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Abstract. The purpose of this paper is to introduce an iterative method for finding a com-
mon solution to fixed point problems and split generalized equilibrium problems of demi-
metric mappings in real Hilbert spaces. We are motivated by the convergence properties of
the proposed method and establish the strong convergence of the sequence generated by our
algorithm. Additionally, we present a numerical example to illustrate the significance and
efficiency of our method. Our results develop and unify several optimization results found

in the literature.

1. INTRODUCTION

Let C be a nonempty, closed and convex subset of a real Hilbert space H
with inner product (-, -) and norm [|-||. We denote the strong convergence and
weak convergence of a sequence {x,} to a point x in a Hilbert space H by
xn, — x and z, — z, respectively. It is well known in [16] that a Hilbert space
H satisfies Opial condition, that is, for any sequence {z,} with z, — z, the
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inequality
limsup ||z, — z|| < limsup ||z, — y|| (1.1)

n—oo n—o0

holds for every y € H with y # x.

Let C' be a nonempty closed convex subset of H and ¢ : C x C' — R,
F : C xC — R be two bifunctions. The generalized equilibrium problem
(GEP) is to find a point z* € C such that

F(z*,y) + ¢(z*,y) >0, VyeC. (1.2)

The solution set of the GEP is denoted by GEP(F, ¢). In particular, If we
set ¢ = 0 in (1.2), then the GEP reduces to the classical equilibrium problem
(EP), which is to find a point z* € C such that F(z*,y) > 0, for all y € C.
The solution set of EP is denoted by EP(F). The EP is a generalization
of many mathematical models such as variational inequality problems (VIPs),
fixed point problems (FPPs), certain optimization problems (OPs), Nash EPs,
minimization problems, (MPs) and others; see [9, 18]. Many authors have
studied and proposed several iterative algorithms for solving EPs and related
OPs, see [1, 2, 3, 4, 20, 22].

In 2013, Kazmi and Rizvi [11] introduced and studied the following split
generalized equilibrium problem (SGEP): Let C' C Hy and Q C Hs, where H;
and Hs are real Hilbert spaces. Let Fi,¢1 : CxC — Rand Fy,¢9: QX Q — R
be nonlinear bifunctions, and A : H; — Hs be a bounded linear operator. The
SGEP is defined as follows: Find z* € C such that

Fi(z*,2) + ¢1(a*,2) >0, Ve e C (1.3)
and such that
y* = Az™ € Q solves Fy(y*,y) + ¢2(y*,y) >0, Vy € Q. (1.4)
We denote the solution set of SGEP (1.3)-(1.4) by
SGEP(Fi,¢1, Fa,¢9) :={a" € C: 2" € GEP(F1,¢1) such that
Az* € GEP(Fy, ¢2)}.

Furthermore, an iterative algorithm was also presented by the authors for
approximating the solution of SGEP in a real Hilbert space. If ¢1 = 0 and
¢2 =0, in (1.3) and (1.4) then the SGEP reduces to split equilibrium problem
(SEP), which is to find z* € C such that

Fi(z*,2) >0, YVzel (1.5)
and such that
y* = Az" € Q solves Fy(y*,y) >0, VyeEQ. (1.6)
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Observe that (1.5) is the classical EP. Therefore, the inequalities (1.5) and
(1.6) comprise a pair of EPs which involves finding the image y* = Az* under
a given bounded linear operator A, of the solution z* of (1.5) in Hj, which is
the solution of (1.6) in Hy. The solution set of SEP (1.5)-(1.6) is denoted by
SEP(F|, ) = {z € EP(F\) : Az € EP(F3)}.

Another important problem in fixed point theory is the fixed point problem
(FPP), which is defined as follows:

Find a point z* € C such that Tz* = z*, (1.7)

where T': C' — C'is a nonlinear operator. We denote the set of fixed points of
T by Fix(T). The fixed point theory for demimetric mapping can be utilized
in various areas such as game theory, control theory, mathematical economics,
etc.

In 2016, Suantai et al. [19] introduced the following iterative scheme for
solving SEP and FPP of nonspreading multi-valued mapping in Hilbert spaces:

x1 € C arbitrarily,
Up = TE (I —yA (I = TF2)A)ay, (1.8)
Tnt1 € apxy + (1 — ay)Sun,

for all n > 1, where C' is a nonempty closed convex subset of a real Hilbert
space H,{a,} C (0,1),r, C (0,00), S is a nonspreading multi-valued map-
ping, and v € (0, %) such that L is the spectral radius of A*A and A* is the
adjoint of the bounded linear operator A. Under the following conditions on
the control sequences

(i) 0 < liminf,, oo ap < limsup,, oo an < 1;

(ii) liminf, o 7y > 0,
the authors proved that the sequence {z,} defined by (1.8) converges weakly
to a point p € F(S)NSEP(Fy, Fy) # 0.

