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Abstract. In this paper, we establish the existence of at least two distinct solutions to a

p-Laplacian problem involving critical exponents and singular cylindrical potential, by using

the Nehari manifold.

1. Introduction

The original one-dimensional Kirchhoff equation was introduced by Kirch-
hoff [8] in 1883. His model takes into account the changes in length of the
strings produced by transverse vibrations.

In recent years, the existence and multiplicity of solutions to the nonlocal
problem {

−
(
m+ n

∫
Ω |∇u|

2 dx
)

∆u = g (x;u) in Ω,

u = 0, on ∂Ω
(1.1)

has been studied by various researchers and many interesting and important
results can be found. For instance, positive solutions could be obtained in
[1, 4, 9, 10]. Especially, Chen et al. [3] discussed a Kirchhoff type problem
when

g (x;u) = f (x)up−2u+ λg (x) |u|q−2 u,
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where 1 < q < 2 < p < 2∗ = 2N/ (N − 2) if N ≥ 3, 2∗ = ∞ if N = 1, 2, f(x)
and g(x) with some proper conditions are sign-changing weight functions. And
they have obtained the existence of two positive solutions if p > 4, 0 < λ <
λ0(m).

Researchers, such as Mao and Zhang [12], Mao and Luan [11], found sign-
changing solutions. As for infinitely many solutions, we refer readers to [7, 14].
He and Zou [6] considered the class of Kirchhoff type problem when g(x;u) =
λf(x;u) with some conditions and proved a sequence of almost everywhere
positive weak solutions tending to zero in L∞ (Ω) .

In the case of a bounded domain of RN with N ≥ 3, Tarantello [7] proved,
under a suitable condition on f , the existence of at least two solutions to (1.1)

for m = 0, n = 1 and g (x;u) = |u|
4

N−2 u+ f .

In this paper, we consider the multiplicity results of positive solutions of
the following Kirchhoff problem{

Lu = |x|−2∗b f (x) |u|2∗−2 u+ µg (x) |u|q−2 u in R3, x 6= 0,
u ∈ H1

0

(
R3
)
,

(1.2)

where L := −m+n
(∫

R3 |x|−2a |∇u|2 dx
)
div
(
|x|−2a∇u

)
, m > 0, n > 0, µ 6= 0

is a real parameter, 1 < q < 2, −∞ < a < 1
2 , a ≤ b < a+ (1/4), 2∗ = 6

1+2(b−a)

is the critical Caffareli-Kohn-Niremberg exponent and f, g are continuous and
sign-changing functions which we will specify later.

This paper is organized as follows. In Section 2, we give some preliminaries.
Section 3 is devoted to the proof of Theorems 3.1 and 3.2.

2. Preliminaries

Before formulating our results, we give some definitions and notation.

The space H = H1

0

(
R3
)

is equipped with the norm

‖u‖ =

(∫
R3

|x|−2a |∇u|2 dx
)1/2

.

Let Sµ be the best Sobolev constant. Then,

Sa = inf
u∈H1

0 (R3)\{0}

∫
R3 |x|−2a |∇u|2 dx(∫

R3 |x|−2∗b f |u|2∗ dx
) 2

2∗
. (2.1)
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Since our approach is variational, we define the functional J on H1

0

(
R3
)

by

J (u) = (1/2)m ‖u‖2 + (1/4)n ‖u‖4

− (1/2∗)

∫
R3

|x|−2∗b f |u|2∗ dx− (µ/q)

∫
R3

g |u|q dx. (2.2)

A point u ∈ H1

0

(
R3
)

is a weak solution of the equation (1.1) if it is the
critical point of the functional J . Generally speaking, a function u is called a

solution of (1.1) if u ∈ H1

0

(
R3
)

and for all v ∈ H1

0

(
R3
)

it holds(
m+ n ‖u‖2

)∫
R3

(
|x|−2a∇u∇v

)
dx

−
∫
R3

|x|−2∗b f |u|2∗−2 uvdx− µ
∫
R3

g |u|q−2 uvdx = 0.

