
Nonlinear Functional Analysis and Applications
Vol. 29, No. 4 (2024), pp. 1199-1216

ISSN: 1229-1595(print), 2466-0973(online)

https://doi.org/10.22771/nfaa.2024.29.04.17
http://nfaa.kyungnam.ac.kr/journal-nfaa

CONVERGENCE THEOREMS FOR SEQUENTIALLY
ADMISSIBLE PERTURBATIONS OF ASYMPTOTICALLY

DEMICONTRACTIVE AND HEMICONTRACTIVE
MAPPINGS IN CAT (0) SPACES

Kyung Soo Kim

Department of Mathematics Education, Kyungnam University,
Changwon, Gyeongnam, 51767, Republic of Korea

e-mail: kksmj@kyungnam.ac.kr

Abstract. In this paper, we introduce a new concept of sequentially admissible mapping

and sequentially admissible perturbation. Also we construct iteration process corresponding

to sequentially admissible mappings. Moreover, we establish theorems of strong conver-

gence for the Mann type iterative method(called G∗M -algorithm) defined as an uniformly

L-Lipschitzian, sequentially admissible perturbation of asymptotically demicontractive map-

pings and for the Ishikawa type iterative method(called G∗I-algorithm) defined as an uni-

formly L-Lipschitzian, sequentially admissible perturbation of asymptotically hemicontrac-

tive mappings to a fixed point in CAT (0) spaces. Finally, we propose an open problem.

1. Introduction

Let (X, d) be a metric space. One of the most interesting aspects of metric
fixed point theory is to extend a linear version of known result to the nonlinear
case in metric spaces. To achieve this, Takahashi [29] introduced a convex
structure in a metric space (X, d). A mapping W : X ×X × [0, 1] → X is a
convex structure in X if

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y)
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for all x, y ∈ X and λ ∈ [0, 1]. A metric space together with a convex structure
W is known as a convex metric space. A nonempty subset K of a convex
metric space is said to be convex if

W (x, y, λ) ∈ K

for all x, y ∈ K and λ ∈ [0, 1]. In fact, every normed space and its convex
subsets are convex metric spaces but the converse is not true, in general (see
[29]).

Example 1.1. ([14]) Let X = {(x1, x2) ∈ R2 : x1 > 0 , x2 > 0}. For all
x = (x1, x2), y = (y1, y2) ∈ X and λ ∈ [0, 1]. We define a mapping W :
X ×X × [0, 1]→ X by

W (x, y, λ) =

(
λx1 + (1− λ)y1,

λx1x2 + (1− λ)y1y2
λx1 + (1− λ)y1

)
and define a metric d : X ×X → [0,∞) by

d(x, y) = |x1 − y1|+ |x1x2 − y1y2|.

Then we can show that (X, d,W ) is a convex metric space, but it is not a
normed linear space.

In 2012, Rus [27] introduced the theory of admissible perturbation of an
operator. This theory opened a new direction of research and unified the
most important aspects on the iterative approximation of fixed point for single
valued self or nonself operators (see [1, 2, 3, 18]).

Definition 1.2. ([27]) Let X be a nonempty set. A mapping G : X×X → X
is called admissible if it satisfies the following two conditions:

(A1) G(x, x) = x for all x ∈ X;
(A2) G(x, y) = x implies y = x.

Definition 1.3. ([27]) Let X be a nonempty set. If f : X → X is a given
mapping and G : X × X → X is an admissible mapping, then the mapping
fG : X → X defined by

fG(x) = G(x, f(x)), ∀x ∈ X

is called the admissible perturbation of f with respect to G.

Remark 1.4. The following property of admissible perturbation is funda-
mental in the iterative approximation of fixed points: if f : X → X is a given
mapping and fG : X → X denotes its admissible perturbation, then

F(fG) = F(f) = {x ∈ X : x = f(x)} ,
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that is, the admissible perturbation fG of f has the same set of fixed points
as the mapping f itself. Note that, in general,

F(fnG) 6= F(fn), n ≥ 2.

Example 1.5. ([27]) Let (X, d) be a metric space endowed with a W -convex
structure of Takahashi ([29]). Then W : X × X × [0, 1] → X is an operator
with the following property

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y), ∀x, y, u ∈ X,λ ∈ [0, 1].

We additionally suppose that λ ∈ (0, 1), W (x, y, λ) = x implies y = x.
Especially, given λ ∈ (0, 1), Y ⊂ X, a W -convex set, f : Y → Y , and

G(x, y) = W (x, y, λ), the operator fG is known as admissible perturbation of
the operator f .

For other important examples of admissible mappings and admissible per-
turbations of nonlinear mappings, see [27] for the case of self mappings and
[3] for the case of nonself mappings.