In this article, we are interested in studying the problem of finding a com-
mon solution for both the SGEP (1.3)-(1.4) and the common FPP for demi-
metric mappings. The motivation for studying such problems is in their poten-
tial application to mathematical models whose constraints can be expressed
as FPP and SGEP. This occurs, in particular, in practical problems such as
signal processing, network resource allocation and image recovery. A scenario
is in network bandwidth allocation problem for two services in heterogeneous
wireless access networks in which the bandwidth of the services are mathe-
matically related (see, for instance, [7, 13] and the references therein).

Motivated by the above results and the ongoing research interest in this
direction, in this article, we introduce an iterative algorithm of a common
solution of fixed point problem and split generalized equilibrium problem of
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demimetric mappings in real Hilbert spaces. We establish a strong convergence
of the sequence generated by the proposed algorithm. We present a numerical
example to illustrate the significance and efficient performance of our method.

Subsequent sections of this work are organized as follows: In Section 2,
we recall some basic definitions and lemmas that are relevant in establishing
our main results. In Section 3, we prove some lemmas that are useful in
establishing the strong convergence of our proposed algorithm and also prove
the strong convergence theorem for the algorithm.

2. PRELIMINARIES

Definition 2.1. Let C be a nonempty closed convex subset of a real Hilbert
space H. A mapping T : C'— C is said to be:

(1) directed if

Tz — 2*|* < ||z — 2*|| — || Tz — 2|, Yz € C,2* € Fiz(T),
(2) p-demicontractive if there exists a constant § € [0,1) such that

|Tx —z*||* < ||z — 2*|| + B||Tz — z||, ¥V = € C,z* € Fiz(T),

(3) k-demimetric if there exists a constant k € (—oo, 1) such that

1-k
2

(x —a*,x —Tx) > |z — Tx|? Vx € C,z* € Fix(T). (2.1)

Clearly, (2.1) is equivalent to the following:
Tz —2*|? < ||z —2*|| + k| Tz — |, ¥V z € C,x* € Fiz(T).

The class of demimetric mappings is fundamental because many common
types of mappings arise in optimization belong to this class, see for example
[6, 23] and references therein. The demimetric mappings include the directed
mappings and the demicontractive mappings as special cases. More so, this
class mapping contains the classes of strict pseudo-contractions, firmly-quasi-
nonexpansive mappings, 2-generalized hybrid mappings and quasi-nonexpan-
sive mappings.

The following results will be needed in the sequel:

Lemma 2.2. ([21]) In a real Hilbert space H, the following inequalities hold
forallxz,y € H :
() [lo+ ]l <
(ii) [l + y||”
(iif) [}z —yl|

lall2+ 20+ v);
a2+ 20z, ) + [l
lall® = 20z, ) + Iyl
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Lemma 2.3. ([24]) Let ay,, b, and 7y, be sequences of nonnegative real numbers
such that

ap+1 < (14 vp)an + by, n€ N
If Y0 1 <00 and Y07 by < 00, then lim, o ay exist.

Lemma 2.4. ([15]) Let C be a nonempty closed convex subset of a real Hilbert
space H. Given x,y,z € H and a real number «, the set

{ueCully—ul® < llz —ul? + (z,u) + a}

is closed and conver.

Assumption 2.5. Let C be a nonempty closed and convex subset of a Hilbert
space Hy. Let F1 : CxC — Rand ¢ : CxC — R be two bifunctions satisfying
the following conditions:

(A1) Fi(z,z) =0 for all z € C,

(A2) Fj is monotone, that is, Fi(z,y) + Fi(y,z) <0 for all z,y € C,

(A3) Fy is upper hemicontinuous, that is, for all z,y,z € C,

lim Fy (2 + (1 — t)a,y) < Fi(z,y),

(A4) for each z € C,y — Fi(z,y) is convex and lower semicontinuous,
(A5) ¢1(z,x) >0 for all x € C,
(A6) for each y € C,x — ¢1(x,y) is upper semicontinuous,
(A7) for each x € C,— ¢1(x,y) is convex and lower semicontinuous
and assume that for fixed » > 0 and z € C, there exists a nonempty compact
convex subset K of H; and x € C' N K such that

1
Fl(y,x)—i—cbl(y,x)+;<y—x,x—z> <O7 vyEC\K

Lemma 2.6. ([14]) Let C be a nonempty closed and convex subset of a Hilbert
space Hy. Let Fy : CxC — R and ¢1 : CxC — R be two bifunctions satisfying
Assumption 2.5. Assume that ¢1 is monotone. Forr > 0 and x € Hy, define

a mapping T 1 C as follows:

1
T7§F17¢1)x = {Z eC: F1(27y)+¢1(zay)+;<y —Z, %= CC> > 07 VZ/ € C} )

(2.2)
or all x € H1. en
for allz € Hy. Th
(i) for each z € Hl,TT(FI’%)x £ 0,
(ii) T s single-valued,
) T}Fl#z)l)

(iii 1s firmly nonexpansive, that is, for any x,y € Hy,

HTT§F17¢>1)3j _ T;F17¢1)y||2 < <TT(FL¢>1)m _ T£F1’¢1)y, z—1y),
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(iv) F(T""™)) = GEP(Fy, éu),
(v) GEP(F1,¢1) is compact and convez.

