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Abstract. In this paper, the concept of admissible hybrid F -(G-α-φ)-contraction is initiated

and new conditions for the existence of fixed points for such family of contractions are

examined in the setting of generalized metric spaces. It is noted that the principal ideas

investigated herein improves and harmonizes some existing fixed point results in the related

literature. A few consequences of the presented main notion are highlighted and analyzed

with respect to the available brochure. To substantiate the assumptions and demonstrate

the importance of the obtained results, a nontrivial and comparative example is constructed.

It is observed that the ideas established in this work cannot be inferred from their analogues

in either metric or quasi-metric spaces. From application standpoint, one of the deduced

corollaries is applied to discuss and ascertain new conditions for the existence and uniqueness

of solutions to certain class of nonlinear integral equations.
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1. Introduction

In the progression from classical to modern analysis, the role of fixed point
theory cannot be over-rated. Due to its versatility, the study of metric fixed
point theory has a wide variety of applications in various branches of quanti-
tative sciences ranging from approximation theory, optimization and so on. In
the field of metric fixed point theory, the Banach Contraction Principle [5] is a
distinguished result which is a key tool for both theoretical and computational
aspects of mathematics. Owing to its simplicity of approach, this theorem has
undergone numerous generalizations as many researchers have extended the
result by applying different contractive constraints on various types of spaces.
For recent advancements on metric fixed point results, refer to [7].

The idea of generalization of the metric space has drawn the interest of many
researchers over the past few decades. In 1992, Dhage [8] presented the concept
of a generalized metric space under the nameD-metric space. In line with that,
Mustafa and Sims [21] introduced a more appropriate concept of generalized
metric space called G-metric space and they demonstrated that most of the
results established by Dhage were flawed. Mustafa et al. [20] established some
fixed point results for mappings satisfying different contractive conditions in
the framework of G-metric space. Based on the notion of G-metric space,
Jleli et al. [13] and Samet et al. [25] remarked that some fixed point results
in the context of G-MS can be deduced directly by some existing results in
the setting of symmetric or asymmetric metric spaces. Some authors [6, 15]
noticed that the approaches given in [13, 25] can only be applicable if the
contractive constraints in the theorem can be reduced to two variables. For a
recent survey in the developments of fixed point results in G-MS, the reader
can refer to Jiddah et al. [11].

The notion of α-admissibility and α-ψ-contraction was presented by Samet
et al [24] and some fixed point results were established. The idea of triangular
α-admissibility was birthed as a generalization of α-admissibility by Karapinar
et al [17]. In 2012, Wardowski [29] initiated an interesting generalization of
the Banach Contraction theorem called F -contraction and established a fixed
point result. In 2014, Piri and Kumam [22] extended the work of Wardowski
by imposing weaker auxiliary conditions on the self-map of a complete metric
space on the mapping F . Minak et al. [18] presented some fixed point results

for generalized F -contractions including Ćirić type generalized F -contraction
on a complete metric space. In 2016, Singh et al. [27] studied a new form
of Hardy-Roger-type contraction in G-metric spaces and improved the main
results of [22]. Aydi et al. [4] proposed the notion of a modified F -contraction
via α-admissible mappings and some theorems that guarantees the existence
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and uniqueness of fixed point for such mappings were investigated. Further-
more, Vujaković et al. [28] initiated the idea of (φ -F )-weak contraction and
proved the corresponding fixed point results. For some important trends in
F -contraction type fixed point results, we refer to Fabiano et al. [9], Joshi and
Jain [14].

The concept of admissible hybrid contraction was introduced by Karapinar
and Fulga [16] as a contraction that unifies several nonlinear and linear con-
tractions in the framework of a complete metric space. Jiddah et al. [12]
extended the work of [16] in the set-up of G-metric space and established
some fixed point results via (G-α-φ)-contraction. Going in the same direction,
we observe that hybrid fixed point results via F -contractive-type mappings
in G-metric space are not adequately studied. However, the work of [12] did
not consider other conditions to study the existence of fixed point apart from
the continuity of the mapping. Motivated by this, we introduce a new con-
cept called admissible hybrid F -(G-α-φ)-contraction. With the help of new
auxiliary functions, some fixed point results are discussed for this class of
contractions in the set-up of a G-metric space. A comprehensive, non-trivial
example is constructed to demonstrate the validity of our result and its im-
provement over previous findings. It is worthy of note that the key ideas
established herein cannot be reduced to any existing result. With the help of
some consequences presented, it has been established that the idea proposed
herein is a generalization of some well-known fixed point results in the domain
of F -contractive operators in G-metric space. Finally, one of our obtained
corollaries is applied to prove the existence and uniqueness of a solution to a
class of nonlinear integral equations.

The paper is settled in the following form: In Section 1, the introduction
and overview of related literature are presented. The basic concepts needed
in this work are compiled in Section 2. In Section 3, the principal results and
some corollaries of the obtained fixed point results are discussed. With the
aid of one of the obtained results herein, the existence and uniqueness of a
solution to a nonlinear integral equation is explored in Section 4. In Section
5, deductions, recommendation and conclusion are given.

2. Preliminaries

In this section, we will present some basic notations and results that will
be used subsequently. Throughout this paper, every set X is considered non-
empty. We denote by R, R+ and N, the set of real numbers, the set of non-
negative real numbers and the set of natural numbers, respectively.

