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Abstract. In this paper, we introduce a new class of mappings called G-asymptotic quasi-

contraction mappings which is a generalization of some existing contraction mappings in the

literature. The fixed point theorem for this newly introduced maps is proved in a metric

space equipped with a graph structure. The solution of the nonlinear differential equation

of Solow growth model in Economics is established via fixed point theorem of this map. We

equally provide examples to validate our results. Our results are generalization and extension

of some related works in the literature.

1. Introduction

The fixed point theorem for asymptotic contraction mapping in metric
spaces was established by Kirk [19] in 2003. Thereafter Jachymski and Jozwik
[16] proved that the continuity of the operator in Kirk [19]’s result may not be
necessary. However, the authors in [16] established the existence and unique-
ness of fixed point for uniformly continuous asymptotic ψ-contractions in a
metric space.
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In 1922, Banach [4] introduced a contraction mapping and proved that the
fixed point of this operator in a metric space is unique. Many researchers
extend and generalize this operator (see [2], [8], [10], [12], [17], [18]) for in-
stance. One of the prominent generalized contraction map was introduced by
Cirić [6] in 1971 and is called quasi-contraction mappings. In order to prove
the existence and uniqueness of quasi contraction mappings in a metric space,
Cirić [7] stated that the quasi contraction operator in a metric space must be
orbitally complete.

In 2008, Jachymski [15] introduced graph structure to metric spaces and
proved the fixed point theorem for Banach contraction mappings formulated
in a graph language. Many researchers have carried out interesting works in
this area (see [1], [3], [14]) and the references therein. In 2017, Fallahi [13]
introduced G- asymptotic contraction mappings and established the existence
and uniqueness of the fixed point of this operator in a complete metric space
endowed with a graph.

In this paper, we generalize the result of [13] with quasi-contraction mapping
of Cirić [6] and obtain G-asymptotic quasi-contraction mapping. The fixed
point theorem for this newly introduced operator in a metric space endowed
with a graph is proved.

The dominant discussion in contemporary economies may be why there has
been limits to growth economics and what model could help create wealth
and achieve higher sustainable growth rate, that are needed to meet national
objectives. The popular Solow growth model in [22] attempts to provide a
competitive factor market that reveals that output in a given period is de-
termined by the available supplies of capital and labour, while total savings
and investment assumes exogenous fraction of total income. To ensure Solows
success in contemporary time, Eke et al. [9] found that a modern economy
would need to improve the capital issuing capacity for higher capital forma-
tion, productivity and long-term growth. Moreover, Eke et al. [11] tested
the prior savings theory towards achieving Solows long-run growth targets,
that sustainable pension savings should be critical. In the model, labour is
assumed to grow at a given population rate; capital grows via capital accu-
mulation process. By extension, the model implies evolution of total income
per worker, which may produce significance in the determination of how the
long-run prosperity and wealth of a nation can be improved or otherwise the
long-run poverty of nation, and conditions for transition of economies.

The purpose of this paper is to introduce a new class of mapping called
G-asymptotic quasi-contraction mapping and apply the fixed point of this
operator in a metric space endowed with a graph structure to obtain the
solution of deterministic Solow growth model.



On G-asymptotic quasi-contraction in metric spaces 3

2. Preliminaries

In this section, we review some definitions and motivations that will be
needed to prove our results. The following is brief description of graph theory.
Details about this theory can also be found in [5] for interested readers.

Let (X, d) be a metric space, ∆ = ∆(X) is the diagonal of X. Let V be a
set and E ⊂ V ×V be a binary relation on V , the ordered pair (V,E) is called
a graph G. The elements of E are called edges and are denoted by E(G) while
the elements of V are called vertices and it is denoted by V (G). If the edges
are directed then we have a directed graph. Suppose G has no parallel edges
then the graph can be represented by the ordered pair (V (G), E(G)) and the
metric space is equipped with G.

If the direction of the edges is reserved then we have graph G−1. Also we
have undirected graph Ḡ, if the direction of the edges is ignored. In other
words, we have V (G−1) = V (Ḡ) = X, E(G−1) = {(x, y) : (y, x) ∈ E(G)} and
E(Ḡ) = E(G) ∪ E(G−1).