Lemma 2.7. ([5]) Let C be a nonempty closed and convex subset of a Hilbert
space Hy. Let f1 : CxC — R and ¢1 : CxC — R be two bifunctions satisfying

Assumption 2.5, and let T7§F1,¢1) be defined as in Lemma 2.6 for r > 0. Let
x,y € Hy and ry,ro > 0. Then

ro — 1
Ty =T 0] < fly =+ | P Ty — .

Lemma 2.8. ([17]) Let {a,} be a sequence of positive real numbers, {ay} be
a sequence of real numbers in (0,1) such that 3" A\, = oo and {d,} be a
sequence of real numbers. Suppose that

ant1 < (1 — an)an + and, + Ap, n> 1.

If limsupd,, <0 for all subsequences {an,} of {an} satisfying the condition

k—oo

liminf{an,+1 — an,} >0,
k—ro0

then lim a, = 0.
k—o0

3. MAIN RESULT

In this section, we give our main result of the sequel. Let C' and @ be
nonempty, closed and convex subsets of real Hilbert spaces H1 and Hs, respec-
tively. Let L : Hy — Hy be a bounded linear operator with dual L* : Hy — H;.
Assume I, ¢ and Fs, ¢9 are bifunctions on C' x C and Q x @, respectively
satisfying Assumptions A;-A7. Let S : Hi — Hi be a k-demimetric mapping
where k € (—o0,1). We consider the problem of finding a point x* € C such
that

x* € Fix(S)N SGEP(Fy, Fy, ¢, ¢2). (3.1)
We denote the solution of (3.1) by I'. That is
I'= {x* eC:z2" e Fix(S) N SGEP(Fy, Fy, ¢, ¢2)}

Assume I' is nonempty. For approximating a point in I', we introduce the
following iterative method:

Algorithm: (The New Algorithm)
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Initialization: Choose xg,z1 € C and # > 0. Let f : C — C be a contraction
mapping with a constant 7 € (0,1). Given my,z,—_1, choose 6, such that
0, € [0, 60,], where

g — {min {97 m} , if zy # 2y,
0, otherwise.
Iterative process: Compute x,1 as follows:
Wy, = Ty, + Op(Tn — Tp-1),
Yn = Qpwy + (1 — ozn)Tff’<Z>1 (wp, — Y L*(I — T£2’¢2)Lwn),
zn = Bnyn + (1 — Bn)SYn,
Tn+1 = Onf(@n) + pn®n + An2n,

(3.2)

where 7, is chosen such that for small enough e > 0,

S R [l 71 53
n ) ) *
(1 = T2%) Lo 2

if T,}Tf’q52 Lw,, # Lw, otherwise ~, = ~.
First we prove the following important lemma:

Lemma 3.1. Let {x,,} be a subsequence of {x,,} given by Algorithm (3.2)
such that x,, — q € C. Suppose ||wy, — Tn, || = 0, ||wn, — un,|| — 0 and

| Lwn,, — TH2? Lwy, || = 0 as k — co. Then q € SGEP(F1, F, ¢1, ¢2).

Proof. Since uy,, = i (wny, —Yn, L (I — Tgfk’@)Lwnk), we get for all u € C,

’l“nk

1 *
Fl (unk7u)+¢1 (unkvu)+r<u_unkv Uny, — (wnk _WnkL (I_TTZQIC7¢2)Lwnk)> > 0.

Nk

This implies that

1
Fi(un, , u) + ¢1(un,,u) + T<u — Upys Uny, — Wny)
N

1
+ (U = Ung, Yy L (1 = T72%) Lwp,) >0, Vu € C

Ty
and

1 1
— (U = Upy Uny, — W) + — (U — Uy, Yy, L7 (1 — T7~F2’¢2)Lwnk>
Tng T "k

> Fi(u, un,, ) + ¢1(u, un, ). (3.4)

Since [|wp, — un, || = 0, then w,, — ¢ as k — oco. Taking the limit of the
inequality (3.4), we get

Fi(u,q) + ¢1(u,q) <0, Yu € C. (3.5)
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Let uy = tu+ (1 — t)q for any ¢t € (0,1] and u € C. Consequently, we have
u; € C' and hence
Fl(“hQ) + ¢1(Uta Q) S 0.
Using assumption (Al) and (A4), we have

0 < Fi(ut,ut) + é1(ut, ur)
< t(Fr(ug, w) + ¢ (ug, w)) + (1 =) (F1(ue, q) + ¢d1(ue, q))
< Fl(Ut,u) + ¢1(Ut,u).
Hence, we have
Fl(“h“) + ¢1(Ut, u) > 0.

