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Abstract. This study delves into the intricate properties of analytic functions within the

unit disk, specifically focusing on classes s∗(α, β, ξ, γ) and K∗(α, β, ξ, γ) characterized by

symmetric properties with negative coefficients. We present the findings on key aspects such

as coefficient inequalities establishing bounds on the coefficients of functions belonging to

the classes. Also, determine the convexity radius for functions in a class and distortion the-

orems. Distortion theorems will be presented to provide bounds within the unit disk. These

bounds are critical for understanding the behavior and geometric properties of these func-

tions. Symmetric Classes with Negative Coefficients: Classes are defined by their symmetry

and negative coefficients. Functions in these classes exhibit specific geometric properties that

are crucial for applications in complex analysis.

1. Introduction

Let A be a class of functions which is analytic and univalent in the unit
disk U = {= : |=| < 1} provided by

~(=) = =+
∞∑
τ=2

aτ=τ , (1.1)

and made common by ~(0) = 0, ~′(0) = 1. Let S be the subclass of A that
has the following analytic and univalent function type (1.1). We designate the
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subclass of S as represented by S∗(α) and K(α), which includes all functions
that are starlike and convex of order, respectively. α(0 ≤ α < 1) in U , that is

S∗(α) =

{
~ ∈ s; Re

(
=~
′(=)

~(=)

)
> α; 0 ≤ α < 1,= ∈ U

}
(1.2)

and

K(α) =

{
~ ∈ s; Re

(
1 + =~

′′(=)

~′(=)

)
> α; 0 ≤ α < 1= ∈ U

}
. (1.3)

We say that the function ~(=) is in the class S(α, β, ξ, γ) if and only if∣∣∣∣∣∣
=~′(=)

~(=) − 1

2ξ
(
=~′(=)

~(=) − α
)
− γ

(
=~′(=)

~(=) − 1
)
∣∣∣∣∣∣ < β (1.4)

for |=| < 1, where 0 < β ≤ 1, 1
2 ≤ ξ ≤ 1, 0 ≤ α ≤ 1

2 ,
1
2 < γ ≤ 1.

A function f(z) is said to belong to the class k(α, β, ξ, γ) if and only if
zf ′(z) ∈ S(α, β, ξ, γ). Several subclasses of analytic function classes A have
been introduced and studied by numerous researchers (see, for example, [8],
and [12]).

Several subclasses of A were introduced, and various studies (see [3], [4], [7],
[9], [10], [11] and [13]) looked into some of the geometric properties of these
subclasses.

Let T denote the subclass of S consisting of functions of the form,

~(=) = =−
∞∑
τ=2

aτ=τ , (aτ ≥ 0) . (1.5)

Now let S∗(α, β, ξ, γ) = S(α, β, ξ, γ)∩T and k∗(α, β, ξ, γ) = k(α, β, ξ, γ)∩T .

In this work, we derive analytical solutions for the distortion theorem, radius
of convexity, coefficient inequality, and related conclusions with respect to
symmetric for the classes s∗(α, β, ξ, γ) and k∗(α, β, ξ, γ) and shall be denoted
by classes s∗s(α, β, ξ, γ) and k∗s(α, β, ξ, γ).

These functions were studied by A1-Amiri and Mocanu [1], Alsoboh and
Darus [2], Ghanim and Darus [5, 6], Sakaguchi [9], and Sudharsan et al.[13].
We refer to them as starlike with respect to symmetric points. E1-Ashwah
and Thomas [4] have presented two new function classes: the class of functions
that are starlike concerning conjugate points and the class of functions that
are starlike concerning symmetric conjugate points. We say that the function
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~(=) is the class s∗s(α, β, ξ, γ) if and only if∣∣∣∣∣∣
= ~′(S)

~(=)−~(−=) − 1

2ξ
(
= ~′(=)

~(=)−~(−=) − α
)
− γ

(
= ~′(=)

~(=)−~(−=) − 1
)
∣∣∣∣∣∣ < β. (1.6)

Next, we find the coefficient inequality for the class s∗s(α, β, ξ, γ).