Definition 1.6. ([2]) Let G : X × X → X be an admissible mapping on a
normed space X. We say that G is affine Lipschitzian if there exists a constant
λ ∈ [0, 1] such that

‖G(x1, y1)−G(x2, y2)‖ ≤ ‖λ(x1 − x2) + (1− λ)(y1 − y2)‖ (1.1)

for all x1, x2, y1, y2 ∈ X.

A metric space X is a CAT (0) space(the term is due to Gromov [10] and
it is an acronym for Cartan, Aleksandrov and Toponogov) if it is geodesically
connected, and if every geodesic triangle in X is at least as ‘thin’ as its com-
parison triangle in the Euclidean plane (see e.g., [4, p.159]). It is well known
that any complete, simply connected Riemannian manifold nonpositive sec-
tional curvature is a CAT (0) space. The precise definition is given below. For
a thorough discussion of these spaces and of the fundamental role they play
in various branches of mathematics, see Bridson and Haefliger [4] or Burago
et al. [6].

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or,
more briefly, a geodesic from x to y) is a mapping c from a closed interval
[0, l] ⊂ R to X such that c(0) = x, c(l) = y, and d(c(t), c(t′)) = |t − t′| for all
t, t′ ∈ [0, l]. In particular, c is an isometry and d(x, y) = l. The image α of c is
called a geodesic (or, metric) segment joining x and y. When it is unique, this
geodesic is denoted by [x, y]. The space (X, d) is said to be a geodesic space if
every two points of X are joined by a geodesic, and X is said to be uniquely
geodesic if there is exactly one geodesic joining x and y for each x, y ∈ X. A
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subset Y ⊆ X is said to be convex if Y includes every geodesic segment joining
any two of its points.

A geodesic triangle4(x1, x2, x3) is a geodesic metric space (X, d) consists of
three points x1, x2, x3 ∈ X (the vertices of 4) and a geodesic segment between
each pair of vertices (the edges of 4). A comparison triangle for the geodesic
triangle 4(x1, x2, x3) in (X, d) is a triangle 4̄(x1, x2, x3) = 4(x̄1, x̄2, x̄3) in
R2 such that dR2(x̄i, x̄j) = d(xi, xj) for i, j ∈ {1, 2, 3}. Such a triangle always

exists (see [4]).

A geodesic metric space is said to be a CAT (0) space if all geodesic triangles
of appropriate size satisfy the following CAT (0) comparison axiom.

Let 4 be a geodesic triangle in X and let 4̄ ⊂ R2 be a comparison triangle
for 4. Then 4 is said to satisfy the CAT (0) inequality if for all x, y ∈ 4 and
all comparison points x̄, ȳ ∈ 4̄,

d(x, y) ≤ d(x̄, ȳ).

Complete CAT (0) spaces are often called Hadamard spaces (see [22]). If
x, y1, y2 are points of a CAT (0) space and if y0 is the midpoint of the segment
[y1, y2], which we will denote by y1⊕y2

2 , then the CAT (0) inequality implies

d2
(
x,
y1 ⊕ y2

2

)
≤ 1

2
d2(x, y1) +

1

2
d2(x, y2)−

1

4
d2(y1, y2).

This inequality is the (CN) inequality of Bruhat and Tits [5]. In fact, a geodesic
space is a CAT (0) space if and only if it satisfies the (CN) inequality (cf. [4,
p.163]). The above inequality has been extended by Khamsi and Kirk [13] as

d2(z, αx⊕ (1− α)y) ≤ αd2(z, x) + (1− α)d2(z, y)− α(1− α)d2(x, y), (CN∗)

for any α ∈ [0, 1] and x, y, z ∈ X. The inequality (CN∗) was also appeared in
[7].

Let us recall that a geodesic metric space is a CAT (0) space if and only if
it satisfies the (CN) inequality (see [4, p.163]). Moreover, if X is a CAT (0)
metric space and x, y ∈ X, then for any α ∈ [0, 1], there exists a unique point
αx⊕ (1− α)y ∈ [x, y] such that

d(z, αx⊕ (1− α)y) ≤ αd(z, x) + (1− α)d(z, y)

for any z ∈ X and [x, y] = {αx ⊕ (1 − α)y : α ∈ [0, 1]}. In view of the above
inequality, CAT (0) space have Takahashi’s convex structureW (x, y, α) = αx⊕
(1− α)y. It is easy to see that for any x, y ∈ X and λ ∈ [0, 1],

d(x, (1− λ)x⊕ λy) = λd(x, y),

d(y, (1− λ)x⊕ λy) = (1− λ)d(x, y). (1.2)
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As a consequence,

1 · x⊕ 0 · y = x,

(1− λ)x⊕ λx = λx⊕ (1− λ)x = x.

Moreover, a subset K of CAT (0) space X is convex if for any x, y ∈ K, we
have [x, y] ⊂ K.

Definition 1.7. ([15]) Let C be a nonempty subset of a metric space (X, d).
Let F (T ) denote the fixed point set of T . Let F (T ) 6= ∅.