Letting t — 0 and using assumption A3, we deduce the upper semicontinuity
of Fy such that

Fi(q,u) + ¢1(q,u) >0, Vu e C.

This implies that ¢ € GEP(Fy, ¢1).
Further, since L is a bounded linear operator, then Lu,, — Lgq. Then, it

follows from ||({ — TF2’¢2)Lwnk | — 0 that Trlji’@Lwnk — Lgq. By definition of

Tnk
TF2’¢2

Ty Lwn,, we have

By (T2 % Ly w) + 2 (T, 2% Ly, , u)

1
+ —(u = T[22 Lwn,, T2% Ly, — Lwy,) >0, ¥V u € Q.

Tny,

Since both F5 and ¢9 are upper semicontinuous in the first argument, it follows
from the above inequality that

F5(Lqg,u) + ¢2(Lg,u) <0, Yu € Q.

This shows that Lq € GEP(F3, ¢2). Hence ¢ € SGEP(Fy, Fa, ¢1, ¢2). O

Lemma 3.2. Let {z,} be a sequence generated by Algorithm (3.2). Then {x,}
is bounded.

Proof. Suppose u, = T % (wy, — yL*(I — TE2??) Lw,,) in Algorithm (3.2),
then y, = apwy, + (1 — ay)u,. Let p € T, we have from Algorithm (3.2), that

ot = Dl = T 1 — 0L (L — T2 L) — T
< Hwn - ’VnL*(I - T7~F,LZ7¢2)Lwn _pH2
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= Jlwn = plI* + Wl L* (T2 Lwy, — Luw,)||?
+ 2y (wy, — p, L*(TTIZZ’@Lwn — Lwy))

= Jlwn = plI* + 9| L* (T2 Lwy, — Luwy,)||?
+ 27y, (Lw, — Lp, Tgf’@ Lw,, — Lwy,)

141

= |[wn = plI* + I L (L5 Lwy — Lwn) | + 3| 15292 Lwy — Lp|®

— Yol Lwy, — LPH2 - ’YnHvaf’@Lwn - LwnH2

< |lwn = plI* + 2| L (L5292 Lwy — Lwn)|* + 3l Lwn — Lpl|?

— Yal| Lwy — LPH2 - ’YnHTgf@QLwn - LwnHQ
< Jlwn — plI? + V2| L*(TF>? Lwy — Lwy)|?
— YT + e)Hquf’@Lwn - Lwn”2

[un = pll < {lwn = pl|

Also,
lyn — pll = lonwn + (1 — an)un — pl|
= [lan(wn —p) + (1 — an)(un — p)||
< apllwn = pll + (1 — o) |[un — pl|
< apllwn = pll + (1 — an)|[wn — p||
= ||wn — pl|-
Since nh_}rrolo g—ZHmn — xp—1|| = 0, there exists M; > 0 such that

On,
<~ n — znall < M
1)

for all n € N. Therefore,

[wn = pll = [lzn + On(2n — 2n-1) = p
< [lzn = pll + Onllan — 2nl

0
< ||lzn —pll + 5n5£“xn — 1|
n

< [lzn — pll + 00 M.

(3.7)
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Again from Algorithm (3.2), we have

20 = 2lI* = 1Bnyn + (1 = Bn)Syn — pII”
= I(1 = Bn)(yn — D) + Bu(Syn — p)|?
= (1= Ba)llyn — plI> + Ball Syn — pII> = Bu(L = Bu)l(Syn — yn)|I?
< (1= Bu)llyn = plI* + Bullyn — plI” = Bkl (Syn — yn)||>
- /Bn(l - Bn)H(Syn - yn)H2
= [lyn — plI* = Bu(1 =k = Bu)(Syn — yn)|I*. (3.8)
Therefore,
[z — Pl < llyn — pll-
Finally, we have

[Znt1 = pll = [|0n.f (T0) + pnn + Anzn — pl|
< onllf(@n) = pll + pnllzn — pll + Anllzn — pll
< onllf(@n) — () + 6nll f(P) — Pl + tinllzn — Pl + Anllyn — pll
< onllf(@n) = () + 6nllf(p) — Pl + tinllzn — Il + Anllwn — pll
< Gl f(zn) = ()| + 0ullf () — Pl + pallzn — p|