2. Coefficient inequality

Theorem 2.1. A function ~l ∈ T given by (1.1) is in the class s∗s(α, β, ξ, γ)
if and only if

∞∑
τ=2

[(τ − 2)− β(γτ − 2γ + 4ξα− 2τξ)] |az| ≤ 4βξ(1− α). (2.1)

Proof. Suppose

∞∑
τ=2

[(τ − 2)− β(γτ − 2γ + 4ξα− 2τξ)] [az] ≤ 4βξ(1− α).

Then, we have

‖=~′(=)− (~(=)− ~(−=))‖ − β‖2ξ(=~′(=)− α(~(=)− ~(−=)))

− γ(=~′(=)− (~(=)− ~(−=)))‖ < 0.

Given that∣∣∣∣∣
∞∑
τ=2

(τ − 2)aτ=τ
∣∣∣∣∣− β

∣∣∣∣∣4ξ(1− α) +

∞∑
τ=2

(γτ − 2γ + 4ξα− 2τξ)=τ
∣∣∣∣∣ < 0

for |=| = r → 1, then the circumstance (2.1) is surrounded above by

∞∑
τ=2

(τ − 2) |aτ | − 4βξ(1− α)− β
∞∑
τ=2

(γτ − 2γ + 4ξα− 2τξ) |aτ |

≤
∞∑
τ=τ

{(τ − 2)− β(γτ − 2γ + 4ξα− 2τξ)} |aτ | rτ − 4βξ(1− α)

≤
∞∑
τ=2

{(τ − 2)− β(γτ − 2γ + 4ξα− 2τξ)} |aτ | − 4βξ(1− α)

≤ 0.

Therefore, ~(=) ∈ s∗s(α, β, ξ, γ).

Now, we prove the converse result.
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Let ∣∣∣∣∣∣
= ~′(=)

~(=)−~(−=) − 1

2ξ
(
= ~′(=)

~(=)−~(−=) − α
)
− γ

(
= ~′(=)

~(=)−~(−=) − 1
)
∣∣∣∣∣∣

≤
∣∣∣∣ ∑∞

τ=2(τ − 2)aτ=τ

4ξ(1− α) +
∑∞

τ=2(γτ − 2γ + 4ξα− 2τξ)aτ=τ

∣∣∣∣ < β,

as |Re(=)| ≤ |=| for all =, we have

Re

∣∣∣∣ ∑∞
τ=2(τ − 2)aτ=τ

4ξ(1− α) +
∑∞

τ=2(γτ − 2γ + 4ξα− 2τξ)aτ=τ

∣∣∣∣ < β.

We select values on the real axis so that =~′(=)
~(=)−~(−=) is real, and after removing

the denominator from the previous equation and allowing real values = → 1
to pass through, we have

∞∑
τ=2

{(τ − 2)− β(γτ − 2γ + 4ξα− 2τξ)} |az| − 4βξ(1− α) ≤ 0.

�

Remark 2.2. If ~(=) ∈ s∗s(α, β, ξ, γ), then

|aτ | ≤
4βξ(1− α)

{(τ − 2)− β(γτ − 2γ + 4ξα− 2τξ)}
for τ = 2, 3, . . . . (2.2)

Equality holds for

~(=) = =− 4βξ(1− α)

{(−2)− β(γτ − 2γ + 4ξα− 2τξ)}
.

Corollary 2.3. If ~(=) ∈ s∗s(α, β, ξ, 1), that is, replacing γ = 1, then we get

|aτ | ≤
4βξ(1− α)

{(τ − 2)− β(τ − 2 + 4ξα− 2τξ)}
for τ = 2, 3, . . . . (2.3)

The same applies to

~(=) = =− 4βξ(1− α)

{(τ − 2)− β(γτ − 2γ + 4ξα− 2τξ)}
=τ .