(1) A mapping T : C → C is said to be k-strictly asymptotically pseudo-
contractive with sequence {an} if limn→∞ an = 1 and for some constant
k with 0 ≤ k < 1,

d2(Tnx, Tny) ≤ a2nd2(x, y) + k(d(x, Tnx)− d(y, Tny))2

for all x, y ∈ C, n ∈ N. If k = 0, then T is said to be asymptotically
nonexpansive with sequence {an}, i.e.,

d(Tnx, Tny) ≤ and(x, y), ∀ x, y ∈ C.

(2) A mapping T : C → C is said to be asymptotically demicontractive
with sequence {an} if limn→∞ an = 1 and for some constant k with
0 ≤ k < 1,

d2(Tnx, p) ≤ a2nd2(x, p) + k · d2(x, Tnx), ∀ p ∈ F (T )

for all x ∈ C, n ∈ N. If k = 0, then T is said to be asymptotically
quasi-nonexpansive with sequence {an}, i.e.,

d(Tnx, p) ≤ and(x, p), ∀ x ∈ C, ∀ p ∈ F (T ).

(3) A mapping T : C → C is said to be asymptotically pseudocontractive
with sequence {an} if limn→∞ an = 1 and

d2(Tnx, Tny) ≤ and2(x, y) + [d(x, Tnx)− d(y, Tny)]2

for all x, y ∈ C, n ∈ N.
(4) A mapping T : C → C is said to be asymptotically hemicontractive

with sequence {an} if limn→∞ an = 1 and

d2(Tnx, p) ≤ and2(x, p) + d2(x, Tnx), ∀ p ∈ F (T )

for all x ∈ C, n ∈ N.
(5) A mapping T : C → C is said to be uniformly L-Lipschitzian if for

some constant L > 0,

d(Tnx, Tny) ≤ L · d(x, y), ∀ x, y ∈ C

for all n ∈ N.
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Liu [24] has proved the convergence of Mann and Ishikawa iterative se-
quence for uniformly L-Lipschitzian asymptotically demicontractive and hemi-
contractive mappings in Hilbert space (cf. [28]). The existence of (com-
mon) fixed points of one mapping(or two mappings or family of mappings)
is not known in many situations. So the approximation of fixed points of
one or more nonexpansive, asymptotically nonexpansive or asymptotically
quasi-nonexpansive mappings by various iterations have been extensively stud-
ied in Banach spaces, convex metric spaces, CAT (0) spaces and so on (see
[7, 8, 11, 15, 16, 17, 18, 19, 20, 21, 22, 23, 27]).

In this paper, we introduce a new concept of sequentially admissible map-
ping and sequentially admissible perturbation. Also we construct iteration
process corresponding to sequentially admissible mappings. Moreover, we es-
tablish theorems of strong convergence for the Mann type iterative method
(called G∗M -algorithm) defined as an uniformly L-Lipschitzian, sequentially
admissible perturbation of asymptotically demicontractive mappings and for
the Ishikawa type iterative method(called G∗I-algorithm) defined as an uni-
formly L-Lipschitzian, sequentially admissible perturbation of asymptotically
hemicontractive mappings to a fixed point in CAT (0) spaces. Finally, we
propose an open problem.

2. Preliminaries

Definition 2.1. Let X be a nonempty set. A mapping G∗ : X ×X → X is
called sequentially admissible if it satisfies the following two conditions:

(SA1) G∗(x, x) = x for all x ∈ X;
(SA2) G∗(x, y) = x implies y = x,

where {∗} is an arbitrary sequence in [0,1].

Assumption 2.2. Let X be a nonempty set, G∗ : X ×X → X be a sequen-
tially admissible mapping and {αn} , {βn} be sequences in [0, 1]. We assume
that

Gαn(x, x) = x = Gβn(x, x), ∀x ∈ X. (2.1)

Definition 2.3. Let X be a nonempty set. If f : X → X is a given mapping
and G∗ : X ×X → X is a sequentially admissible mapping, then the mapping
fG∗ : X → X defined by

fG∗(x) = G∗(x, f(x)), ∀x ∈ X

is called a sequentially admissible perturbation of f with respect to G∗.
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Definition 2.4. Let G∗ : X ×X → X be a sequentially admissible mapping
on a normed space X. We say that G∗ is sequentially admissible Lipschitzian
if

‖Gαn(x1, y1)−Gβn(x2, y2)‖ ≤ max{1− αn, 1− βn}‖x1 − x2‖
+ max{αn, βn}‖y1 − y2‖ (2.2)

for all sequences {αn} and {βn} in [0, 1] and x1, x2, y1, y2 ∈ X.