+ An(llzn = pll + 6, M)
< onTl|zn — pll + 0ull f(p) — pll + pnllzn — Pl

+ An(llzn — pll + 6, M)
< OnTllzn = pll + (1 = 0p) |zn — pll + 0nll £ () — pIl + Andn M
= (1= 6n + 6n7)llzn — pll 4 0nll f () =PIl + Andn M

on(1 — In(1 —
= 1= a1 = 7l = o+ 2T =l S
< max{”xn — |, If(p) (_111’:_)/\an }
< max{“ﬂfl =l 1) (—1p_||7—_|—)>\nM1 } )
By induction, we have,
o ol < e oy = i, I ZPLER R

Thus, {z,} is bounded, so {u,},{y.} and {z,} also are bounded. O
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Theorem 3.3. Let {x,} be a sequence generated by Algorithm (3.2). Then,
{zn} converges strongly to p € ', where p = Prf(p).

Proof. Let p € T'. From Algorithm (3.2), we have

||wn _pH2 = Hxn + en(l’n - xn—l) _pH2
= ||lzn = PlI® + 200 (@0 — Py Ty — Tp1) + 02|20 — 2012
= |0 — pl|* + 2002 — zo—1 |||z — pl| + 02|20 — 01 )?

= ||zn — p”2 + Onllzn — Tp-1|2)|2n — pll + Onllzn — 5Un—1H2

0
= ||zn — p||2 + Onllzn — 2p1||2]|2n — pl + 5n57n||xn - xn71||2
n
= |&n — plI* + Onllzn — 21| 2l|zn — pl| + an M)
= ||$n_p||2+9n||xn_xnfl||M27 (3.9)

where My = sup,, (2||x, — p|| + anM7).
Also from Algorithm (3.2), we have
[yn — pH2 = [lonwn + (1 — an)un — pH2
= [low (wp = p) + (1 — an)(un — p)

= ap|lwn, _pH2

[

+ (1 — an)l|un _pH2 —an(l —ap)|w, — un||2
< ayl|wy, _pH2 + (1 — ap)[Jwy, — p||2 —an(l = ap)|lw, — UnH2
( )

= ”wn_p||2_an 1-a, ”wn_unH2 (310)
In addition, using Algorithm (3.2) and (3.9), we have

|1 — pH2 = [|6nf(zn) + pnn + Anzn — pH2

= |00 (f(zn) = P) + pn(Tn — p) + An(2n — p)H2

< pn(zn —p) + An(2n — p)”2 + 2un(f(zn) — P, Tn+1 — p)

< pipllen = pl* + 2na (@0 = p, 20 — D) + X320 — pl?
+ 26, (f(zn) — P; Tnt1 — p)

< pllzn = pl* + 2 Anllzn — pllllzn — pll + A0 ll20 — pII?
+ 260 (f(2n) — P; Tnt1 — p)

< ppllen = ol + Nollzn = plI* + padn(llzn = pl* + |20 — pl?)
+ 200 (f(zn) — f(P), Tnt1 — p) + 260 (f(p) — P, Tnt1 — )
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= tn(fn + An)l|Tn — p|| + An(ptn + An)ll2n — pH2

+ 200 (f(zn) = f(P), Tns1 — p) + 200 (f(P) — P, Tnt1 — D)

< pnltn + M)l 20 — I + (ki + An)lyn — P
+ 26, (f (zn) —
<.Un(,un+)‘ )Hzn p||2+)\ (Nﬂ“')‘ ||wn p||2
+ 20, (f(zn) — f(P), Tns1 — p) + 26, (f(P) — s Tng1 — D)

)
(
)
f(P), Tnt1 — p) +20,(f(p) — Py Tny1 — p)
)
(
)

< pin(pin + An) |20 — p||2+)\ (tn + An) |20 p||2
+ An(pn + An)Onl|n — T M2
+ 2607 |20 — pll[|Tnt1 — pll + 200 (f (p) — Py Tnt1 — p)
< (pn + )‘n)QHxn - p||2 + An(pn + An)Onl|Tn — 2n—1 || Mo
+ OnT||Tn _pH2 + 0nT||lTnt1 — p”2 + 260 (f(p) — P; Tnt1 — p)
=(1- (52)“3«% _pH2 + A (pin + M) On || 27 — 21 || M2
+ nTl|Tn _pH2 + 0nT|lTnt1 — pH2 + 20, (f(P) — P, Tn+1 — D)
= (1= 26, + 6,7) |25 — pl* + 63 |20 — pl®
+ A (1= 800|120 — 1| M + 07|20 — p|)?
+ 0n7|@n i1 — pl* + 200 (f(p) — P, Tnt1 — p) (3.11)

which implies,

20,,(1 — 7
lewer —pl? < (1= 222020 g, - mP
1—-96,7

n(l—1)