Corollary 2.4. If ~(=) ∈ s∗s(α, β, 1, 1), we get

|aτ | ≤
4β(1− α)

{(τ − 2) + β(τ + 2− 4α)}
. (2.4)

Equality holds for

~(=) = =− 4β(1− α)

{(τ − 2) + β(τ + 2− 4α)}
=τ .
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Corollary 2.5. If ~(=) ∈ s∗s(α), that is, starlike in relation to the symmetric
order point, if and only if

∞∑
τ=2

(τ − 2α) |aτ | ≤ (1− α). (2.5)

Theorem 2.6. A function ~ given by (1.1) is in k∗s(α, β, ξ, γ), if and only if

∞∑
τ=2

τ [(τ − 2)− β(γτ − 2γ + 4ξα− 2τξ)] |aτ | ≤ 4βξ(1− α).

Proof. The function with regard to symmetric points of order makes the proof
of this theorem similar to that of Theorem (2.1). ~(=) ∈ k∗s(α, β, ξ, γ) if and
only if =~′(=) ∈ s∗s(α, β, ξ, γ), therefore, replacing it is sufficient aτ in the
Theorem 2.1 with τa2. �

Corollary 2.7. If ~(=) ∈ k∗s(α, β, ξ, γ), that is, replacing γ = 1, we get

|aτ | ≤
4βξ(1− α)

{(τ − 2)− β(τ − 2 + 4ξα− 2τξ)}
=τ for τ = 2, 3, . . . . (2.6)

Equality holds for

~(=) = =− 4βξ(1− α)

{(τ − 2)− β(
√
=− 2γ + 4ξα− 2τξ)}

=τ .

Corollary 2.8. If ~(=) ∈ k∗s(α, β, 1, 1), we get

~(=) = =− 4β(1− α)

{(τ − 2)− β(4α− τ − 2)}
=τ . (2.7)

Equality holds for

~(=) = =− 4βξ(1− α)

{(τ − 2)− β(4α− τ − 2)}
=τ .

Corollary 2.9. If ~(=) ∈ k∗s(α) that is starlike with respect to symmetric
point of order α, if and only if

∞∑
τ=2

τ(τ − 2α) |az| ≤ (1− α). (2.8)
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3. Distortion theorem

Next, we consider the distortion theorem.

Theorem 3.1. If ~(=) ∈ s∗s(α, β, ξ, γ) then

r − r2 ≤ |~(=)| ≤ r + r2. (3.1)

Equality holds for

~(=) = =− =2 at = = ∓r.

Proof. By Theorem 2.1, we have

~(=) ∈ s∗s(α, β, ξ, γ)

if and only if

∞∑
τ=2

[(τ − 2)− β(γτ − 2γ + 4ξα− 2τξ)] |aτ | ≤ 2βξ(1− α),

or equivalently,

∞∑
τ=2

|aτ |
{
τ −

(
2− 4βξ(1− α)

1 + 2βξ − γβ

)}
≤ 4βξ(1− α)

1 + 2βξ − γβ
, (3.2)

so ~(N ) ∈ s∗s(α, β, ξ, γ) if and only by (3.2), we get

∞∑
τ=2

|aτ | (τ − t) ≤ (2− t) where t =
4βξ(1− α)

1 + 2βξ − 7β
. (3.3)

But

(2− t)
∞∑
τ=2

|aτ | ≤
∞∑
τ=2

|aτ | (τ − t) ≤ (2− t).

The final disparity originates from (3.2); we retain

|~(=)| ≤ r +
∞∑
τ=2

|ar| rτ ≤ r + rτ
∞∑
τ=2

|aτ | rτ ≤ r + r2.

In like manner

|~(=)| ≥ r +

∞∑
τ=2

|aτ | rτ ≥ r + rτ
∞∑
τ=2

|aτ | rτ ≥ r + r2.

So,

r − r2 ≤ |~(=)| ≤ r + r2,

this completes the proof. �
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Corollary 3.2. If ~(=) ∈ s∗s(α, β, ξ, 1), that is, replacing γ = 1, then

r − r2 ≤ |~(=)| ≤ r + r2.

Equality hold for,
~(=) = =− =τ

at = = ∓r.

Corollary 3.3. If ~(=) ∈ s∗s(α, β, 1, 1), that is, replacing γ = 1 and ξ = 1,
then

r − r2 ≤ |~(=)| ≤ r + r2.