Assumption 2.5. Let G∗ : X × X → X be a sequentially admissible Lips-
chitzian mapping on a normed space X. We assume that

‖Gαn(x1, y1)−Gβn(x2, y2)‖2 ≤ max{1− αn, 1− βn}‖x1 − x2‖2

+ max{αn, βn}‖y1 − y2‖2

− (min{αn, βn}−αnβn)(‖x1−y1‖2+‖x2−y2‖2)
(2.3)

for all sequences {αn} and {βn} in [0, 1] and x1, x2, y1, y2 ∈ X.

Remark 2.6. (1) If we take the sequence {∗} = λ in Definition 2.1 and
Definition 2.3, it reduces to Definition 1.2 and Definition 1.3, respec-
tively.

(2) If we take the sequences {αn} = {βn} = λ in (2.2), it reduces to (1.1).
(3) If we take the sequences {αn} = {βn} = λ, G∗(x, y) = (1 − λ)x ⊕ λy

and x1 = y1 in (2.3) on X, it reduces to (CN∗) inequality.
(4) From (2.2), it is easy to see that for any x, y ∈ X and sequence {αn}

in [0, 1],

d(Gαn(x, x), Gαn(x, y)) ≤ (1−αn)d(x, x)+αnd(x, y)

= αnd(x, y),

d(Gαn(y, y), Gαn(x, y)) ≤ (1−αn)d(x, y)+αnd(y, y)

= (1− αn)d(x, y). (2.4)

If we take αn = λ and Gαn(x, y) = (1 − λ)x ⊕ λy in (2.4), it reduces
to (1.2).

We introduce the following iteration process.
Let C be a nonempty convex subset of a CAT (0) space (X, d) and T : C →

C be a given mapping. Let x1 ∈ C be a given point.

Algorithm 2.7. Let C be a nonempty subset of a metric space (X, d), T :
C → C be a nonlinear mapping and G∗ : C × C → C be a sequentially



1206 K. S. Kim

admissible Lipschitzian mapping. The sequences {xn} and {yn} defined by
the iterative algorithm

xn+1 = Gαn(xn, T
nyn),

yn = Gβn(xn, T
nxn), n ≥ 1, (2.5)

where {αn}, {βn} are sequences in [0, 1], is called the Ishikawa-type algorithm
corresponding to G∗ or G∗I-algorithm (cf. [12]).

Algorithm 2.8. Let C be a nonempty subset of a metric space (X, d), T :
C → C be a nonlinear mapping and G∗ : C×C → C be sequentially admissible
Lipschitzian mapping. The sequence {xn} defined by the iterative algorithm

xn+1 = Gαn(xn, T
nxn), n ≥ 1, (2.6)

where {αn} is a sequence in [0, 1], is called a Mann-type algorithm correspond-
ing to G∗ or G∗M -algorithm (cf. [25]).

Lemma 2.9. ([24]) Let {an} and {bn} be sequences satisfying

an+1 ≤ an + bn,

where an ≥ 0 for all n ∈ N,
∑∞

n=1 bn is convergent and {an} has a subsequence
{ank
} converging to 0. Then we must have

lim
n→∞

an = 0.

3. Convergence theorems

Lemma 3.1. Let (X, d) be a CAT (0) space and C be a nonempty convex
subset of X. Let T : C → C be a uniformly L-Lipschitzian mapping and
{αn}, {βn} be sequences in [0, 1]. Define the G∗I-algorithm {xn} as (2.5) in
Algorithm 2.7. Then

d(xn, Txn) ≤ d(xn, T
nxn) + L(1 + 2L+ L2)d(xn−1, T

n−1xn−1)

for all n ≥ 1.

Proof. Let Cn = d(xn, T
nxn). From (2.4) and (2.5), we have

d(xn−1, yn−1) = d(xn−1, Gβn−1(xn−1, T
n−1xn−1))

= d(Gβn−1(xn−1, xn−1), Gβn−1(xn−1, T
n−1xn−1))

≤ (1− βn−1)d(xn−1, xn−1) + βn−1 · d(xn−1, T
n−1xn−1)

= βn−1Cn−1. (3.1)
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From (3.1), we get

d(xn−1, T
n−1yn−1) ≤ d(xn−1, T

n−1xn−1) + d(Tn−1xn−1, T
n−1yn−1)

≤ Cn−1 + L · d(xn−1, yn−1)

≤ Cn−1 + βn−1 · L · Cn−1. (3.2)

From (3.1) and (3.2), we get

d(xn, Txn) ≤ d(xn, T
nxn) + d(Tnxn, Txn)

≤ Cn + L · d(Tn−1xn, xn)

≤ Cn + L{d(Tn−1xn, T
n−1xn−1) + d(Tn−1xn−1, xn)}

≤ Cn + L2 · d(xn, xn−1) + L · d(Tn−1xn−1, xn)

≤ Cn + L2 · d(Gαn−1(xn−1, T
n−1yn−1), Gαn−1(xn−1, xn−1))

+ L · d(Gαn−1(Tn−1xn−1, T
n−1xn−1), Gαn−1(xn−1, T

n−1yn−1))

≤ Cn + L2[(1− αn−1)d(xn−1, xn−1) + αn−1 · d(Tn−1yn−1, xn−1)]

+ L[(1− αn−1)d(Tn−1xn−1, xn−1)

+ αn−1 · d(Tn−1xn−1, T
n−1yn−1)]

≤ Cn + L2 · αn−1(Cn−1 + βn−1 · L · Cn−1)
+ L(1− αn−1)Cn−1 + L2 · αn−1 · βn−1 · Cn−1
≤ Cn + L(1 + 2L+ L2)Cn−1, n ≥ 1.