1_5 T < 6 H T, mn—l”M2>
n(l—17) 5 M3

1_5 - < 1_7_ T(f(p)—p796n+1—p>>

20n(1 —7) 9 20,(1—1)
— (1= 2 Ty, - Ol 2Ty 12
-0y, g 4 20T, (3.12)

An(1-6y) 0
where M3 = supneN{Ha:n—pH2 :n >N} and b, = ( 2((11 5] ||xn Tp—1||Ma+
Sy + 1 () = potass — p)).
According to Lemma 2.8, it is sufficient to establish that limsup b,, <0

k—o0
for every subsequence {||x,, — p||} of {||z, — p||} satisfying the condition

lim inf{ ||z, +1 — pl| = {llzn, —pll} = 0. (3.13)
k—00
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To establish that limsupb,, < 0, we assume the existence of the subse-
k—o0

quence satisfying (3.13). Thus,

tim inf{[|zn, 41 = pl|* = [|2n, —pl}* = lim inf{(lzn, +1 = pll = [lzn, — p])
500 k—o0

X (lzntr = 2l + llzn, —pID)}
> 0. (3.14)

It is easy to see from (3.8) and (3.11), that

[Znt1 — p|| < pin(pn + An) |20 — pH2 + An (i + M)l 20 — p”2

+ 26, (f (zn) = f(P); Tnt1 — p) + 20, (f(P) — P, Tnt1 — P)

<t (kn + An)l[2n = pI* + Aa(ptn + Xa) (lyn — pII?
— Bn(1 =k = Bu) || (Syn — yn)” )
+ 260 (f(2n) = f(D): Zn+1 — p) + 260 (f(P) — P, Tnt1 — D)
+ 260 (f(2n) = f(D); Zn+1 — p) + 260(f(P) — P, Tnt1 — D)

< pin(pn + An) [T _pH2 + An(pn + An) ([lwn — p”2
= Bn(1 =k = Bu)[|(Syn — ?/n)||2) + 200 (f(zn) — f(P), Tn+1 — D)
+ 260 (f(P) = P, Tns1 — D)
+ 200 (f(zn) — f(P), Tn+1 — p) + 200(f(P) — P, Tnt1 — D)

20,(1 —171) 9
< e S _
< (1- 2= o, i

T

2(571(1 — 7‘) 5nM3 1
1— 6,7 (25n(1 0 + 1 {fP) =P ania —p>)

— (1 =08,)8,(1 =k = Bu)|(Syn — yn)||2
nAn (1l —6,) 0

< |lon — pl> + m?ﬂ“l‘n
n n

0 M3
— 0T

- xn—l”MQ + 1

20y,
() = P — )

= A1 =60)Bn(1 =k — B)[|(Syn — yn)||2

= |lzn — p”2 + 60 My — An(1 = 6n)Bn(1 =k — Bn)[|(Syn — yn)HQv
(3.15)

_l’_
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An On) 6
where My = 395800 2, — 2 4 [ My + 285 + 13— (f (D) — P, 2nia

Thus we obtain

lim sup Ank(]‘ - 57%)57%(1 —k— ﬁnk)H(Synk - ynk)HZ

k—o00

< limsuplllzn, — P2 — [n 41 — plI2] + My lim 3,
k—o0 k—o00

< —liminf(|zn, 41 —pl* - |, —p[?)
k—o0

<0.
Therefore, we obtain
|SYny — Unill = 0 as k — oo.

Now from (3.10) and (3.11), we obtain

onMs

1— 6,7

< pn(pn + An) |20 — p||2+>\ (tn + An)ll2n — pH2

+ 260 (f(zn) = f(P), Zns1 — p) + 260 (f(P) — P, Tni1 —p)

<t (pn + An)l[@n =PI + At + Xo) lyn — pII?

+ 260 (f (@n) = f(D), Tnt1 — ) + 260 (f(P) — P Tns1 — D)
)
|
(

|41 = plI* +

< pnin + M) |20 — Pl + M (it + A

X ([Jwn, — p||2 —an(1 —ap)|lwn — up ’2)

+25n<f( n)_f(p)vxn+l_ >+26n f( ) pvanrl_p)

20,(1 —7) 9
< _ome T _
< (1- 2= o,

B (G e = i)

2571(1 — 7') 5nM3 1
1—0,7 <2<5n(1 —7) + 1 T<f(p) — D, Tntl _p>>

—an(l — ap)|lwn — UnHQ

_|_

InAn(l—0p) Oy onMs
< lwn = pl* + = [ — @ || M
< N =plP 4 =g oy 5, o = oM 4 5
26, )
+ 1-6 7_<f(p) — P, Tnt1 _p> - an(l - OCn)H'UJn — unH

= ||z, _pH2 + 00 My — an (1 — ay)||w, — unHQa

— D).