Definition 2.1. ([21]) LetX be a non-empty set and letG : X×X×X −→ R+

be a function satisfying:
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(G1) G(x, y, z) = 0 if x = y = z;
(G2) 0 < G(x, x, y) for all x, y ∈ X with x 6= y;
(G3) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X with z 6= y;
(G4) G(x, y, z) = G(x, z, y) = G(y, x, z) = ... (symmetry in all three vari-

ables);
(G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z), for all x, y, z, a ∈ X (rectangle

inequality).

Then the function G is called a generalized metric, or more specifically, a
G-metric on X, and the pair (X,G) is called a G-metric space.

Example 2.2. ([20]) Let (X, d) be a metric space, then (X,Gs) and (X,Gm)
are G-metric space, where

Gm(x, y, z) = d(x, y) + d(y, z) + d(x, z), ∀x, y, z ∈ X, (2.1)

Gn(x, y, z) = max{d(x, y), d(y, z), d(x, z)}, ∀x, y, z ∈ X. (2.2)

Definition 2.3. ([20]) Let (X,G) be a G-metric space and let {xn} be a
sequence of points of X. We say that {xn} is G-convergent to x if

lim
n,m→∞

G(x, xn, xm) = 0,

that is, for any ε > 0, there exists n0 ∈ N such that G(x, xn, xm) < ε, for all
n,m ≥ n0. We refer to x as the limit of the sequence {xn}.

Proposition 2.4. ([20]) Let (X,G) be a G-metric space. Then the following
are equivalent:

(i) {xn} is G-convergent to x.
(ii) G(x, xn, xm) −→ 0, as n,m→∞.

(iii) G(xn, x, x) −→ 0, as n→∞.
(iv) G(xn, xn, x) −→ 0, as n→∞.

Definition 2.5. ([20]) Let (X,G) be a G-metric space. A sequence {xn} is
called G-Cauchy if given ε > 0, there exists n0 ∈ N such that

G(xn, xm, xl) < ε

for all l, n,m,≥ n0. That is, G(xn, xm, xl) −→ 0, as n,m, l→∞.

Proposition 2.6. ([20]) In a G-metric space (X,G), the following are equiv-
alent:

(i) The sequence {xn} is G-Cauchy.
(ii) For every ε > 0, there exists n0 ∈ N such that G(xn, xm, xm) < ε for

all n,m ≥ n0.
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Definition 2.7. ([20]) Let (X,G) and (X ′, G′) be G-metric spaces and let
f : (X,G) −→ (X ′, G′) be a function. Then f is said to be G-continuous
at a point a ∈ X if and only if given ε > 0, there exists δ > 0 such that
G(a, x, y) < δ implies G′(f(a), f(x), f(y)) < ε for all x, y ∈ X. The function
f is G-continuous on X if and only if it is G-continuous at all a ∈ X.

Proposition 2.8. ([20]) Let (X,G) and (X ′, G′) be two G-metric spaces.
Then a function f : (X,G) −→ (X ′, G′) is said to be G-continuous at a point
x ∈ X if and only if it is G-sequentially continuous at x. That is, whenever
{xn} is G-convergent to x, {fxn} is G-convergent to fx.

Definition 2.9. ([20]) A G-metric space (X,G) is called symmetric G-metric
spaces if

G(x, x, y) = G(y, x, x), ∀x, y ∈ X.

Definition 2.10. ([20]) A G-metric space (X,G) is said to be G-complete (or
complete G-metric), if every G-Cauchy sequence in (X,G) is G-convergent in
(X,G).

Mustafa [19] proved the following result in the framework of G-metric space.

Theorem 2.11. ([19]) Let (X,G) be a complete G-metric space and T : X −→
X be a mapping satisfying the following condition:

G(Tx, Ty, Tz) ≤ kG(x, y, z) (2.3)

for all x, y, z ∈ X, where 0 ≤ k < 1. Then T has a unique fixed point (say u,
that is, Tu = u), and T is G-continuous at u.

Following the direction of [29], the idea of F -contraction is defined as follows:

Definition 2.12. ([29]) Let ∆f denote the family of functions F : R+ −→ R
satisfying the following auxiliary conditions:

(F1) F is strictly increasing; that is, for all a, b ∈ R+, if a < b then
F (a) < F (b);

(F2) for every sequence {αn}n∈N ⊆ R+, lim
n→∞

αn = 0 if and only if

lim
n→∞

F (αn) = −∞;

(F3) there exists 0 < k < 1 such that lim
α→0+

αkF (α) = 0.
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Definition 2.13. ([29]) Let (X, d) be a metric space. A self-mapping T on X
is called an F -contraction, if there exists τ > 0 and F ∈ ∆f such that for all
x, y ∈ X,

d(Tx, Ty) > 0 =⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)). (2.4)

Remark 2.14. From (F1) and (2.4), it is clear that if T is an F -contraction,
then d(Tx, Ty) < d(x, y), for all x, y ∈ X such that Tx 6= Ty. That is, T is a
contractive mapping and hence, every F -contraction is a continuous mapping.

Wardowski [29] presented a variant of the Banach fixed point theorem as
follows:

Theorem 2.15. Let (X, d) be a complete metric space and T : X −→ X be
an F -contraction. Then, T has a unique fixed point x0 ∈ X and for every
x ∈ X the sequence {Tnx}n∈N is convergent to x0.

In line with [26], let Φ be the set of all functions φ : R+ −→ R+ such that
φ is a non-decreasing function with lim

n→+∞
φn(t) = 0 for all t ∈ (0,+∞). If

φ ∈ Φ, then φ is called a Φ-map.