This completes the proof of Lemma 3.1. �

We remind that a mapping T : D ⊂ X → Y is said to be completely con-
tinuous if it is continuous and maps any bounded subset of D into a relatively
compact subset of Y .

Theorem 3.2. Let (X, d) be a complete CAT (0) space, C be a nonempty
bounded closed convex subset of X, T : C → C be completely continuous and
uniformly L-Lipschitzian and asymptotically demicontractive with sequence
{an}, an ∈ [1,∞),

∑∞
n=1(a

2
n − 1) < ∞, ε ≤ αn ≤ 1 − k − ε for all n ∈ N

and some ε > 0. Given x0 ∈ C, defined the G∗M -algorithm {xn} as (2.6) in
Algorithm 2.8. Then {xn} converges strongly to some fixed point of T .

Proof. Since T is a completely continuous mapping in a bounded closed con-
vex subset C of complete metric space, from Schauder’s theorem, F (T ) is
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nonempty. It follows from (2.3) that

d2(xn+1, p) = d2(Gαn(xn, T
nxn), Gαn(p, p))

≤ (1− αn)d2(xn, p) + αnd
2(Tnxn, p)

− αn(1− αn)d2(xn, T
nxn) (3.3)

for all p ∈ F (T ). Since T is an asymptotically demicontractive, from (3.3), we
get

d2(xn+1, p) ≤ (1− αn)d2(xn, p) + αn{a2nd2(xn, p) + k · d2(xn, Tnxn)}
− αn(1− αn)d2(xn, T

nxn)

= d2(xn, p) + αn(a2n − 1)d2(xn, p)

− αn(1− αn − k)d2(xn, T
nxn), ∀ p ∈ F (T ). (3.4)

Since 0 < ε ≤ αn ≤ 1− k − ε, we have 1− k − αn ≥ ε. Thus,

αn(1− k − αn) ≥ ε2.

From (3.4), we have

d2(xn+1, p) ≤ d2(xn, p) + αn(a2n − 1)d2(xn, p)− ε2 · d2(xn, Tnxn) (3.5)

for all p ∈ F (T ). Since C is bounded and T is a self-mapping on C, there
exists M > 0 such that d2(xn, p) ≤ M for all n ∈ N. Since 0 ≤ αn ≤ 1, it
follows from (3.5) that

d2(xn+1, p) ≤ d2(xn, p) + (a2n − 1)M − ε2 · d2(xn, Tnxn), ∀ p ∈ F (T ). (3.6)

Therefore,

ε2 · d2(xn, Tnxn) ≤ d2(xn, p)− d2(xn+1, p) + (a2n − 1)M.

So
m∑
n=1

ε2 · d2(xn, Tnxn) ≤ d2(x1, p)− d2(xm+1, p) +M
m∑
n=1

(a2n − 1)

≤ d2(x1, p) +M

∞∑
n=1

(a2n − 1)

for all m ∈ N. Since
∑∞

n=1(a
2
n − 1) <∞, we get

∞∑
n=1

ε2 · d2(xn, Tnxn) <∞.

Therefore,

lim
n→∞

d2(xn, T
nxn) = 0 and lim

n→∞
d(xn, T

nxn) = 0. (3.7)
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Since T is uniformly L-Lipschitzian, it follows from (3.7) and Lemma 3.1 that

lim
n→∞

d(xn, Txn) = 0. (3.8)

Since {xn} is a bounded sequence and T is completely continuous, there exists
a convergent subsequence {Txnj} of {Txn}. Therefore, from (3.8), {xn} has
a convergent subsequence {xnj}. Let limj→∞ xnj = q. It follows from the
continuity of T and (3.8) that q = Tq. Therefore, {xn} has a subsequence
which converges to the fixed point q of T. Take p = q in the inequality (3.6),
then

d2(xn+1, q) ≤ d2(xn, q) + (a2n − 1)M, ∀n ∈ N.

Since
∑∞

n=1(a
2
n − 1) < ∞ and {d(xn, q)} has a subsequence which converges

to 0, it follows from Lemma 2.9 that

lim
n→∞

d2(xn, q) = 0.

Therefore,

lim
n→∞

xn = q.