(3.16)

(3.17)
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where My is defined as before. Thus we obtain

limsup ank(l - ank)”w”k — Uny, ”2
k—o0

< limsup(||zn, — pl* = |01 — plI*] + My lim 6,
k—o00 k—o00

< —liminf(|z,, 11 - T, - pl?)
k—o00

<0.

Hence, we obtain

lim |Jwp, — up, | =0. (3.18)
k—o0
Again from (3.10) and (3.11), we have

[Zn+1 _PH2

< pin (i + An)[|Tn — pH + An(pn + An )Hyn_p”2
+ 200 (f (zn) = (), Tnt1 — p) + 200(f(p) = P, Tns1 — )

<t (ks + A [[2n = DI+ (pn + An) (@nllwn — pl|*+(1 — ) lur — p]?)
+ 260 (f(zn) — f(D), Tnt1 — p) + 265 (f(P) — P, Tnt1 — D)

<t (ks + An)l[2n = pII* + An(pin + An) (anJwn — pl|?
+ (L= an)[[lwn = plI* = Anel| L* (17292 Lwy, — Lw,) %))
+ 200 (f (zn) = f(P), Tnt1 — p) + 200(f () = P, Tns1 — )

< pin (i + An)[|Tn — pH2+>‘ (kn + An)([[wn — p”2
— ne(l = an) | L*(T,72% Lwn — Luwy)||)
+ 200 (f(zn) — f(p), Tnt1 — p) + 20, (f(P) — P, Tnt1 — D)

20,(1—7) 2 200(1=7) (An(l = 6,)
< - -
_< T >|xn PP+ \ G5, el —anl| M2

20,(1 —7) S Ms 1
1— 6,7 (25n(1 e e p>)

— (1 = an)||L* (1729 Lw, — Luwy)||?

6 hn(1 = 00) b 5 M3
< _pl|2 v\ ) Pn
26, %
+ (f(p) = p.2n1 — p) — Tne(l — an) | L (Tf?’d""Lwn — Luy) |

1—-96,7
= ||zn — pII* + 0 Ms — Yne(l — o) || L*(TE292 Lw,, — Lwy,)|, (3.19)
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where My is defined as before. Therefore we obtain

lim sup 7y, €(1 — ank)|]L*(T£2’¢2Lwnk — Lwnk)H2

k—o0

< limsup(||zn, — pl* = |01 — plI*] + My lim 6,
k—00 k—o00

< —liminf(Jzp, 41 = p)|* = |20, —p[?)
k—o00
<0.
Hence, we have
lim |L*(TF2% Lw,, — Lwy,)|| = 0. (3.20)
k—o00 "

Using the definition of step-size =, in Algorithm (3.2) and (3.20), we have

lim [[(T2292 L, — Lwy, )| = 0. (3.21)
k—o0 "

From (3.2) and (3.18), we have

||ynk - unkH = ||ankwnk + (1 - ank)unk - unk”
< a"kHwnk - unk” + (1 - ank)”“”k - unkH
— 0 as k — oo. (3.22)

Also from (3.2) and Lemma 3.2, let (w,, — v, L*(I — T,ff’@)Lwn) = vp. Then
we have

TSP 0, = pl* < Jlvn = p|1? = [lon = Ty 10,1,

which implies from (3.6), that

ln =l < llvn = plI* = lon = T11 0,

< lwn =l = flon = T4 0.
Using this in (3.11), we deduce
zns1 = plI* < s (pn + An)llzn = Pl + At + Xa) 9 — 2l
+ 260 (f () = f(P)s Tnt1 — p) + 20, (f(P) — P, Tnt1 — D)
< pin(pn + An) 2 _pH2 + An(ttn + An) (o] [wn _pH2

X (1= an)[[un — plI*) + 200 (f (xn) = f(P), Tnt1 — p)
+ 20,(f(p) — P, Tn+1 — p)
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< pin(ptn + An) |20 —p||2 + An(pn + An) (an[|wy, — pH2
+ (1 —an)[[lwn = pl* = [[on = T2 0, %))
+ 205 (f(zn) = f(D), Tns1 — P) + 200(f () — P, Tn41 — D)

< pin(pin + An) |z _pH2 + A (i + An) ([[wn — p”2 — [Jvn — vall’mvn”Q)
+ 200 (f(xn) = f(D), Tn41 — p) + 200 (f (D) — P, Tnt1 — D)