If x, y ∈ X, then a finite sequence {xi}Ni=0 consisting of N + 1 vertices is
called a path in G from x to y, whenever x0 = x, xN = y and (xi−1, xi) is an
edge of G for i = 1, · · · , N . The graph G is called connected if there exists a
path in G between each two vertices of G.

According to [20], Picard operators in metric spaces can be formulated as
follows:

Definition 2.1. ([20]) Let (X, d) be a metric space. A self-map T on X is
called a Picard operator if T has a unique fixed point x∗ in X and Tnx→ x∗

for all x ∈ X.

Definition 2.2. ([15]) A mapping T : X → X is called G-contraction if T
preserves edges of G that is, for all x, y ∈ X, (x, y) ∈ E(G) implies (Tx, Ty) ∈
E(G) and T decreases weight of edges of G in the following way; there exists
α ∈ [0, 1) and for all x, y ∈ X, (x, y) ∈ E(G) implies d(Tx, Ty) ≤ αd(x, y).

Definition 2.3. ([7]) Let T : X → X be a self-map on a metric space. For
each x ∈ X and for any positive whole number n,

OT (x, n) = {x, Tx, T 2x, T 3x, · · · , Tnx}
and

OT (x,∞) = {x, Tx, T 2x, T 3x, · · · }.
The set OT (x,∞) is called the orbit of T at x and the metric space X is called
T -orbitally complete if every Cauchy sequence in OT (x,∞) is convergent in
X.
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Definition 2.4. ([13]) Let (X, d) be a metric space endowed with a graph G.
A self-map T on X is called a G-asymptotic contraction if

(A1) T preserves the edges of G, that is, (x, y) ∈ E(G) implies (Tx, Ty) ∈
E(G) for all x, y ∈ X;

(A2) there exists a sequence ψn : [0,+∞) → [0,+∞) converging uniformly
to a ψ ∈ Ψ on the range of d such that d(Tnx, Tny) ≤ ψn(d(x, y)) for
all n ≥ 1 and all x, y ∈ X with (x, y) ∈ E(G).

Definition 2.5. ([6]) Let (X, d) be a metric space and T : X → X be a
self-map. The map T is called a quasi-contraction if there exists 0 ≤ k < 1
such that for each x, y ∈ X,

d(Tx, Ty) ≤ k max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Recall that ψ : [0,∞) → [0,∞) is called a comparison function if it is
increasing and upper semi-continuous. As a consequence, we also have ψ(t) <
t for each t > 0, ψ(0) = 0. For example, ψ(t) = at (where a ∈ [0, 1)),
ψ(t) = t

1+t and ψ(t) = ln(1 + t), t ∈ R+. Likewise, example of the sequence

ψn : [0,∞)→ [0,∞) is ψn(t) = tn

1+tn for t > 0 and n ∈ N.

In the year 2000, Schenk- Hoppe and Schmalfub [21] applied the Banach
fixed point theorem to analyze the random difference equations of stochas-
tic Solow growth model. The stochastic Solow growth model considered by
authors in [21] is presented as follows;

Kt+1 =
(1− δ(ηtω))kt + ζ(ηtω)f(kt)

1 + n(ηtω)
= h(ηtω, kt), (2.1)

where kt is the capital per worker in period t, f : R+ → R+ is a neoclassical
production function, δ(ηtω), ζ(ηtω) and n(ηtω) are ergodic processes that
model stationary functions of the rate of depreciation, invested share of output
and population growth rate, respectively.

The authors in [21] proved the following result.

Theorem 2.6. ([21]) Assume the stochastic processes representing the rates
of depreciation and population growth, and the product of saving rate and
production shocks, respectively, take values δ(ω) ∈ [δmin, δmax] ⊂ [0, 1], η(ω) ∈
[ηmin, ηmax] ⊂ (−1,∞) and ζ(ω) ∈ [ζmin,∞) ⊂ (0,∞) with the expected saving
rate and production stocks, Eζ < ∞. Assume further that f is non-negative,
increasing, strictly concave, and continuously differentiable. Suppose,

(i) δmax + ηmax > 0;

(ii) 0 ≤ limk→∞ f
′(k) < δmax+ηmax

ζmin
< limk→∞ f

′(k) ≤ ∞;
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(iii) E log (1−δ(ω))+ζ(ω)f ′(k̄)
1+η(ω) < 0, where k̄ := k̄(δmax, ηmax, ζmin) is the non-

trivial steady state of the deterministic Solow growth model with re-
spective parameters and k̄ is well- defined.