This completes the proof. �

Corollary 3.3. Let (X, d) be a complete CAT (0) space, C be a nonempty
bounded closed convex subset of X, T : C → C be completely continuous and
uniformly L-Lipschitzian and asymptotically demicontractive with sequence
{an}, an ∈ [1,∞),

∑∞
n=1(a

2
n − 1) <∞, ε ≤ αn ≤ 1− k − ε for all n ∈ N and

some ε > 0. Given x0 ∈ C, defined the iteration process {xn} by

xn+1 = (1− αn)xn ⊕ αnTnxn, n ≥ 1.

Then {xn} converges strongly to some fixed point of T .

Proof. If we take

Gαn(xn, T
nxn) = (1− αn)xn ⊕ αnTnxn

in (2.6), then we get Corollary 3.3 from Theorem 3.2. �

Corollary 3.4. Let (X, d) be a complete CAT (0) space, C be a nonempty
bounded closed convex subset of X, T : C → C be completely continuous and
uniformly L-Lipschitzian and k-strictly asymptotically pseudocontractive with
sequence {an}, an ∈ [1,∞),

∑∞
n=1(a

2
n − 1) < ∞, ε ≤ αn ≤ 1 − k − ε for all

n ∈ N and some ε > 0. Given x0 ∈ C, defined the G∗M -algorithm {xn} as
(2.6) in Algorithm 2.8. Then {xn} converges strongly to some fixed point of
T .



1210 K. S. Kim

Proof. By Definition 1.7, it is clear that T is a k-strictly asymptotically pseu-
docontractive mapping with a nonempty fixed point set and so T is an asymp-
totically demicontractive mapping. Therefore, Corollary 3.4 can be proved by
using Theorem 3.2. �

Lemma 3.5. Let (X, d) be a CAT (0) space and C be a nonempty convex
subset of X. Let T : C → C be uniformly L-Lipschitzian and asymptoti-
cally hemicontractive with sequence {an} ⊂ [1,∞) for all n ∈ N and F (T ) be
nonempty. Define the G∗I-algorithm {xn} as (2.5) in Algorithm 2.7. Then
the following inequality holds:

d2(xn+1, p) ≤ [1 + αn(an − 1)(1 + anβn)]d2(xn, p)

− αnβn(1− βn − anβn − L2β2n)d2(xn, T
nxn)

− αn(βn − αn)d2(xn, T
nyn)

for all p ∈ F (T ).

Proof. It follows from (2.3) that

d2(xn+1, p) = d2(Gαn(xn, T
nyn), Gαn(p, p))

≤ (1− αn)d2(xn, p)+αnd
2(Tnyn, p)

− αn(1− αn)d2(xn, T
nyn) (3.9)

and

d2(yn, p) = d2(Gβn(xn, T
nxn), Gβn(p, p))

≤ (1− βn)d2(xn, p) + βnd
2(Tnxn, p)

− βn(1− βn)d2(xn, T
nxn) (3.10)

for all p ∈ F (T ). Since T is asymptotically hemicontractive, we get

d2(Tnyn, p) ≤ and2(yn, p) + d2(yn, T
nyn) (3.11)

and

d2(Tnxn, p) ≤ and2(xn, p) + d2(xn, T
nxn) (3.12)

for all p ∈ F (T ). From (3.10) and (3.12), we have

d2(yn, p) ≤ (1− βn)d2(xn, p) + βn[and
2(xn, p) + d2(xn, T

nxn)]

− (1− βn)βnd
2(xn, T

nxn)

= [1 + (an − 1)βn]d2(xn, p) + β2nd
2(xn, T

nxn). (3.13)
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From (2.3), we have

d2(yn, T
nyn) = d2(Gβn(xn, T

nxn), Gβn(Tnyn, T
nyn))

≤ (1− βn)d2(xn, T
nyn) + βnd

2(Tnxn, T
nyn)

− βn(1− βn)d2(xn, T
nxn). (3.14)

Substituting (3.13) and (3.14) into (3.11), we get

d2(Tnyn, p) ≤ an[1 + (an − 1)βn]d2(xn, p) + anβ
2
nd

2(xn, T
nxn)

+ (1− βn)d2(xn, T
nyn) + βnd

2(Tnxn, T
nyn)

− βn(1− βn)d2(xn, T
nxn). (3.15)

From (3.9) and (3.15), we obtain

d2(xn+1, p) ≤ (1− αn)d2(xn, p) + αnan(1 + (an − 1)βn)d2(xn, p)

+ αnanβ
2
nd

2(xn, T
nxn) + αn(1− βn)d2(xn, T

nyn)

+ αnβnd
2(Tnxn, T

nyn)− αnβn(1− βn)d2(xn, T
nxn)

− αn(1− αn)d2(xn, T
nyn)