Let φ ∈ Φ be a Φ-map such that there exist n0 ∈ N, k ∈ (0, 1) and a
convergent series of non-negative terms

∑∞
n=1 vn satisfying

φn+1(t) ≤ kφn(t) + vn

for n ≥ n0 and any t > 0. Then φ is called a (c)-comparison function [2].

Lemma 2.16. ([2]) If φ ∈ Φ, then the following hold:

(i) {φn(t)}n∈N converges to 0 as n→∞ for t ≥ 0;
(ii) φ(t) < t for all t ∈ R+;

(iii) φ is continuous;
(iv) φ(t) = 0 if and only if t = 0;
(v) the series

∑∞
i=1 φ

i(t) is convergent for t ≥ 0.

Popescu [23] presented the following definitions in the framework of metric
spaces.

Definition 2.17. ([23]) Let α : X × X −→ R+ be a function. A mapping
T : X −→ X is said to be α-orbital admissible, if for all x ∈ X, α(x, Tx) ≥ 1
implies α(Tx, T 2x) ≥ 1.

Definition 2.18. ([23]) Let α : X × X −→ R+ be a function. A mapping
T : X −→ X is said to be triangular α-orbital admissible, if for all x ∈ X, T
is α-orbital admissible, α(x, y) ≥ 1 and α(y, Ty) ≥ 1 implies α(x, Ty) ≥ 1.
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The above definitions were modified and presented in the setting of G-metric
space by Jiddah et al [12] as follows:

Definition 2.19. ([12]) Let α : X × X × X −→ R+ be a function. A map-
ping T : X −→ X is said to be (G−α)-orbital admissible, if for all x ∈ X,
α(x, Tx, T 2x) ≥ 1 implies α(Tx, T 2x, T 3x) ≥ 1.

Definition 2.20. ([12]) Let α : X×X×X −→ R+ be a function. A mapping
T : X −→ X is said to be triangular (G−α)-orbital admissible, if for all x ∈ X,
T is (G−α)-orbital admissible, α(x, y, Ty) ≥ 1 and α(y, Ty, T 2y) ≥ 1 implies
α(x, Ty, T 2y) ≥ 1.

Lemma 2.21. ([12]) Let T : X −→ X be a triangular (G−α)-orbital admis-
sible mapping. If we can find x0 ∈ X such that α(x0, Tx0, T

2x0) ≥ 1, then

α(xn, xm, xl) ≥ 1, ∀ n,m, l ∈ N, (2.5)

where the sequence {xn}n∈N is defined by xn+1 = Txn, n ∈ N.

Definition 2.22. ([3]) Let α : X ×X ×X −→ R+ be a mapping. The set X
is called regular with respect to α if and only if for every sequence {xn}n∈N in
X such that α(xn, xn+1, xn+2) ≥ 1 for all n and xn → x ∈ X as n → ∞, we
have α(xn, x, x) ≥ 1 for all n.

Jiddah et al. [12] presented the following definition of admissible hybrid
(G-α-φ)-contraction in G-metric space.

Definition 2.23. ([12]) Let (X,G) be a G-metric space. A mapping T :
X −→ X is called an admissible hybrid (G-α-φ)-contraction, if there exists
φ ∈ Φ and a mapping α : X ×X ×X −→ R+ such that

α(x, y, Ty)G(Tx, Ty, T 2y) ≤ φ(M(x, y, Ty)) (2.6)

for all x, y ∈ X\Fix(T ), where

M(x, y, Ty)=



[
λ1G(x, y, Ty)q + λ2G(x, Tx, T 2x)q + λ3G(y, Ty, T 2y)q

+λ4

(
G(y,Ty,T 2y)(1+G(x,Tx,T 2x))

1+G(x,y,Ty)

)q
+λ5

(
G(x,y,Ty)(1+G(x,Tx,T 2x))

1+G(x,y,Ty)

)q ] 1
q

,

for some q > 0, x, y ∈ X;

G(x, y, Ty)λ1 ·G(x, Tx, T 2x)λ2 ·G(y, Ty, T 2y)λ3

·
[
G(y,Ty,T 2y)(1+G(x,Tx,T 2x))

1+G(x,y,Ty)

]λ4
·
[
G(x,y,Ty)+G(y,Ty,T 2y)

2

]λ5
,

for q = 0, x, y ∈ X\Fix(T )

(2.7)
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q ≥ 0, λi ≥ 0; i = 1, 2, · · · , 5 such that
5∑
i=1

λi = 1 and Fix(T ) = {x ∈ X :

Tx = x}.

3. Main results

In this section, the idea of admissible hybrid F -(G-α-φ)-contraction is in-
troduced in the setting of G-metric spaces and the conditions for the existence
of fixed points for such operators are investigated.

Definition 3.1. Let (X,G) be a G-metric space. A mapping T : X −→ X is
called an admissible hybrid F -(G-α-φ)-contraction if there exist τ > 0, φ ∈ Φ,
F ∈ ∆f and a mapping α : X ×X ×X −→ R+ such that G(Tx, Ty, T 2y) > 0
implies

τ + F (α(x, y, Ty)G(Tx, Ty, T 2y)) ≤ F (φ(M(x, y, Ty))) (3.1)

for all x, y ∈ X\Fix(T ), where

M(x, y, Ty)=



[
λ1G(x, y, Ty)q + λ2G(x, Tx, T 2x)q + λ3G(y, Ty, T 2y)q

+λ4

(
G(y,Ty,T 2y)(1+G(x,Tx,T 2x))

1+G(x,y,Ty)

)q
+λ5

(
G(x,y,Ty)(1+G(x,Tx,T 2x))

1+G(x,y,Ty)

)q] 1
q

,

for some q > 0, x, y ∈ X;

G(x, y, Ty)λ1 ·G(x, Tx, T 2x)λ2 ·G(y, Ty, T 2y)λ3

·
[
G(y,Ty,T 2y)(1+G(x,Tx,T 2x))

1+G(x,y,Ty)

]λ4
·
[
G(x,y,Ty)+G(y,Ty,T 2y)

2

]λ5
,

for q = 0, x, y ∈ X\Fix(T )

(3.2)

q ≥ 0, λi ≥ 0; i = 1, 2, · · · , 5 such that

5∑
i=1

λi = 1 and Fix(T ) = {x ∈ X :

Tx = x}.