Throughout this work, we consider the following assumptions:

(F) f is a continuous function satisfies f(0) = max
x∈R3

f(x) > 0,

f(x) = f(0) + o(xβ) with β > 3(1−2a)
1+2(b−a) ,

(G) h is a continuous function and there exists g0 and %0 positive such that
g(x) ≥ g0 for all x ∈ B(0, 2%0), where B(a, r) denotes the ball centered
at a with radius r.

In our work, we research the critical points as the minimizers of the energy
functional associated to the problem (1.1) on the constraint defined by the
Nehari manifold, which are solutions of our problem.

Let µ0 be A real number such that

µ0 =
2n (A+B)

(2∗ − q) |g+|∞
X

2−q
2∗−q

0 − 2nA′

(2∗ − q) |g+|∞
X

2∗−q
2∗−q

0 ,

where

A=
2m

n
, B=

(q − 2)m

(4− q)n
, A′=

(
2∗ − q
4− q

)
(Sa)

2
2∗

n
, X0 =

[
(2∗ − q)A

(2− q) (A′ +B)

] 1
2−2∗

.

Definition 2.1. ([15]) Let c ∈ R, E a Banach space and I ∈ C1 (E,R).

(1) {un}n is a Palais-Smale sequence at level c ( in short (PS)c) in E for
I if

I (un) = c+ on (1) and I
′
(un) = on (1) ,

where on (1) tends to 0 as n goes at infinity.
(2) We say that I satisfies the (PS)c condition if any (PS)c sequence in

E for I has a convergent subsequence.
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Lemma 2.2. ([16]) Let X be a Banach space and J ∈ C1 (X,R) verifying the
Palais-Smale condition. Suppose that J (0) = 0 and that

(i) there exist R > 0, r > 0 such that if ‖u‖ = R, then J (u) ≥ r;
(ii) there exist (u0) ∈ X such that ‖u0‖ > R and J (u0) ≤ 0.

Let c = inf
γ∈Γ

max
t∈[0,1]

(J (γ (t))) , where

Γ = {γ ∈ C ([0, 1] ;X) such that γ (0) = 0, γ (1) = u0} .
Then c is critical value of J such that c ≥ r.

It is well known that the functional J is of class C1 in H1

0

(
R3
)

and the
solutions of (1.1) are the critical points of J which is not bounded below on

H1

0

(
R3
)
.

Consider the following Nehari manifold

N =
{
u ∈ H1

0

(
R3
)
\ {0} :

〈
J
′
(u) , u

〉
= 0
}
.

Thus, u ∈ N if and only if(
m+ n ‖u‖2

)∫
R3

(
|x|−2a |∇u|2

)
dx−

∫
R3

|x|−2∗b f |u|2∗ dx−µ
∫
R3

g |u|q dx = 0.

(2.3)
Define

ϕ (u) =
〈
J
′
(u) , u

〉
.

Then, for u ∈ N ,〈
ϕ
′
(u) , u

〉
=
(

2m+ 4n ‖u‖2
)
‖u‖2 − 2∗

∫
R3

|x|−2∗b f |u|2∗ dx− µq
∫

Ω
g |u|q dx

=
[
(2− q)m+ (4− q)n ‖u‖2

]
‖u‖2−(2∗ − q)

∫
R3

|x|−2∗b f |u|2∗ dx

= (2∗ − q)µ
∫
R3

g |u|q dx−
(

4m+ 2n ‖u‖2
)
‖u‖2 . (2.4)

Now, we split N in three parts:

N+ =
{
u ∈ N :

〈
ϕ
′
(u) , u

〉
> 0
}
,

N 0 =
{
u ∈ N :

〈
ϕ
′
(u) , u

〉
= 0
}
,

N− =
{
u ∈ N :

〈
ϕ
′
(u) , u

〉
< 0
}
.

Note that N contains every nontrivial solution of the problem (1.1). More-
over, we have the following results.
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Lemma 2.3. J is coercive and bounded from below on N .