= [1 + αn{(an − 1) + an(an − 1)βn}]d2(xn, p)
− αnβn(1− βn − anβn)d2(xn, T

nxn)

− αn(βn − αn)d2(xn, T
nyn) + αnβnd

2(Tnxn, T
nyn). (3.16)

Since T is uniformly L-Lipschitzian and from (2.3), we have

d2(Tnxn, T
nyn) ≤ L2 · d2(xn, yn)

= L2 · d2(Gβn(xn, xn), Gβn(xn, T
nxn))

≤ L2[βnd
2(xn, T

nxn)− βn(1− βn)d2(xn, T
nxn)]

≤ L2β2n · d2(xn, Tnxn). (3.17)

Substituting (3.17) into (3.16), we obtain

d2(xn+1, p) ≤ [1 + αn(an − 1)(1 + anβn)]d2(xn, p)

− αnβn(1− βn − anβn − L2β2n)d2(xn, T
nxn)

− αn(βn − αn)d2(xn, T
nyn), ∀ p ∈ F (T ).

This completes the proof. �

Lemma 3.6. Let (X, d) be a CAT (0) space and C be a nonempty bounded
convex subset of X. Let T : C → C be uniformly L-Lipschitzian and asymp-
totically hemicontractive with sequence {an} ⊂ [1,∞) for all n ∈ N and
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n=1(an − 1) < ∞. Let F (T ) be nonempty. Given x1 ∈ C, define the G∗I-

algorithm {xn} as (2.5) in Algorithm 2.7. If ε ≤ αn ≤ βn ≤ b for some ε > 0

and b ∈
(

0,
√
1+L2−1
L2

)
, then

lim
n→∞

d(xn, Txn) = 0.

Proof. First, we will prove limn→∞ d(xn, T
nxn) = 0. From Lemma 3.5 and

0 ≤ αn ≤ βn, we have

d2(xn+1, p) ≤ [1 + αn(an − 1)(1 + anβn)]d2(xn, p)

− αnβn(1− βn − anβn − L2β2n)d2(xn, T
nxn).

Thus

d2(xn+1, p)−d2(xn, p) ≤ αn(an − 1)(1 + anβn)d2(xn, p)

− αnβn(1−βn−anβn−L2β2n)d2(xn, T
nxn). (3.18)

Since
∑∞

n=1(an − 1) < ∞, we have limn→∞(an − 1) = 0. Hence {an} is
bounded. By boundedness of C and 0 ≤ αn ≤ βn ≤ 1, we obtain that
{αn(1+anβn)d2(xn, p)} is bounded. Therefore, there exists a constant M > 0
such that

0 ≤ αn(1 + anβn)d2(xn, p) ≤M. (3.19)

From (3.18) and (3.19), we get

d2(xn+1, p)− d2(xn, p)
≤ (an − 1)M − αnβn(1− βn − anβn − L2β2n)d2(xn, T

nxn). (3.20)

Let D = 1− 2b− L2b2 > 0. Since limn→∞ an = 1, there exists N ∈ N such
that

1− βn − anβn − L2β2n ≥ 1− b− anb− L2b2 ≥ D

2
> 0 (3.21)

for all n ≥ N. Suppose that limn→∞ d(xn, T
nxn) 6= 0. Then there exist a

ε0 > 0 and a subsequence {xni} of {xn} such that

d2(xni , T
nixni) ≥ ε0. (3.22)

Without loss of generality, we let n1 ≥ N. From (3.20), (3.21) and ε ≤ αn ≤ βn,
we have

ε2(1− βn − anβn − L2β2n)d2(xn, T
nxn)

≤ αnβn(1− βn − anβn − L2β2n)d2(xn, T
nxn)

≤ (an − 1)M + d2(xn, p)− d2(xn+1, p),



Convergence theorems for sequentially admissible perturbations in CAT (0) spaces1213

so,

ε2
ni∑

m=n1

(1− βm − amβm − L2β2m)d2(xm, T
mxm)

= ε2
i∑
l=1

(1− βnl
− anl

βnl
− L2β2nl

)d2(xnl
, Tnlxnl

)

≤ d2(xn1 , p)− d2(xni+1, p) +M

ni∑
m=n1

(am − 1). (3.23)

From (3.21), (3.22) and (3.23), we obtain

ε2 · i · D
2
· ε0 ≤ d2(xn1 , p)− d2(xni+1, p) +M

ni∑
m=n1

(am − 1). (3.24)

From
∑∞

n=1(an− 1) <∞ and the boundedness of C, the right side of (3.24) is
bounded. However, if we have i→∞, then the left side of (3.24) is unbounded.
This is a contradiction. Therefore,

lim
n→∞

d(xn, T
nxn) = 0.

Since T is uniformly L-Lipschitzaian, from Lemma 3.1, we get

lim
n→∞

d(xn, Txn) = 0.