Example 3.2. Let F : R+ −→ R be defined by F (t) = ln(t), t > 0. It is
easy to see that F ∈ ∆f . Each mapping T : X −→ X satisfying (3.1) is an
admissible hybrid F -(G-α-φ)-contraction such that

α(x, y, Ty)G(Tx, Ty, T 2y) ≤ e−τ (φ(M(x, y, Ty))) (3.3)

for all x, y ∈ X. Note that for x, y ∈ X such that Tx = Ty = T 2y, the
inequality (3.1) is still valid. That is, T is an admissible hybrid F -(G-α-φ)-
contraction.
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Our first main result is presented as follows:

Theorem 3.3. Let (X,G) be a complete G-metric space and let T : X −→ X
be an admissible hybrid F -(G-α-φ)-contraction. Assume further that:

(i) T is triangular (G-α)-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0, T

2x0) ≥ 1;
(iii) either T is continuous or;
(iv) T 3 is continuous and α(x, Tx, T 2x) ≥ 1 for any x ∈ Fix(T 3).

Then T has a fixed point in X.

Proof. By hypothesis (ii), we have α(x0, Tx0, T
2x0) ≥ 1 for some x0 ∈ X.

Define a sequence {xn}n∈N in X by xn = Tnx0 for all n ∈ N. Suppose that
we can find some n0 ∈ N such that xn0 = xn0+1 = Txn0 . Then, xn0 is a fixed
point of T and hence, the proof. Assume on the contrary that xn 6= xn−1, for
all n ∈ N.

Since α(x0, x1, x2) = α(x0, Tx0, T
2x0) ≥ 1 and T is triangular (G-α)-orbital

admissible, then

α(xn−1, xn, xn+1) ≥ 1, ∀ n = 0, 1, · · · . (3.4)

Given the fact that T is an admissible hybrid F -(G-α-φ)-contraction, then
we have that for 0 < G(xn, xn+1, xn+2),

τ + F (α(xn−1, xn, Txn)G(Txn−1, Txn, T
2xn)) ≤ F (φ(M(xn−1, xn, Txn))).

(3.5)

Together with (3.4) and (3.5), we have

τ + F (G(xn, xn+1, Txn+1)) = τ + F (G(xn, xn+1, xn+2))

≤ τ + F (α(xn−1, xn, Txn)G(xn, xn+1, xn+2))

≤ F (φ(M(xn−1, xn, xn+1))).

On account of (F1) and (3.4), we get

τ + F (G(xn, xn+1, xn+2)) ≤ F (φ(M(xn−1, xn, xn+1))). (3.6)

We now consider the following cases of (3.2).
Case 1: For q > 0, taking x = xn−1 and y = xn, we have
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M(xn−1, xn, Txn) =

[
λ1G(xn−1, xn, Txn)q + λ2G(xn−1, Txn−1, T

2xn−1)
q

+ λ3G(xn, Txn, T
2xn)q

+ λ4

(
G(xn, Txn, T

2xn)(1 +G(xn−1, Txn−1, T
2xn−1))

1 +G(xn−1, xn, Txn)

)q

+ λ5

(
G(xn−1, xn, Txn)(1 +G(xn−1, Txn−1, T

2xn−1))

1+G(xn−1, xn, Txn)

)q] 1
q

=

[
λ1G(xn−1, xn, xn+1)

q + λ2G(xn−1, xn, xn+1)
q

+ λ3G(xn, xn+1, xn+2)
q

+ λ4

(
G(xn, xn+1, xn+2)(1 +G(xn−1, xn, xn+1))

1 +G(xn−1, xn, xn+1)

)q

+ λ5

(
G(xn−1, xn, xn+1)(1 +G(xn−1, xn, xn+1))

1 +G(xn−1, xn, xn+1)

)q ] 1
q

=

[
λ1G(xn−1, xn, xn+1)

q + λ2G(xn−1, xn, xn+1)
q

+ λ3G(xn, xn+1, xn+2)
q

+ λ4G(xn, xn+1, xn+2)
q + λ5G(xn−1, xn, xn+1)

q

] 1
q

=

[
(λ1 + λ2 + λ5)G(xn−1, xn, xn+1)

q

+ (λ3 + λ4)G(xn, xn+1, xn+2)
q

] 1
q

. (3.7)

Suppose that

G(xn−1, xn, xn+1) ≤ G(xn, xn+1, xn+2).