Then there exists a unique non-trivial random fixed point K∗ for the random
dynamical system ϕ generated by the stochastic Solow growth model (2.1).

3. Main results

In this segment, we assume that (X, d) is a metric space endowed with a
graph G. We denote by Fix(T ) the set of all fixed points of a self-map T on
X, and we use CT to denote the set of all points x ∈ X such that(Tmx, Tnx)
is an edge of Ḡ for all m,n ∈ N ∪ 0. In other words,

CT = {x ∈ X : (Tmx, Tnx) ∈ E ¯(G), m, n = 0, 1 · · · }.

Now, we present the definition ofG-asymptotic quasi-contraction in a metric
space endowed with a graph.

Definition 3.1. Let (X, d) be a metric space endowed with a graph G. A
self-map T on X is called G-asymptotic quasi-contraction if

(i) T preserves the edges of G, that is, (x, y) ∈ E(G) implies
(Tx, Ty) ∈ E(G) for all x, y ∈ X;

(ii) there exists a sequence ψn : [0,+∞)→ [0,+∞) such that
lim supψn(ε) ≤ ε for all ε > 0;

(iii) d(Tnx, Tny) ≤ ψn(max {d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)})
for all n ∈ N and x, y ∈ X with (x, y) ∈ E(G).

Here we state how G-asymptotic quasi-contraction mappings generalizes G-
asymptotic contraction mappings in [13] and quasi-contraction mappings in
[6].

Remark 3.2. (1) Ifmax {d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} =
d(x, y) and the sequence ψn : [0,+∞)→ [0,+∞) converges uniformly
to ψ on the range of d then we obtain the result of Fallahi [13] for
G-asymptotic contraction mapping.

(2) If ψ(t) = kt, V (G) = X, E(G) = X ×X and k ∈ [0, 1) then we obtain
the definition of quasi-contraction mappings in [6].

Next, we give an example of G- asymptotic quasi-contraction mappings in
a metric space endowed with a graph.

Example 3.3. Let X = [1, 2] be equippied with the usual metric. Define the
graph G = (V (G), E(G)) with V (G) = X and E(G) = {i, j ∈ X ×X : i ≤ j}.
Let T : X → X be defined by Tx = x

1+x for x ∈ [1, 2] and ψn(t) = t
1+nt for all

t ≥ 0. Then T is G-asymptotic quasi-contraction mapping.
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To prove our fixed point theorem, we need the following lemma.

Lemma 3.4. Let (X, d) be a metric space endowed with a graph G and T :
X → X be a G-asymptotic quasi-contraction mapping such that the functions
ψn in Definition 3.1 are continuous on [0,∞) for sufficiently large indices n.
Then {Tnx} is a Cauchy sequence for all x ∈ CT .

Proof. Let x0 ∈ CT . Then (Tnx0, T
n+1x0) ∈ E(G) for all n ≥ 0. Suppose

α = lim supn d(Tnx0, T
n+1x0) = 0. Then clearly, T is G-asymptotic quasi-

contraction. Using (ii) in Definition 3.1 we have,

lim sup
n→∞

d(Tnx0, T
n+1x0) ≤ lim sup

n→∞
ψn(d(x0, Tx0))

≤ d(x0, Tx0)

<∞.

On the contrary, we can assume α = lim supn→∞ d(Tnx0, T
n+1x0) > 0.

Then there exists a strictly increasing sequence {nk} of positive integers such
that d(Tnkx0, T

nk+1x0)→ α, and so by the continuity of ψn we obtain

ψn(δ(OT (x0, n);n ∈ N))→ ψ(α) ≤ α.