Proof. If u ∈ N , then by (2.4) and the Hölder inequality, we deduce that

J (u) = (1/2)m ‖u‖2 + (1/4)n ‖u‖4

− (1/2∗)

∫
R3

|x|−2∗b f |u|2∗ dx− (µ/q)

∫
R3

g |u|q dx

≥ m
(

1

2
− 1

2∗

)
‖u‖2 + n

(
1

4
− 1

2∗

)
‖u‖4 − µ

(
1

q
− 1

2∗

) ∣∣g+
∣∣
∞ ‖u‖

q .

Thus, J is coercive and bounded from below on N . �

We have the following results.

Lemma 2.4. Suppose that u0 is a local minimizer for J on N . Then, if
u0 /∈ N 0, u0 is a critical point of J .

Proof. If u0 is a local minimizer for J on N , then u0 is a solution of the
optimization problem

min
{u/ ϕ(u)=0}

J (u) .

Hence, there exists a Lagrange multipliers θ ∈ R such that

J
′
(u0) = θϕ

′
(u0) in H−1.

Thus, 〈
J
′
(u0) , u0

〉
= θ

〈
ϕ
′
(u0) , u0

〉
.

But,
〈
ϕ
′
(u0) , u0

〉
6= 0, since u0 /∈ N 0. Hence θ = 0. This completes the

proof. �

Lemma 2.5. There exists a positive number µ0 such that, for all µ ∈ (0, µ0) ,
we have N 0 = ∅.

Proof. Let us reason by contradiction. Suppose N 0 6= ∅ such that 0 < µ < µ0.
Moreover, by the Hölder inequality and the Sobolev embedding theorem, we
obtain

‖u‖4 ≥ A′ ‖u‖2 −B′ ‖u‖q (2.5)

and
‖u‖4µ ≤ A ‖u‖

2∗ −B ‖u‖2 (2.6)

with

A=

(
2∗ − q
4− q

)
(Sa)

2
2∗

n
, B=

(
2− q
6− q

)(m
n

)
, A′=

2m

n
, B′=

(
2∗−q

2n

)
µ
∣∣g+
∣∣
∞ .

From (2.5) and (2.6), we obtain µ ≥ µ0, which contradicts an hypothesis. �
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Since, N = N+ ∪N−. Define

δ := inf
u∈N

J (u) , δ+ := inf
u∈N+

J (u) and δ− := inf
u∈N−

J (u) .

For the sequel, we need the following lemmas.

Lemma 2.6. (1) For all µ such that 0 < µ < µ0, one has δ ≤ δ+ < 0.
(2) There exists µ1 > 0 such that for all 0 < µ < µ1, one has

δ− > C0 = C0

(
m, n, q,

∣∣g+
∣∣
∞
)
.

Proof. (1) Let u ∈ N+. By (2.4), we have[(
(2− q)m+ (4− q)n ‖u‖2

)
/ (2∗ − q)

]
‖u‖2 >

∫
R3

|x|−2∗b f |u|2∗ dx

and so

J (u) =

(
1

4
− 1

q

)
n ‖u‖4+

(
1

2
− 1

q

)
m ‖u‖2+

(
2∗
q
− 1

2∗

)∫
R3

|x|−2∗b f |u|2∗ dx

< −
[(

1

4
− 1

q

)
−
(

2∗
q
− 1

2∗

)(
4− q
2∗ − q

)]
n ‖u‖4

−
[(

1

q
− 1

2

)
−
(

2∗
q
− 1

2∗

)(
2− q
2∗ − q

)]
m ‖u‖2 .

We conclude that δ ≤ δ+ < 0.

(2) Let u ∈ N−. By (2.4) and the Hölder inequality, we get

J (u) = m

(
1

2
− 1

2∗

)
‖u‖2 + n

(
1

4
− 1

2∗

)
‖u‖4µ − µ

∫
R3

g |u|q dx.

≥ m
(

1

2
− 1

2∗

)
‖u‖2 − µ

(
1

q
− 1

2∗

) ∣∣g+
∣∣
∞ ‖u‖

q .