Then, (3.6) becomes

F (G(xn, xn+1, xn+2)) ≤ F (φ(M(xn−1, xn, Txn)))− τ
= F (φ

[
(λ1 + λ2 + λ5)G(xn−1, xn, xn+1)

q

+ (λ3 + λ4)G(xn, xn+1, xn+2)
q
] 1
q )− τ
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≤ F (φ
[
(λ1 + λ2 + λ3 + λ4 + λ5)G(xn, xn+1, xn+2)

q
] 1
q )− τ

= F (φ((λ1 + λ2 + λ3 + λ4 + λ5)
1
qG(xn, xn+1, xn+2)))− τ

≤ F (φ(G(xn, xn+1, xn+2)))− τ
< F (G(xn, xn+1, xn+2)− τ, (3.8)

which is a contradiction. Therefore, for every n ∈ N, we have

G(xn, xn+1, xn+2) < G(xn−1, xn, xn+1),

so that (3.6) becomes

F (G(xn, xn+1, xn+2)) ≤ F (φ
[
(λ1 + λ2 + λ5)G(xn−1, xn, xn+1)

q

+ (λ3 + λ4)G(xn, xn+1, xn+2)
q
] 1
q )− τ

≤ F (φ
[
(λ1+λ2+λ3+λ4+λ5)G(xn−1, xn, xn+1)

q
] 1
q )−τ

= F (φ((λ1+λ2+λ3+λ4+λ5)
1
qG(xn−1, xn, xn+1)))−τ

≤ F (φ(G(xn−1, xn, xn+1)))−τ. (3.9)

By letting γn = G(xn, xn+1, xn+2), we deduce from (3.9) that

F (γn) ≤ F (φ(γn−1))− τ ≤ F (φ2(γn−2))− 2τ ≤ · · · ≤ F (φn(γ0))− nτ
(3.10)

for all n ≥ 1 with xn+1 6= xn+2. Letting n→∞ in (3.10), yields

lim
n→∞

F (γn) ≤ lim
n→∞

F (φn(γ0))− lim
n→∞

nτ

= F lim
n→∞

(φn(γ0))− lim
n→∞

nτ

= −∞.

And by (F2), we obtain

lim
n→∞

γn = 0. (3.11)

On account of (F3),

lim
n→∞

γn
kF (γn) = 0 for k ∈ (0, 1).

By (3.11), the following is true for all n ≥ 0:

0 ≤ γnkF (γn)− γnkF (φn(γ0))

≤ γnk
[
F (φn(γ0))− nτ

]
− γnkF (φn(γ0))

= −γnknτ
≤ 0. (3.12)
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Letting n→∞ in (3.12),

lim
n→∞

nγn
k = 0. (3.13)

From (3.13), we can find n1 ∈ N such that nγn
k ≤ 1 for all n ≥ n1. Thus, we

have γn ≤ 1

n
1
k

for all n ≥ n1. For m,n ∈ N with m > n ≥ n1, we have

G(xn, xn, xm) ≤ G(xn, xn−1, xn−1) +G(xn−1, xn−2, xn−2)

+ · · ·+G(xm−1, xm−1, xm)

= γn + γn−1 + γn−2 + · · ·+ γm−1

=
m−1∑
i=n

γi ≤
∞∑
i=n

γi

≤
∞∑
i=n

1

i
1
k

.

Since the series
∞∑
i=n

1

i
1
k

converges, the sequence {xn}n∈N is G-Cauchy in (X,G).

From the completeness of (X,G), there exists u ∈ X such that {xn} converges
to u. That is, lim

n→∞
G(xn, xn, u) = 0.

We now show that u is a fixed point of T . By assumption (iii), we obtain

lim
n→∞

G(u, u, Tu) = lim
n→∞

G(xn+1, xn+1, Tu)

= lim
n→∞

G(Txn, Txn, Tu)

= lim
n→∞

G(Txn, Txn, Txn)

= 0.

So we get Tu = u, that is, u is a fixed point of T.
Also, using assumption (iv), T 3u = lim

n→∞
T 3xn = u. To illustrate that Tu =

u, assume on the contrary that Tu 6= u. By (3.5), we obtain

τ + F (G(u, Tu, T 2u)) = τ + F (G(T 3u, Tu, T 2u))

≤ τ + F (α(u, Tu, T 2u)G(Tu, T 2u, T 3u))

= τ + F (α(u, Tu, T 2u)G(Tu, T 2u, u))

≤ F (φ(M(u, Tu, T 2u)))

< F (M(u, Tu, T 2u)), (3.14)
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where

M(u, Tu, T 2u) =

[
λ1G(u, Tu, T 2u)q+λ2G(u, Tu, T 2u)q+λ3G(Tu, T 2u, T 3u)q

+ λ4

(
G(Tu, T 2u, T 3u)(1 +G(u, Tu, T 2u))

1 +G(u, Tu, T 2u)

)q
+ λ5

(
G(u, Tu, T 2u)(1 +G(u, Tu, T 2u))

1 +G(u, Tu, T 2u)

)q ] 1
q

=

[
λ1G(u, Tu, T 2u)q+λ2G(u, Tu, T 2u)q+λ3G(Tu, T 2u, T 3u)q

+ λ4G(Tu, T 2u, T 3u)q+λ5G(u, Tu, T 2u)q
] 1
q

=

[
λ1G(u, Tu, T 2u)q+λ2G(u, Tu, T 2u)q + λ3G(Tu, T 2u, u)q

+ λ4G(u, Tu, T 2u)q+λ5G(u, Tu, T 2u)q
] 1
q

=

[
(λ1 + λ2 + λ3 + λ4 + λ5)G(u, Tu, T 2u)q

] 1
q

= (λ1 + λ2 + λ3 + λ4 + λ5)
1
qG(u, Tu, T 2u)

= G(u, Tu, T 2u).