Equality holds for,
~(=) = =− =τ at = = ∓r.

Theorem 3.4. If ~(=) ∈ k∗s(α, β, ξ, γ), then

r − 2r2 ≤ |~(=)| ≤ r + 2r2. (3.4)

Proof. This theorem’s proof is comparable to Theorem 3.1, since a function
~(=) ∈ k∗s(α, β, ξ, γ) if and only if =~′(=) ∈ s∗s(α, β, ξ, γ), it will suffice to swap
it out aτ in Theorem 3.1 with τaτ . �

Corollary 3.5. If ~(=) ∈ k∗s(α, β, ξ, 1), that is, replacing γ = 1, then

r − 2r2 ≤ |~(=)| ≤ r + 2r2.

Equality holds for
~(=) = =− 2=τ at = = ∓r.

Corollary 3.6. If ~(=) ∈ k∗s(α, β, 1, 1), that is, replacing γ = 1, ξ = 1, then

r − 2r2 ≤ |~(=)| ≤ r + 2r2.

Equality holds for,

~(=) = =− 2=τ at = = ∓r.

Theorem 3.7. If ~(=) ∈ s∗s(α, β, ξ, γ), then

1− r ≤
∣∣~′(=)

∣∣ ≤ 1 + r. (3.5)

Proof. Since ~(=) ∈ s∗s(α, β, ξ, γ), we have
∞∑
τ=2

|aτ | (τ − t) ≤ (2− t), where t =
4βξ(1− α)

1 + 2βξ − γβ
. (3.6)

Now, considering Theorem 3.1, we have
∞∑
τ=2

τ |aτ | =
∞∑
τ=2

(τ − t) |aτ |+ t
∞∑
τ=2

|aτ | ≤ (2− t) + t = 2.
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Consequently, we have∣∣~′(=)
∣∣ ≤ ∞∑

τ=2

= |aτ | |=|τ−1 ≤ 1 + r

∞∑
τ=2

τ |aτ | ≤ 1 + 2r.

Similarly, we have∣∣~′(=)
∣∣ ≥ ∞∑

τ=2

τ |aτ | |=|τ−1 ≥ 1 + r

∞∑
τ=2

τ |aτ | ≥ 1 + 2r. (3.7)

Therefore, we have
r − 2r2 ≤ |~(=)| ≤ r + 2r2.

This completes the proof. �

Corollary 3.8. If ~(=) ∈ s∗s(α, β, ξ, 1), that is, replacing γ = 1, then

r − 2r2 ≤ |~(=)| ≤ r + 2r2.

Corollary 3.9. If ~(=) ∈ s∗s(α, β, 1, 1), that is, replacing ξ = 1, γ = 1, then

r − 2r2 ≤ |~(=)| ≤ r + 2r2.

Theorem 3.10. If ~(=) ∈ k∗s(α, β, ξ, γ), then

r − 4r2 ≤ |~(=)| ≤ r + 4r2, |=| = r.

Proof. This theorem’s proof is comparable to Theorem 3.1, since a function
~ ∈ k∗s(α, β, ξ, γ) if and only if ~ ∈ s∗s(α, β, ξ, γ). �

Corollary 3.11. If ~(=) ∈ k∗s(α, β, ξ, 1), then

r − 4r2 ≤ |~(=)| ≤ r + 4r2.

Corollary 3.12. If ~(=) ∈ k∗s(α, β, 1, 1), then

r − 4r2 ≤ |~′(=)| ≤ r + 4r2, |=| = ±r.