Hence, there is a positive integer k0 with ψ(d(Tnk0x0, T
nk0

+1x0)) < α and so
by (iii) of Definition 3.1 we get,

α = lim sup
n→∞

d(Tnx0, T
n+1x0)

= lim sup
n→∞

d(Tn(Tnk0x0, T
nk0

+1x0))

≤ lim sup
n→∞

ψn(d(Tnk0x0, T
nk0

+1x0))

≤ (d(Tnk0x0, T
nk0

+1x0))

≤ ψn(max{d(Tnk0
−1x0, T

nk0x0), d(Tnk0
−1x0, T

nk0x0),

d(Tnk0x0, T
nk0

+1x0), d(Tnk0
−1x0, T

nk0
+1x0), d(Tnk0x0, T

nk0x0))

= ψn(δ(OT (x0, n);n ∈ N)→ α.

This is a contradiction. Hence,

lim sup
n→∞

d(Tnx0, T
n+1x0) = 0.

Consequently, we have

0 ≤ lim inf
n→∞

d(Tnx0, T
n+1x0) ≤ lim sup

n→∞
d(Tnx0, T

n+1x0) = 0.

Therefore,

lim
n→∞

d(Tnx0, T
n+1x0) = 0. (3.1)
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Next we show that {Tnx0} is a Cauchy sequence. Assuming {Tnx0} is not
a Cauchy sequence, then there exists ε > 0 and decreasing sequence {mk} and
{nk} of positive integers such that nk ≥ mk ≥ n,

d(Tmkx0, T
nkx0) ≥ ε, k = 1, 2, · · · .

Keeping the integers nk fixed for sufficiently large k, say k ≥ k0, we can assume
without loss of generality that mk is the smallest integer greater than nk with
d(Tmkx0, T

nkx0) ≥ ε and d(Tmkx0, T
nk−1x0) ≤ ε, (k ≥ k0).

By triangle inequality,

d(Tmkx0, T
nkx0) ≤ d(Tmkx0, T

nk−1x0) + d(Tnk−1x0, T
nkx0).

Letting k →∞, then we obtain

d(Tmkx0, T
nkx0) ≤ ε.

Thus d(Tmkx0, T
nkx0)→ ε as k →∞. Also, we have

d(Tmkx0, T
nkx0) ≤ d(Tmkx0, T

mk+1x0) + d(Tmk+1x0, T
nkx0)

and

d(Tmk+1x0, T
nkx0) ≤ d(Tmk+1x0, T

mkx0) + d(Tmkx0, T
nkx0).

Letting k →∞, then we obtain

d(Tmk+1x0, T
nkx0) ≤ ε.

Thus d(Tmk+1x0, T
nkx0)→ ε as k →∞.

Similarly, we have d(Tmkx0, T
nk+1x0)→ ε as k →∞.

By (iii) of Definition 3.1 and (3.1) yields

d(Tmk+nx0, T
nk+nx0) < lim sup

n→∞
ψn(d(Tmkx0, T

nkx0))

≤M(Tmkx0, T
nkx0)

= max{d(Tmkx0, T
nkx0), d(Tmkx0, T

mk+1x0),

d(Tnkx0, T
nk+1x0), d(Tmkx0, T

nk+1x0),

d(Tnkx0, T
mk+1x0)}.

Taking k → ∞, we obtain that d(Tmk+nx0, T
nk+nx0) → 0. Thus {Tnx} is a

Cauchy sequence. �

Now we prove the main theorem for the fixed point of G-asymptotic quasi-
contraction in metric space endowed with a graph G.

Theorem 3.5. Let (X, d) be a metric space endowed with a graph G and
T : X → X be a G-asymptotic quasi-contraction mapping such that the func-
tion ψn in Definition 3.1 is continuous on [0,+∞) for sufficiently large indices
n. If T (X) is an orbitally complete subspace of X, then T has a fixed point in
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X if and only if CT 6= ∅. Moreover, if the subgraph of G with the vertex set
Fix(T ) is connected, then the restriction of T to CT is a Picard operator.

