t)a2 + tb2−
(
(1− t)a+ tb

)2
= t(1− t)(a− b)2

≥ 0.

Put x0 = W (ω;A). Then by (3.2) and the operator-convexity of f , we get

x2
0 =

( m∑
j=1

wj

(
P (x

1/2
0 )aj

) 1
2

)2

≤
m∑
j=1

wj

(
P (x

1/2
0 )aj

)
= P (x

1/2
0 )

( m∑
j=1

wj aj

)
.

Taking the order preserving linear operator P (x
−1/2
0 ) on the both sides yields

that

x0 = P (x
−1/2
0 )x2

0

≤ P (x
−1/2
0 )P (x

1/2
0 )

( m∑
j=1

wj aj

)

=

m∑
j=1

wj aj ,

as desired. �

Remark 3.6. Theorem 3.5 is an extension of corresponding result in [4, 8]
into the symmetric cone Ω.

Theorem 3.7. (Determinantal inequality)

detW (ω;A) ≥
m∏
j=1

(det aj)
wj .

Proof. Put x0 = W (ω;A). As is well known, the function g(x) = − log detx is
strictly convex on Ω because the Hessian ∇2g(x) = P (x−1) is positive definite
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[15]. Thus

log det

( m∑
j=1

wj aj

)
≥

m∑
j=1

wj log det aj .

Appealing to [14, (5.2)] and the argument in [9], we get

0 = log det e

= log det

( m∑
j=1

wj
(
aj#x

−1
0

))

≥
m∑
j=1

wj log det
(
aj#x

−1
0

)
=

1

2

m∑
j=1

wj log(det aj)(detx−1
0 )

=
1

2

m∑
j=1

log(det aj)
wj − 1

2
log detx0

=
1

2
log

( m∏
j=1

(det aj)
wj

)
− 1

2
log detx0,

which entails the desired inequality. �

Remark 3.8. Theorem 3.7 is a generalization of [8, Proposition 2.3 (5)] under
the circumstances of symmetric cone Ω.

The following theorem in [14] is concerned with the location of W (ω;A),
which is sort of a sharpened extension of [10, Lemma 2.4] on Ω. For the sake
of readers, we give a proof.

Theorem 3.9. Let α := min{λmin(aj) | j = 1, . . . ,m}, β := max{λmax(aj) |
j = 1, . . . ,m}, where λmin(aj) and λmax(aj) denote the minimum and maxi-
mum eigenvalues of aj, respectively. Then

W (ω;A) ∈ [αe, βe] = {x | αe ≤ x ≤ βe}.

Proof. First note that aj ∈ [αe, βe], j = 1, . . . ,m. Define a mapping F :
[αe, βe]→ [αe, βe] by

F (x) =
m∑
i=1

wj

(
P (x1/2)aj

) 1
2
.
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To see that F is a self-map, let x ∈ [αe, βe]. By the order preserving property

of P (x1/2), we have

α2e = α(αe)

≤ αx = αP (x1/2)e = P (x1/2)(αe)

≤ P (x1/2)aj ≤ P (x1/2)(βe) = βP (x1/2)e = βx

≤ β(βe) = β2e.

Therefore,

αe =
m∑
j=1

wjαe =
m∑
j=1

wj
(
α2e
) 1

2

≤
m∑
j=1

wj

(
P (x1/2)aj

) 1
2

(= F (x))

≤
m∑
j=1

wj
(
β2e
) 1

2 =
m∑
j=1

wjβe = βe.

By Brouwer’s fixed point theorem, there exists a point x0 ∈ [αe, βe] such that
x0 = F (x0). It follows from (3.3) that x0 is the unique solution of (3.3), that
is, x0 = W (ω;A). This completes the proof. �

As noted in [4], the Wasserstein-harmonic mean inequality does not hold.
However, a lower and an upper bound for W (ω;A) is derived in [8]. Using the
same argument, we get an extension of [8, Theorem 3.4] in the symmtric cone
Ω.

Theorem 3.10. W (ω;A) satisfies the following order relation.

2e−
m∑
j=1

wja
−1
j ≤W (ω;A) ≤

(
2e−

m∑
j=1

wjaj

)−1

as long as 2e−
∑m

j=1wjaj has an inverse.

Proof. Let x0 = W (ω;A). According to the arithmetic-geometric-harmonic
mean inequalities [16, Theorem 2.8] in Ω, we have, for j = 1, . . . ,m,(

a−1
j + x0

2

)−1

≤ aj#x
−1
0 ≤ aj + x−1

0

2
.

Hence, we obtain
m∑
j=1

wj

(
a−1
j + x0

2

)−1

≤ e =

m∑
j=1

wj(aj#x
−1
0 ) ≤ 1

2

m∑
j=1

wjaj +
1

2
x−1

0 ,
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where the equality e =
∑m

j=1wj(aj#x
−1
0 ) comes from (3.6). From the second

inequality, we get easily the upper bound for x0 = W (ω;A). By the order-
reversing property of the inversion [18, Lemma 11], taking inverse on the
both sides of the first inequality together with the arithmetic-harmonic mean
inequalities [16, Theorem 2.8] yields the following inequalities:

e ≤
[ m∑
j=1

wj

(
a−1
j + x0

2

)−1]−1

≤
m∑
j=1

wj

(
a−1
j + x0

2

)

=
1

2

m∑
j=1

wja
−1
j +

1

2
x0.

Soving this for x0 = W (ω;A), we obtain the desired lower bound. This com-
pletes the proof. �

4. Final remark

As mentioned in the introduction, Φ 1
2
(a, b)

1
2 is not a metric on Ω [14].

Nonetheless, it shares many interesting properties with usual means as seen in
the current work. In the theory of matrix mean, Karcher mean or multivariate
geometric mean is the most significant one [10]. However, its symmetric cone
version has not been investigated up to now except only in [13]. In [10],
an order relation between the Wasserstein mean and Karcher mean by way
of the power mean is presented. But, the power mean is not defined on Ω,
yet. So with the theory development of Karcher mean and power mean on
the symmetric cone Ω, a comparison study of the Wasserstein median with
Karcher mean and power mean becomes an interesting future research.

Acknowledgments: This work was conducted during the research year of
Chungbuk National University in 2024.
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