4. Radius of convexity

Theorem 4.1. If ~(=) ∈ s∗s(α, β, ξ, γ), then ~ is convex in the unit disc with
0 < |=| < r, and

r1 = inf
τ≥2

[
(τ − 2)− β(γτ − 2γ + 4ξα− 2τξ)

τ2(1 + 4βξ − γβ) + τ(γβ − 1)(1− α)

]1/τ−1
. (4.1)

This outcome is acute, exhibiting the extremal function

~(=) = =− 4βξ(1− α)

{(τ − 2)− β(γτ − 2γ + 4ξα− 2τξ)}
=τ (4.2)

for some τ .
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Proof. We know that ~(=) ∈ k∗s(0, β, ξ, γ), if =~′(=) ∈ s∗s(0, β, ξ, γ). Therefore,
it is sufficient to show that

= (=~′(=))′
=(~(=)−~(−=))′ − 1

2ξ
(
= (=~′(=))′
=(~(=)−~(−=))′ − α

)
− γ

(
= (=~′(=))′
=(~(=)−~(−=))′ − 1

) < β for |=| ≤ r1,

(4.3)
we retain,

= (=~′(=))′
=(~(=)−~(−=))′ − 1

β
[
2ξ
(
= (=~′(=))′
=(~(=)−~(−=))′ − α

)
− γ

(
= (=~′(=))′
=(~(=)−~(−=))′ − 1

)]
=

∣∣∣∣ =
β [(=~′′(=)) (2ξ − γ) + ξ4=(~(=)− ~(−=))′]

∣∣∣∣
=

∣∣∣∣ −
∑∞

τ=2 τ(τ − 1) |aτ | =τ−1

β [−
∑∞

τ=2 τ(τ − 1)(2ξ − γ) |aτ | =τ−1 + 4ξ −
∑∞

τ=2 4τξ |aτ | =τ−1]

∣∣∣∣
=

∣∣∣∣ −
∑∞

τ=2 τ(τ − 1) |az| =τ−1

4βξ −
∑∞

τ=2 τ
2[(4ξ − γ)β + γτβ] |aτ | =τ−1

∣∣∣∣
≤

−
∑∞

τ=2 τ(τ − 1) |aτ | |=|τ−1

4βξ −
∑∞

τ=2 τ
2[(4ξ − γ)β + γτβ] |aτ | |=|τ−1

.

Thus, (4.1) is hold, if

∞∑
τ=2

τ(τ − 1) |aτ | |=|τ−1 ≤ 4βξ −
∞∑
τ−2

τ2[(4ξ − γ)β + γτβ] |aτ | |=|τ−1.

That is
∞∑
τ=2

[
τ2(1 + 4βξ − γβ) + τ(γβ − 1)

]
|aτ‖=|τ−1 ≤ 4βξ. (4.4)

But
∞∑
τ=2

[(τ − 2) + β(γτ − 2γ + 4ξα− 2τξ)] |aτ | ≤ 4βξ(1− α).

Hence, (4.2) will be true, if

∞∑
τ−2

[
τ2(1+4βξ−γβ)+τ(γβ−1)

]
|=|τ−1 ≤ [(τ−2)+β(γτ−2γ+4ξα−2τξ)]

(1−α)
.

Solving for |=|, we obtain

|=| ≤
[

(τ − 2) + β(γτ − 2γ + 4ξα− 2τξ)

[(τ2(1 + 4βξ − γβ) + τ(γβ − 1)) (1− α)]

]1/τ−1
.
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The desired result is followed by more substitution of |=| = r1 in the above
expression. �

Corollary 4.2. If ~(S) ∈ s∗s(α, β, ξ, 1), then f is convex in the disc 0 < |=| <
r, and

r2 = inf
τ≥2

[
(τ − 2)− β(τ − 2 + 4ξα− 2τξ)

(τ2(1 + 4βξ − γβ) + τ(γβ − 1)) (1− α)

]1/τ−1
. (4.5)

The result is sharp with the extremal function,

~(=) = =− 4βξ(1− α)

[(τ − 2)− β(τ − 2 + 4ξα− 2τξ)]
=2

for some τ .

Corollary 4.3. If ~(=) ∈ s∗s(α, β, 1, 1), then ~ is convex in the disc 0 < |=| <
r, and

r2 = inf
τ≥2

[
(τ − 2) + β(τ + 2− 4α)

(τ2(1 + 4β − γβ) + τ(γβ − 1)) (1− α)

]1/τ−1
. (4.6)

This outcome is acute, exhibiting the extremal function

~(=) = =− 4β(1− α)

[(τ − 2)− β(τ − 2 + 4α− 2τ)]
=τ

for some τ .