Proof. Since Fix(T ) ⊆ G, it implies that T has a fixed point, thus G is
nonempty. Now let x0 ∈ G, by Lemma 3.4, the sequence (Tnx0) is Cauchy.
Since T (X) is orbitally complete subspace of (X, d), then it implies that (X, d)
is orbitally complete. Therefore, there exists x ∈ X such that {Tnx} converges
to x. We need to prove that x is the fixed point of T . To prove this, recall
that x ∈ G gives (Tnx, Tn+1x) ∈ E(G) for all n ≥ 0.

Using (ii) of Definition 3.1

d(Tx, x) = lim
n→∞

d(Tx, Tnx)

= lim sup
n→∞

d(Tx, Tnx)

= lim sup
n→∞

d(Tn(Tx), Tn(Tnx))

≤ lim sup
n→∞

ψn(d(Tx, Tnx))

≤ d(Tx, Tnx).

Applying the convergence of {Tnx} we have d(Tx, x) < d(Tx, x) which is a
contradiction, unless x = Tx. Assume that the subgraph of G with the vertex
set Fix(T ) is connected and x∗ ∈ X is a fixed point of T . Then there exists
a path {xi}Ni=0 in G from x to x∗ such that x1, · · · , xN−1 ∈ Fix(T ), that
is x0 = x, xN = x∗ and (xi−1, xi) ∈ E(G) for i = 1, · · · , N . Since T is a
G-asymptotic quasi-contraction for each i = 1, · · · , N , it follows that

d(xi−1, xi) = lim sup
n→∞

d(Tnxi−1, T
nxi)

= lim sup
n→∞

d(Tn(Tnxi−1), Tn(Tnxi))

≤ lim sup
n→∞

ψn(d(Tnxi−1, T
nxi))

≤M(Tnxi−1, T
nxi)

= max{(d(Tnxi−1, T
nxi), (d(Tnxi−1, T

n+1xi−1),

(d(Tnxi, T
n+1xi), (d(Tnxi−1, T

n+1xi),

(d(Tnxi, T
n+1xi−1)}.

Applying the convergence of {Tnxi} we have d(xi−1, xi) < d(xi−1, xi), a con-
tradiction, unless xi−1 = xi. Thus, x = x0 = x1 = · · · = xN−1 = xN = x∗.

Consequently, the fixed point of T is unique and the restriction of T to G
is a Picard operator. �

Remark 3.6. (1) If (X, d) is a metric space and G is the graph structure
with the vertex set X, that is, V (G) = X and E(G) = X ×X. Then
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condition (i) in Definition 3.1 holds trivially. Also if

max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} = d(x, y),

and ψn : [0,+∞) → [0,+∞) converges uniformly to a ψ ∈ Ψ on the
range of d. Then Theorem 3.5 generalizes the results of Kirk [19] .

(2) The result of Jachymski [15] is generalized by Theorem 3.5 because
the result in [15] is in terms of G-contraction mappings in metric space
endowed with a graph structure.

(3) Theorem 3.5 is more general than the result of Fallahi [13], Theorem
3.7 in the sense that our space is orbitally complete. Also, we prove our
result using G-asymptotic quasi-contraction instead of G-asymptotic
contraction used by Fallahi [13].

We give the consequence of Theorem 3.5. If the quasi-contraction mapping
is replace with a generalized contraction mapping and the orbitally complete
metric space in Theorem 3.5 is replace with a complete metric space then we
have the next result.

Corollary 3.7. Let (X, d) be a complete metric space endowed with a graph G
and T : X → X be a G-asymptotic generalized contraction mapping satisfying
the following conditions;

(A1) T preserves the edges of G, that is, (x, y) ∈ E(G) implies (Tx, Ty) ∈
E(G) for all x, y ∈ X;

(A2) there exists a sequence ψn : [0,+∞)→ [0,+∞) such that
lim supψn(ε) ≤ ε for all ε > 0;

(A3) d(Tnx, Tny) ≤ ψn(max {d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)
2 }),

for all n ∈ N and x, y ∈ X with (x, y) ∈ E(G) such that the function
ψn is continuous on [0,+∞) for sufficiently large indices n.

Then T has a fixed point in X if and only if CT 6= ∅. Moreover, if the subgraph
of G with the vertex set Fix (T) is connected then the restriction of T to CT
is a Picard operator.