Hence, (3.14) becomes

τ + F (G(u, Tu, T 2u)) < F (G(u, Tu, T 2u)),

which is a contradiction. Hence, Tu = u.
Case 2: For q = 0, we have

M(xn−1, xn, Txn) = G(xn−1, xn, Txn)λ1 ·G(xn−1, Txn−1, T
2xn−1)

λ2

·G(xn, Txn, T
2xn)λ3

·
[
G(xn, Txn, T

2xn)(1 +G(xn−1, Txn−1, T
2xn−1))

1 +G(xn−1, xn, Txn)

]λ4
·
[
G(xn−1, xn, Txn) +G(xn, Txn, T

2xn)

2

]λ5
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= G(xn−1, xn, xn+1)
λ1 ·G(xn−1, xn, xn+1)

λ2 ·G(xn, xn+1, xn+2)
λ3

·G(xn, xn+1, xn+2)
λ4 ·

[
G(xn−1, xn, xn+1) +G(xn, xn+1, xn+2)

2

]λ5
= [G(xn−1, xn, xn+1)]

(λ1+λ2) · [G(xn, xn+1, xn+2)]
(λ3+λ4)

·
[
G(xn−1, xn, xn+1) +G(xn, xn+1, xn+2)

2

]λ5
.

If G(xn−1, xn, xn+1) ≤ G(xn, xn+1, xn+2), then

M(xn−1, xn, Txn) = [G(xn, xn+1, xn+2)]
(λ1+λ2) · [G(xn, xn+1, xn+2)]

(λ3+λ4)

· [G(xn, xn+1, xn+2)]
λ5

= [G(xn, xn+1, xn+2)]
(λ1+λ2+λ3+λ4+λ5)

= G(xn, xn+1, xn+2).

Hence, (3.6) becomes

F (G(Txn−1, Txn, T
2xn)) ≤ F (φ(M(xn−1, xn, Txn)))− τ

≤ F (φ[G(xn, xn+1, xn+2)
(λ1+λ2+λ3+λ4+λ5)])− τ

= F (φ[G(xn, xn+1, xn+2)])− τ
< F (G(xn, xn+1, xn+2))− τ.

That is,

F (G(xn, xn+1, xn+2)) < F (G(xn, xn+1, xn+2))− τ,
which is a contradiction. Hence, we have

G(xn, xn+1, xn+2) < G(xn−1, xn, xn+1), ∀n.

Therefore, by (3.6) we have

F (G(xn, xn+1, xn+2)) < F (φ(G(xn−1, xn, xn+1)))− τ
< F (φ2(G(xn−2, xn−1, xn)))− 2τ

...

< F (φn(G(x0, x1, x2)))− nτ.

By similar argument as in the case of q > 0, we can show that {xn}n∈N in
(X,G) is G-Cauchy and therefore (X,G) being complete, there exists a point
u ∈ X such that lim

n→∞
xn = u. To see that u is a fixed point of T , under

the hypothesis that T is continuous and by the uniqueness of limit, we have
Tu = u. That is, u is a fixed point of T .
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In a similar manner, if T 3 is continuous as in Case 1, we have T 3u = u.
Suppose on the contrary that Tu 6= u. Then

τ + F (G(u, Tu, T 2u)) ≤ τ + F (α(u, Tu, T 2u)G(Tu, T 2u, T 3u))

= τ + F (α(u, Tu, T 2u)G(u, Tu, T 2u))

≤ F (φ(M(u, Tu, T 2u)))

< F (M(u, Tu, T 2u)), (3.15)

where

M(u, Tu, T 2u) = G(u, Tu, T 2u)λ1 ·G(u, Tu, T 2u)λ2 ·G(Tu, T 2u, T 3u)λ3

·
[
G(Tu, T 2u, T 3u)(1 +G(u, Tu, T 2u))

1 +G(u, Tu, T 2u)

]λ4
·
[
G(u, Tu, T 2u) +G(Tu, T 2u, T 3u)

2

]λ5
= G(u, Tu, T 2u)λ1 ·G(u, Tu, T 2)λ2 ·G(u, Tu, T 2u)λ3

·G(u, Tu, T 2u)λ4 ·G(u, Tu, T 2u)λ5

= G(u, Tu, T 2u)(λ1+λ2+λ3+λ4+λ5)

= G(u, Tu, T 2u).

Hence, (3.15) becomes

τ + F (G(u, Tu, T 2u)) ≤ F (G(u, Tu, T 2u)),

which is a contradiction. Therefore, Tu = u. �

Theorem 3.4. If in Theorem 3.3, in the case of q > 0, we assume an addi-
tional condition that α(x, y, Ty) ≥ 1 for all x, y ∈ Fix(T ), then the fixed point
of T is unique.

Proof. Let u,w be two fixed points of T such that u 6= w. Taking into account
the additional hypothesis and by (3.5), we have

G(u,w, Tw) ≤ α(u,w, Tw)G(Tu, Tw, T 2w).

This yields F (G(u,w, Tw)) ≤ F (α(u,w, Tw)G(Tu, Tw, T 2w)), and so,

τ + F (G(u,w, Tw)) ≤ τ + F (α(u,w, Tw)G(Tu, Tw, T 2w))

≤ F (φ(M(u,w, Tw)))

< F (M(u,w, Tw)), (3.16)
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where

M(u,w, Tw) =

[
λ1G(u,w, Tw)q + λ2G(u, Tu, T 2u)q + λ3G(w, Tw, T 2w)q

+ λ4

(
G(w, Tw, T 2w)(1 +G(u, Tu, T 2u))

1 +G(u,w, Tw)

)q
+ λ5

(
G(u,w, Tw)(1 +G(u, Tu, T 2u))

1 +G(u,w, Tw)

)q ] 1
q

=

[
λ1G(u,w, Tw)q + λ5

(
G(u,w, Tw)

1 +G(u,w, Tw)

)q ] 1
q

≤
[
λ1G(u,w, Tw)q + λ5G(u,w, Tw)q

] 1
q

=
[
(λ1 + λ5)G(u,w, Tw)q

] 1
q

= (λ1 + λ5)
1
qG(u,w, Tw)

≤ G(u,w, Tw).