Thus, for all µ such that 0 < µ < µ1 =
m
(

1
2
− 1

2∗

)
(

1
q
− 1

2∗

)
|g+|∞

, we have J (u) ≥ C0. �

We define:

F+ :=
{
u ∈ N/

∫
R3 |x|−2∗b f |u|2∗ dx > 0

}
,

F−0 :=
{
u ∈ N/

∫
R3 |x|−2∗b f |u|2∗ dx ≤ 0

}
,

G+ :=
{
u ∈ N/

∫
R3 g |u|q dx > 0

}
,

G−0 :=
{
u ∈ N/

∫
R3 g |u|q dx ≤ 0

}
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and for each u ∈ H with u ∈ F+, we write

tm := tmax (u) =

 8n
(

1
q −

1
4

)
2∗ (2∗ − 2)

(
2∗
q −

1
2∗

) ∫
R3 |x|−2∗b f |u|2∗ dx


1

2∗−4

> 0.

Lemma 2.7. Let µ real parameters such that 0 < µ < µ0. For each u ∈ H we
have

(1) if u ∈ F+ ∩G−0 , then there exists unique t+ > tM such that t+u ∈ N−
and

J
(
t+u
)
≥ J (tu) for t > tM ,

(2) if u ∈ F+ ∩ G+, then there exist unique t+ and t− such that 0 <
t− < tM < t+, (t+u) ∈ N−, t−u ∈ N+ and

J
(
t+u
)
≥ J (tu) for t ≥ t− and J

(
t−u
)
≤ J (tu) for t ∈

[
0, t+

]
,

(3) if u ∈ F− ∩G−, then does not exist t > 0 such that (tu) ∈ N ,
(4) if u ∈ F−0 ∩ G+, then there exists unique 0 < t− < +∞ such that

(t−u) ∈ N+ and

J
(
t−u
)

= inf
t≥0

J (tu) .

Proof. With minor modifications, we refer to [2]. �

Proposition 2.8. ([2])

(1) For all µ such that 0 < µ < µ0, there exists a (PS)δ+ sequence in N+.
(2) For all µ such that 0 < µ < µ1, there exists a (PS)δ− sequence in N−.

3. Main results

Now, taking as a starting point the work of Tarantello [13], we establish the
existence of a local minimum for J on N+.

Theorem 3.1. Assume that 1 < q < 2, −∞ < a < 1
2 , a ≤ b < a+ (1/4), and

(F ) satisfied and µ verifying µ < µ0. Then the problem (1.1) has at least one
positive solution.

Proof. If 0 < µ < µ0, then from Proposition 2.8, there exists a {un}n (PS)δ+
sequence in N+, thus it bounded by Lemma 2.3. Then, there exists u+

0 ∈ H
and we can extract a subsequence which will denoted by {un}n such that

un ⇀ u+
0 weakly in H1

0

(
R3
)
, (3.1)

un ⇀ u+
0 weakly in L2∗

(
R3
)
,

un → u+
0 strongly in Lq

(
R3
)
,

un → u+
0 a.e in R3.
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Thus, by (3.1), u+
0 is a weak nontrivial solution of (1.1).

Now, we show that {un} converges to u+
0 strongly in H1

0

(
R3
)
. Suppose

otherwise. By the lower semi-continuity of the norm, then either
∥∥u+

0

∥∥ <
lim inf
n−→∞

‖un‖ and we obtain

δ ≤ J
(
u+

0

)
= m

(
1

2
− 1

2∗

)∥∥u+
0

∥∥2
+ n

(
1

4
− 1

2∗

)∥∥u+
0

∥∥4 − µ
∫
R3

g
∣∣u+

0

∣∣q dx
< lim inf

n−→∞
J (un) = δ,

which is a contradiction. Therefore, {un} converge to u+
0 strongly in H1

0

(
R3
)
.

Moreover, we have u+
0 ∈ N+. If not, then by Lemma 2.7, there are two

numbers t+0 and t−0 , uniquely defined so that
(
t+0 u

+
0

)
∈ N+ and

(
t−u+

0

)
∈ N−.