Example 3.8. Let X = l2 be equipped with the usual metric d(x, y) =

[
∑∞

i=1 |xi − yi|2]
1
2 for x, y ∈ l2, and let BH be the closed unit ball in l2,

that is, BH = {x ∈ l2 :
∑∞

i=1 |xi|2 ≤ 1}. Define T : l2 → l2 by T (x) =
(0, x2

1, αx2, αx3, αx4, . . . ) for x = (x1, x2, x3, . . . ) ∈ l2 with α a real number in
(0, 1). Consider the graph G = (V (G), E(G)) with V (G) = BH and E(G) =
BH ×BH .

(1) For all x ∈ BH , d(Tx, 0) = |x1|4 + α2
∑∞

i=1 |xi|2 ≤
∑∞

i=1 |xi|2 ≤ 1,
hence Tx ∈ BH . Thus, given (x, y) ∈ E(G), (Tx, Ty) ∈ E(G). Condi-
tion (i) of Definition 3.1 is satisfied.
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(2) One can easily check that for all n ∈ N, for all x ∈ l2, and for all y ∈ l2,

Tnx = (0, 0, 0, . . . , 0︸ ︷︷ ︸
n

, αn−1x2
1, α

nx2, α
nx3, α

nx4, . . . )

and

d(Tnx, Tny) = [α2(n−1)|x2
1 − y2

1|2 + α2n|x2 − y2|2 + α2n|x3 − y3|2 + . . . ]
1
2

= αn−1[|x1 − y1|2|x1 + y1|2 + α2|x2 − y2|2 + α2|x3 − y3|2 + . . . ]
1
2

≤ αn−1[4|x1 − y1|2 + α2|x2 − y2|2 + α2|x3 − y3|2 + . . . ]
1
2

≤ 2αn−1[|x1 − y1|2 + |x2 − y2|2 + |x3 − y3|2 + . . . ]
1
2

= 2αn−1d(x, y).

Hence condition (ii) and (iii) of Definition 3.1 are satisfied, with ψn : [0,∞)→
[0,∞) defined by ψn(t) = 2αn−1t for all n ∈ N and t ∈ [0,∞).

One can also check that 0 = (0, 0, · · · ) ∈ l2 is the unique fixed point of T .
Thus the conditions of Theorem 3.5 are satisfied.

4. Analysis of Solow growth model

In this section, rather than focus on short-run business cycle phenomena,
the long-run output and development challenge is the focus of this study.
This work reviews Solows productivity model by incorporating the dynamics
of time in savings and investment and the stock of capital, labour and aug-
menting technology. The work also establish the solution of the differential
equation of Solow growth model for continuous time frame. To improve na-
tional productivity overtime in the interval of two successive periods, the stock
of capital will have to increase by an amount that equals to gross investment
minus depreciation on the initial capital stock. The Solows model is however
silent on the role of government and trade, excerpt for the unspecified sourcing
of technology, it implicitly assumes a closed economy.

The long-run behavioral growth model of production is in the domain of
neoclassical analysis. The model of long-run growth is

Y = F (K,L), (4.1)

where Y is the production rate, K is the stock of capital and L is the labour.
The technology possibilities are represented by a production function F :
R+ → R+.

Harrod-Domar model of economic growth studies long-run problems with
the usual short-run tools. The model can be expressed in the form of;

Y = F (K,L) = min(
K

a
,
L

b
), (4.2)
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where it takes a units of capital to produce a units of output; and b units
of labour. The major parameters of the model are the saving ratio, capital -
output ratio and the rate of increase of the labour. The consequence of the
model is to grow unemployment or prolonged inflation.

The Cobb-Douglas’ version of neoclassical growth model expresses a sit-
uation where the marginal productivity of capital rises indefinitely as the
capital-labour ratio decreases. Since a < 1 in the equation below, the as-
ymptotic behavior of the system is always a balanced growth at the natural
rate.

Y = KaL1−a = F (K,L), (4.3)

where 0 < a < 1. The general solution of (4.3) is

K(t) =
[
Kb

0 −
s

n
Lb0 +

s

n
Lb0e

nbt
] 1

b
,

where b = 1− a and K0 is the initial capital stock.