Therefore, (3.16) becomes

τ + F (G(u,w, Tw)) < F (G(u,w, Tw)),

which is a contradiction. Thus, u = w and so it follows that T has exactly
unique fixed point. �

The following example is constructed to verify the hypotheses of Theorems
(3.3) and (3.4).

Example 3.5. Let X = [0,∞) and G : X × X × X −→ R+ be defined by
G(x, y, z) = |x− y| + |x− z| + |y − z| for all x, y ∈ X. Then (X,G) is a
complete G-metric space. Take τ > 0, and consider the mapping T : X −→ X
defined by

Tx =

{
3
7xe
−τ , if x ∈ [0, 1];

3
7e
−τ , if x > 1.

Define the mapping α : X ×X ×X −→ R+ by

α(x, y, Ty) =

{
1, if x, y ∈ [0, 1];

0, otherwise,

for all x, y ∈ X. Let φ : R+ −→ R+ be defined by φ(t) = 3
7 t for all t > 0.

Clearly, φ is a (c)-comparison function. Let F (t) = ln(t2 + t), t > 0 and
therefore F ∈ ∆f . It is obvious that T is triangular (G−α)-orbital admissible
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and there exists x0 = 0 ∈ X such that α(0, T0, T 20) = α(0, 0, 0) ≥ 1. Also, T
is continuous for all x ∈ X and likewise, T 3 is continuous for any x ∈ Fix(T 3).

In the case where x or y 6∈ [0, 1], then α(x, y, Ty) = 0 and G(Tx, Ty, T 2y) =
0 for all x > 1. Hence, the inequality (3.1) holds for all x, y 6∈ [0, 1].

Now for all x, y ∈ [0, 1], take λ1 = 1, λ2 = λ3 = λ4 = λ5 = 0. To show that
the mapping T is an admissible hybrid F -(G-α-φ)-contraction, we examine
the following two cases:

Case 1: For q > 0, consider q = 1. Then,

G(Tx, Ty, T 2y) = |Tx− Ty|+
∣∣Tx− T 2y

∣∣+
∣∣Ty − T 2y

∣∣
=

∣∣∣∣37xe−τ− 3

7
ye−τ

∣∣∣∣+∣∣∣∣37xe−τ− 9

49
ye−2τ

∣∣∣∣+∣∣∣∣37ye−τ− 9

49
ye−2τ

∣∣∣∣
=

3

7
e−τ
[∣∣x− y∣∣+

∣∣x− 3

7
ye−τ

∣∣+
∣∣y − 3

7
ye−τ

∣∣]
= e−τφ(G(x, y, Ty))

≤ e−τφ(M(x, y, Ty)). (3.17)

Now,

G(Tx, Ty, T 2y)
[
G(Tx, Ty, T 2y) + 1

]
=
[
G(Tx, Ty, T 2y)

]2
+G(Tx, Ty, T 2y).

This implies that

F (α(x, y, Ty)G(Tx, Ty, T 2y)) = F (G(Tx, Ty, T 2y))

= ln
[
(G(Tx, Ty, T 2y))2 +G(Tx, Ty, T 2y)

]
≤ ln

[
(e−τ (φ(M(x, y, Ty)))2+φ(M(x, y, Ty))

]
≤ ln

[
e−τ ((φ(M(x, y, Ty)))2+φ(M(x, y, Ty)))

]
= ln e−τ+ln

[
(φ(M(x, y, Ty)))2+φ(M(x, y, Ty))

]
= −τ + F (φ(M(x, y, Ty))).

Therefore, we have

τ + F (α(x, y, Ty)G(Tx, Ty, T 2y)) ≤ F (φ(M(x, y, Ty))).

Case 2: Similarly, for q = 0, we obtain

G(Tx, Ty, T 2y) ≤ e−τφ(M(x, y, Ty)). (3.18)

In similar manner as in Case 1, the inequality (3.18) gives

τ + F (α(x, y, Ty)G(Tx, Ty, T 2y)) ≤ F (φ(M(x, y, Ty))).

In the following Figure 1, we demonstrate the authenticity of contractive in-
equality (3.1) using Example 3.5.
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Figure 1. Illustration of contractive inequality (3.1) using Ex-
ample 3.5

Figure 1 above illustrates that the right-hand side (RHS) of contractive
inequality (3.1) predominates the left-hand side (LHS) as defined in Exam-
ple 3.5. Hence, all the assumptions of Theorems 3.3 and 3.4 are satisfied.
Consequently, we see that x = 0 is the unique fixed point of T .