In particular, we have t+0 < t−0 = 1. Since

d

dt
J
(
tu+

0

)
�t=t+0

= 0 and
d2

dt2
J
(
tu+

0

)
�t=t+0

> 0,

there exists t+0 < t− ≤ t−0 such that Jλ
(
t+0 u

+
0

)
< Jλ

(
t−u+

0

)
. By Lemma 2.7,

we get

Jλ
(
t+0 u

+
0

)
< Jλ

(
t−u+

0

)
< Jλ

(
t−0 u

+
0

)
= Jλ

(
u+

0

)
,

which contradicts the fact that J
(
u+

0

)
= c+. Since J

(
u+

0

)
= J

(∣∣u+
0

∣∣) and∣∣u+
0

∣∣ ∈ N+, then by Lemma 2.4, we may assume that u+
0 is a nontrivial

nonnegative solution of (1.1). By the Harnack inequality, we conclude that
u+

0 > 0, see for example [5]. �

Next, we establish the existence of a local minimum for J on N−.

Theorem 3.2. In addition to the assumptions of the Theorem 3.1, if the
condition (G) hold, then there exists µ1 > 0 such that for all µ verifying
0 < µ < min (µ0, µ1) the problem (1.1) has at least two positive solutions.

Proof. If 0 < δ < δ1, then from Proposition 2.8, there exists a {un}n, (PS)δ−
sequence in N−, thus it bounded by Lemma 2.3. Then, there exists u−0 ∈
H1

0

(
R3
)

and we can extract a subsequence which will denoted by {un}n such
that

un ⇀ u−0 weakly in H1

0

(
R3
)
,

un ⇀ u−0 weakly in L2∗
(
R3
)
,

un → u−0 strongly in Lq
(
R3
)
,

un → u−0 a.e in R3.
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This implies that∫
R3

|x|−2∗b f |un|2∗ dx →
∫
R3

|x|−2∗b f
∣∣u−0 ∣∣2∗ dx, as n goes to ∞.

Moreover, by (G) and (2.4) we obtain∫
R3

|x|−2∗b f |un|2∗ dx >
[

(4− q)
(2∗ − q)

n ‖un‖4 +
(2− q)
(2∗ − q)

m ‖un‖2
]

>

[
(4− q)
(2∗ − q)

n ‖un‖4 +
(2− q)
(2∗ − q)

m ‖un‖2
]
− ‖un‖2

> C1

=

[
(2− q)
(2∗ − q)

m

]2 [ (4− q)
(2∗ − q)

n− 3

] [
2 (4− q)
(2∗ − q)

n− 2

]−2

.

If n > 3(6−q)
(4−q) , we get ∫

R3

|x|−2∗b f |un|2∗ dx > C1 > 0. (3.2)

This implies that ∫
R3

|x|−2∗b f
∣∣u−0 ∣∣2∗ dx ≥ C1.

Now, we prove that {un}n converges to u−0 strongly in H1

0

(
R3
)
. Suppose

otherwise. Then, either
∥∥u−0 ∥∥ < lim inf

n−→∞
‖un‖. By Lemma 2.7, there is a unique

t−0 such that
(
t−0 u

−
0

)
∈ N−. Since

un ∈ N−, J (un) ≥ J (tun) for all t ≥ 0,

we have

J
(
t−0 u

−
0

)
< lim

n−→∞
J
(
t−0 un

)
≤ lim

n−→∞
J (un) = δ−,

and this is a contradiction. Hence,

(un)n → u−0 strongly in H1

0

(
R3
)

.

Thus,

J (un) converges to J
(
u−0
)

= δ− as n tends to +∞.

Since J
(
u−0
)

= J
(∣∣u−0 ∣∣) and u−0 ∈ N−, then by (3.2) and Lemma 2.4, we may

assume that u−0 is a nontrivial nonnegative solution of (1.1). By the maximum
principle, we conclude that u−0 > 0.

Now, we obtain that (1.1) has two positive solutions u+
0 ∈ N+ and u−0 ∈

N−. Since N+ ∩N− = ∅, this implies that u+
0 and u−0 are distinct. �
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