Corollary 4.4. If ~(=) ∈ s∗s(0, 1, 1, 1) then, f is convex in the disk 0 < |=| <
r.

5. Closure theorem

Theorem 5.1. Let ~1(=) = = and

~τ (=) = =− 4βξ(1− α)

[(τ − 2)− β(τ − 2γ + 4ξα− 2τξ)]
=τ , for τ = 2, 3, 4, . . . . (5.1)

Then ~(=) ∈ k∗s(α, β, ξ, γ), if and only if ~(=) can be expressed in the forms,

~(=) = ~1(=)−
∞∑
τ−2

λτ~τ (=) where λτ ≥ 0 and
∑

λτ = 1.

Proof. Suppose,

~(=) = =−
∞∑
τ−2

λτ~τ (=) = =−
∞∑
τ=2

4βξ(1− α)

[(τ − 2)− β(τ − 2 + 4ξα− 2τξ)]
=τ .
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Then
∞∑
τ=2

4βξ(1− α)

[(τ − 2)− β(τ − 2 + 4ξα− 2τξ)]
× (τ − 2)− β(τ − 2 + 4ξα− 2τξ)

4βξ(1− α)

=

∞∑
τ=2

λτ = 1− λ1 ≤ 1.

Therefore, ~(=) ∈ k∗s(α, β, ξ, γ).
On the other hand, let us assume ~(=) ∈ k∗s(α, β, ξ, γ) that theorem’s re-

mark provides us with

|aτ | ≤
4βξ(1− α)

{(τ − 2)− β(γτ − 2γ + 4ξα− 2τξ)}
for τ = 2, 3, . . . ,

λτ =

[
(τ − 2)− β(τγ − 2γ + 4ξα− 2τξ)

4βξ(1− α)

]
|aτ |

and

λτ = 1−
∞∑
τ−2

λ.

Then

~(=) = 1−
∞∑
τ−2

λτ~τ (=).

�

Corollary 5.2. If ~τ (=) = = and

~τ (=) = =− 4βξ(1− α)

[(τ − 2)− β(τ − 2γ + 4ξα− 2τξ)]
=τ for τ = 2, 3, 4, . . . .

Then ~(=) ∈ k∗s(α, β, ξ, 1), if and only if ~(=) can be articulated as

~(=) = ~1(=)−
∞∑
τ−2

λτ~τ (=), where λτ ≥ 0, τ = 1, 2, . . . ,
∑

λτ = 1.

Corollary 5.3. If ~1(=) = = and

~τ (=) = =− 4β(1− α)

[(τ − 2)− β(τ − 2γ + 4α− 2τ)]
=τ for τ = 2, 3, 4, . . .

Then ~(=) ∈ k∗s(α, β), if and only if ~(=) can be articulated as

~(=) = ~1(=)−
∞∑
τ−2

λτ~τ (=), where λτ ≥ 0, τ = 1, 2, . . . ,
∑

λτ = 1.
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Corollary 5.4. If ~1(=) = = and

~(=) = =−
∣∣∣∣1τ
∣∣∣∣=τ .

Then ~(=) ∈ k∗s(0, 1, 1, 1), if and only if ~(=) can be expressed in the form

~(=) = ~1(=)−
∞∑
τ−2

λτ~τ (=), where λτ ≥ 0, τ = 1, 2, . . . ,
∑

λτ = 1.

6. Conclusion

In this study, we have thoroughly examined the properties of analytic func-
tions within the unit disk, specifically focusing on the symmetric classes A and
B with negative coefficients. Our investigation has led to several significant
findings: coefficient inequalities, convexity radius, distortion theorems, and
symmetric classes with negative coefficients. These findings contribute signif-
icantly to the field of geometric function theory, offering new insights into the
behavior and properties of functions with negative coefficients within the unit
disk. These results not only enhance the theoretical understanding of such
functions but also provide a robust foundation for future research in various
areas of geometric function theory and its applications.

Acknowledgments: The author thanks for the support of Rambhai Barni
Rajabhat University.
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