This completes the proof. �

Theorem 3.7. Let (X, d) be a complete CAT (0) space, C be a nonempty
bounded closed convex subset of X, T : C → C be completely continuous and
uniformly L-Lipschitzian and asymptotically hemicontractive with sequence
{an} ⊂ [1,∞) satisfying

∑∞
n=1(an − 1) <∞ for all n ∈ N. Given x1 ∈ C, de-

fine the G∗I-algorithm {xn} as (2.5) in Algorithm 2.7. If {αn}, {βn} ⊂ [0, 1]

with ε ≤ αn ≤ βn ≤ b for some ε > 0 and b ∈
(

0,
√
1+L2−1
L2

)
, then {xn}

converges strongly to some fixed point of T .

Proof. Since T is a completely continuous mapping in a bounded closed con-
vex subset C of complete metric space, from Schauder’s theorem, F (T ) is
nonempty. Since T is completely continuous, there exists a convergent subset
{Txni} of {Txn}. Let

lim
i→∞

Txni = p.

Since limn→∞ d(xn, Txn) = 0, from Lemma 3.6, we have

lim
i→∞

xni = p. (3.25)
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On the other hand, from the continuity of T , (3.25) and Lemma 3.6, we
have

d(p, Tp) = lim
i→∞

d(xni , Txni) = 0.

This means that p is a fixed point of T . From (3.19), (3.21), αn ≤ βn and
Lemma 3.5, it follows that

d2(xn+1, p) ≤ d2(xn, p) + (an − 1)M. (3.26)

From (3.25), there exists a subsequence {d2(xni , p)} of {d2(xn, p)} which con-
verges to 0. Therefore, from Lemma 2.9 and (3.26),

lim
n→∞

d2(xn, p) = 0.

Hence,

lim
n→∞

xn = p.

This completes the proof. �

Corollary 3.8. Let (X, d) be a complete CAT (0) space, C be a nonempty
bounded closed convex subset of X, T : C → C be completely continuous and
uniformly L-Lipschitzian and asymptotically hemicontractive with sequence
{an} ⊂ [1,∞) satisfying

∑∞
n=1(an − 1) < ∞ for all n ∈ N. Given x1 ∈ C,

define the iterative process {xn} by

xn+1 = (1− αn)xn ⊕ αnTnyn,
yn = (1− βn)xn ⊕ βnTnxn, n ≥ 1.

If {αn}, {βn} ⊂ [0, 1] with ε ≤ αn ≤ βn ≤ b for some ε > 0 and b ∈(
0,
√
1+L2−1
L2

)
, then {xn} converges strongly to some fixed point of T .

Proof. If we take

Gαn(xn, T
nyn) = (1− αn)xn ⊕ αnTnyn,

Gβn(xn, T
nxn) = (1− βn)xn ⊕ βnTnxn, n ≥ 1

in (2.5), then we get Corollary 3.8 from Theorem 3.7. �

Corollary 3.9. Let (X, d) be a complete CAT (0) space, C be a nonempty
bounded closed convex subset of X, T : C → C be completely continuous and
uniformly L-Lipschitzian and asymptotically pseudocontractive with sequence
{an} ⊂ [1,∞) satisfying

∑∞
n=1(a

2
n−1) <∞ for all n ∈ N. Given x1 ∈ C, define

the G∗I-algorithm {xn} as (2.5) in Algorithm 2.7. If {αn}, {βn} ⊂ [0, 1] with

ε ≤ αn ≤ βn ≤ b for some ε > 0 and b ∈
(

0,
√
1+L2−1
L2

)
, then {xn} converges

strongly to some fixed point of T .
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Proof. By Definition 1.7, T is an asymptotically pseudocontractive mapping,
and so T is an asymptotically hemicontractive mapping. Since an ∈ [1,∞),
we have a2n− 1 ≥ an− 1 ≥ 0. Obviously,

∑∞
n=1(an− 1) ≤

∑∞
n=1(a

2
n− 1) <∞.

Therefore, Corollary 3.9 can be proved by using Theorem 3.7. �

4. Some remarks and open problem

For a real number κ, a CAT (κ) space is defined by a geodesic metric space
whose geodesic triangle is sufficiently thinner than the corresponding triangle
in a model space with curvature κ. For κ = 0, the 2-dimensional model space
M2
κ = M2

0 is the Euclidean space R2 with the metric induced from the Eu-
clidean norm. For κ > 0, M2

κ is the 2-dimensional sphere 1√
κ
S2 whose metric

is length of a minimal great arc joining each two points. For κ < 0, M2
κ is

the 2-dimensional hyperbolic space 1√
−κH

2 with the metric defined by a usual

hyperbolic distance. For more details about the properties of CAT (κ) spaces,
see [4, 9, 20, 21].

Open Problem: It will be interesting to obtain a generalization of both
Theorem 3.2 and Theorem 3.7 to CAT (κ) space.
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