20n(1—7) 5 20,(1—7) (An(l—dy)
< - — — 7
- (1 1= 0,7 >”x” AP 5 \as,a =) Inllom = oM

26,(1 — 7) < S Ms 1

— _ _ _ 7Fué1 2
T o7 \2,(1—7) 17 PP p>> o = T |

SnAn (1 — 0p) On
(1 —=10,7) Op

5nM3
1-6,7

< |lon —pl* + @0 — 21| Ma +

26
1_ g T(f(p) — D, Tpg1 — D) — ||vn — Tf:}"plvn||2
n
= |l = plI* + 62 Ma — [Jv,, — T2 0, ||, (3.23)
Thus, we get

limsup [[on,, — Trb % on, ||* < Tlimsup(llan, —p|* = [|2n1 = p*]+ My lim 6,
k—o0 k—o0 k—o0

< —liminf(|zp, 41 —pl* - [ —pl?)
k—o0

<0.
Therefore, we deduce
|Un,, — T,ilk"blvnkH — 0 as k — oc. (3.24)
Again from (3.2), we have
[wny, = Zng | = 0y + Ong (Tn), — Tpp1) — 2, |

= enk ||$nk - xnk-l-lH

0
- 6”1@5&”1'7% - ‘rnk-i—lH
n

— 0 as k — oo. (3.25)
It is easy to see from (3.18), (3.22) and (3.25) that
”ynk - mnkH < Hynk - unkH + Hwnk - u”k” + Hwnk - xnkH7
which implies

klim |Yn,, — n, || = 0. (3.26)
—00
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From (3.2), (3.16) and (3.26), we deduce that

12ny, = T | = | (Bryymy, + (1 = Bry, ) Sy, — @ ||
< Bupllyn, — Tyl + (1 = B ) 1SYny, — Tl
< B llyni — T |l + (1 = B ) 1SYny, — Yny, + Yny — o ||
= llyne = Tl + (1 = Br) 1Sy, — yni|l-
Then, we have
|2n, — @, || — 0 as k — oo. (3.27)
Again from (3.2) and (3.27), we have

H"Enk+1 - x”k” = H(f(xnk) + Hng Ty, + )\nkznk) - 'InkH
< 5nk||f(xnk) - xﬂk” + Mnk||xnk - x”k” + )\nkHan - x”k”
Thus,
|Zn,+1 — Zn, || — 0 as k — oo. (3.28)

Since {zy, } is bounded, there exists a subsequence {xnkj} of {x,, } such that
{xnkj} converges weakly to ¢ € Hj. It follows from demiclosedness of S, (3.16)

and (3.26) that ¢ € Fiz(S). Also from (3.24), we have v,, — ¢. Using Lemma
3.1, we have ¢ € SGEP(F}, F», ¢1,¢2). Thus, g € I'. Moreover, since {xnkl}
converges weakly to ¢, we have

limsup(f(p) —p, zn, —p) = lim (f(p) =p, Tn,, =)

k—o0
= (f(p) —p,a—p)-
Hence, p is the unique solution of I', it follows that
lim sup(f(p) — D, Tn,, — p> < 0. (329)
k—o0
We deduce this from (3.28) and (3.29),
likm sup(f(p) — p, Tny+1 —p) < 0. (3.30)
—00
By assumption and (3.29), we have
lim My =1 = —||*n — Tp—1|| M
i, M4 = lm ( (L= dur) 8, In ~ il
M 9
st ) e )

<0.

Thus, from Lemma 2.8, we get that lim ||z, — p|| = 0. O
n—o0
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4. NUMERICAL EXAMPLE

In this section, we provide a numerical example to illustrate the efficiency
of our Algorithm.

Example 4.1. Let H; = Hy = R? and C = Q = [0, 10] x [0, 10] x [0, 10]. Let
L : Hy — Hj be defined by Lz = 5 for each x € Hy. For x € C, define the
mapping S : C — C by

St = {0 m} .

10
Then S is 0-demimetric mapping for all Fiz(T') = {0}. Define the bifunctions
Fi,¢1:C x C — R by Fi(z,y) = 2% + zy — 2y? and ¢1(z,y) =  — y for each
z,y € C. Also define Fy, 2 : Q x Q — R by Fy(u,2) = 3u? + uz — 422 and
da(u, z) = 22 — u? for each u, z € Q. It is easy to check that

+7r
T(F161) , < n
n T 3ry’
T(Fa,p2),, v )
L
WesetF(m)z%andAx:x,0:0.5,720.5,rn:ni+1andan:ﬁ

from Algorithm. It can easily deduced that FyFh, ¢1¢2 and {ry,} satisfy all
conditions in Theorem 3.3. Let € > 0, the Algorithm stops if ||z, — z*|| < e.
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