The framework of Solow growth model is basically dynamic evolution of
capital accumulation, labour, and technological progress. The model incor-
porates the dynamic link between savings and investment in stock of capital.
That is, in two successive periods, the stock of capital would increase by a net
investment, that is, an amount equal to gross investment minus depreciation
on the initial capital stock. More formally, in continuity, the standard ex-
position of Solow neoclassical growth model is an extension of Cobb-Douglas
production functional form by introducing technology change in continuous
time A(t) as a factor which multiples the production function by an increasing
scale factor. So equation (4.3) becomes:

Y = A(t)F (K,L) = A(t)KaL1−a, (4.4)

where A(t) is the technological progression for a continuous time t. If we
substitute A(t) = eat, we obtain the nonlinear differential equation dK

dt = K ′

as;

K ′ = seatL1−α
0 e(n(1−α)+a)t, (4.5)

where 0 < a < 1. The general solution of the model is

K(t) =

[
Kb

0 −
bs

nb+ g
Lb0 +

bs

nb+ g
Lb0e

(nb+a)t

] 1
b

,

where b = 1−α, s > 0 is the fraction of output being saved. In the long-run the
capital stock increases at the relative rate n+ g

b . The increase of real output
is n+ ag

b . This implies that real output gives more saving and investment and
this compounds the rate of growth more.
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5. Fixed point theorem of Solow growth model

Motivated by the result in [21], we apply the fixed point theorem of G-
asymptotic quasi-contraction to find the solution of nonlinear differential equa-
tion of Solow growth model.

Consider (4.5), the nonlinear differential equation of Solow growth model
for a continuous time t. The integral equation gives

K(t) =

∫ t

0
ska(u)L1−a

0 e(nb+g)udu.

Theorem 5.1. Let X = C[0, T ) and that T : X → X be an operator which is
defined by

(Tnx)(t) =

∫ t

0
sxa(u)Lb0e

(nb+g)udu (5.1)

for all x ∈ X and t ∈ [0, T ]. The existence of a solution of the differential
equation (4.5) is equivalent to the existence of a fixed point of T in the integral
equation (5.1).

Proof. Given a metric d(x, y) = supt∈[0,T ] |x(u) − y(u)|, we have that (X, d)
is a complete metric space for all x, y ∈ X. If a graph G is defined by
G = (V (G), E(G)) with V (G) = X and E(G) = X × X then the metric
is equipped with G. We prove that equation (4.4) satisfies the G-asymptotic

quasi-contraction with the condition that sLb0(
∫ T

0 e(nb+g)udu) < 1.

|Tnx(t)− Tny(t)| = |(
∫ T

0
sxa(u)L1−a

0 e(nb+g)u −
∫ T

0
sya(u)L1−a

0 e(nb+g)u)du|

=

∫ T

0
|sxa(u)L1−a

0 e(nb+g)u − sya(u)L1−a
0 e(nb+g)u|du

= sLb0

∫ T

0
|xa(u)e(nb+g)u − ya(u)e(nb+g)u|du

= sLb0

∫ T

0
e(nb+g)u|xa(u)− ya(u)|du

= sLb0(

∫ T

0
e(nb+g)u)du d(x, y)

≤ sLb0(

∫ T

0
e(nb+g)u)du M(x, y) (5.2)

≤ sLb0(

∫ T

0
e(nb+g)udu)M(x, y) < M(x, y)

= max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}
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for all x, y ∈ X.
Since operator (5.1) satisfies the G-asymptotic quasi-contraction conditions

defined on a metric space endowed with a graph then the fixed point of G-
asymptotic quasi-contraction mappings proved in Theorem 3.4 gives the so-
lution of integral equation (4.5) which is also the solution to the differential
equation of Solow growth model. �

Conclusion: In this research, we introduced a new class of G-asymptotic
quasi-contraction mappings and proved the existence of the unique fixed point
of the operator in a metric space endowed with a graph structure. The fixed
point of this operator proves the applicability of our results by obtaining the
solution of nonlinear differential equation of Solow growth model in econom-
ics. This result can also be established in other abstract spaces by interested
researchers.

Acknowledgments: The authors are thankful for the support of Lagos State
University.
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