We now show that our principal idea in this paper refines the corresponding
ones in [12]. However, it is easy to verify that the main result of Jiddah et al.
[12] is not applicable to this example. In fact, suppose that the mapping T is
an admissible hybrid (G-α-φ)-contraction; that is, for all x, y ∈ X/Fix(T ),

α(x, y, Ty)G(Tx, Ty, T 2y) ≤ φ(M(x, y, Ty)), (3.19)

where

M(x, y, Ty)=



[
λ1G(x, y, Ty)q + λ2G(x, Tx, T 2x)q + λ3G(y, Ty, T 2y)q

+λ4

(
G(y,Ty,T 2y)(1+G(x,Tx,T 2x))

1+G(x,y,Ty)

)q
+λ5

(
G(x,y,Ty)(1+G(x,Tx,T 2x))

1+G(x,y,Ty)

)q] 1
q

,

for q > 0, x, y ∈ X;

G(x, y, Ty)λ1 ·G(x, Tx, T 2x)λ2 ·G(y, Ty, T 2y)λ3

·
[
G(y,Ty,T 2y)(1+G(x,Tx,T 2x))

1+G(x,y,Ty)

]λ4
·
[
G(x,y,Ty)+G(y,Ty,T 2y)

2

]λ5
,

for q = 0, x, y ∈ X\Fix(T )
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q ≥ 0, λi ≥ 0; i = 1, 2, · · · , 5 such that
5∑
i=1

λi = 1 and Fix(T ) = {x ∈ X :

Tx = x}. Then, for the chosen parameters λ1 = 1, λ2 = λ3 = λ4 = λ5 = 0
and q = 1, take x = 3

7e
−τ and y = 5

7e
−τ for τ > 0. Clearly, x, y ∈ [0, 1]. Then,

by direct calculation, we have

G(Tx, Ty, T 2y) = |Tx− Ty|+
∣∣Tx− T 2y

∣∣+
∣∣Ty − T 2y

∣∣
=

∣∣∣∣ 9

49
e−2τ − 15

49
e−2τ

∣∣∣∣
+

∣∣∣∣ 9

49
e−2τ − 45

343
e−3τ

∣∣∣∣+

∣∣∣∣15

49
e−2τ − 45

343
e−3τ

∣∣∣∣
=

30

49
e−2τ − 90

343
e−3τ

=
210e−2τ − 90e−3τ

343
. (3.20)

Similarly,

M(x, y, Ty) = G(x, y, Ty)

= |x− y|+ |x− Ty|+ |y − Ty|

=

∣∣∣∣37e−τ − 5

7
e−τ
∣∣∣∣+

∣∣∣∣37e−τ − 15

49
e−2τ

∣∣∣∣+

∣∣∣∣57e−τ − 15

49
e−2τ

∣∣∣∣
=

10

7
e−τ − 30

49
e−2τ

=
70e−τ − 30e−2τ

49
, (3.21)

φ(M(x, y, Ty)) =
30

343

[
7e−τ − 3e−2τ

]
. (3.22)

By (3.19),

α(x, y, Ty)G(Tx, Ty, T 2y)

φ(M(x, y, Ty))
≤ 1.

Since x, y ∈ [0, 1], then α(x, y, Ty) = 1. Hence, from (3.20), (3.21) and (3.22),
we have

210e−2τ − 90e−3τ

30
[
7e−τ − 3e−2τ

] ≤ 1. (3.23)

Letting τ −→∞ in (3.23) gives ∞ ≤ 1, which is a contradiction.

The following are some immediate consequences of our results.
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Corollary 3.6. Given a complete G-metric space (X,G) and a continuous
mapping T : X −→ X. Suppose that there exists τ > 0 such that

G(Tx, Ty, T 2y) > 0 =⇒ τ + F (G(Tx, Ty, T 2y)) ≤ F (φ(M(x, y, Ty)))

for all x, y ∈ X, where F satisfies (F1) − (F3), φ ∈ Φ and M(x, y, Ty) is as
given in (3.2). Then T possesses a unique fixed point.

Proof. It is sufficient to take α(x, y, Ty) = 1 in Theorem 3.4. �

Corollary 3.7. Let (X,G) be a complete G-metric space and T : X −→ X be
a continuous mapping satisfying the following

G(Tx, Ty, T 2y) > 0 =⇒ τ + F (G(Tx, Ty, T 2y)) ≤ F (η(M(x, y, Ty)))

for all x, y ∈ X, τ > 0 where F ∈ ∆f , φ ∈ Φ and η ∈ (0, 1). Then the fixed
point of T in X is unique.

Proof. It follows from Corollary 3.6 with φ(t) = ηt for all t ≥ 0. �

Corollary 3.8. Given a mapping T : X −→ X defined on a complete G-
metric space (X,G) and suppose there exists τ > 0 such that for all x, y, z ∈ X,

G(Tx, Ty, Tz) > 0 =⇒ τ + F (G(Tx, Ty, Tz)) ≤ F (φ(G(x, y, z))),

where F ∈ ∆f and φ ∈ Φ. Then T has a unique fixed point in X.

Proof. Consider Definition 3.1 and let α(x, y, Ty) = 1 for all x, y ∈ X. Take
λ1 = 1, λ2 = λ3 = λ4 = λ5 = 0 and Ty = z. We have

M(x, y, z) = G(x, y, z)

for all x, y, z ∈ X and q ≥ 0. The proof follows from Theorem 3.4. �

Corollary 3.9. (Jiddah et al. [12], Theorem 3.3) Let (X,G) be a complete
G-metric space and let T : X −→ X be a continuous mapping satisfying the
following condition

α(x, y, Ty)G(Tx, Ty, T 2y) ≤ φ(M(x, y, Ty)),

where φ ∈ Φ. Then T has a unique fixed point in X.

Proof. It is enough to take F (t) = ln(t), t > 0 in Theorem 3.4. �

Corollary 3.10. (Jiddah et al. [12], Theorem 3.3) Given a mapping T :
X −→ X defined on a complete G-metric space (X,G) satisfying the following
constraint

α(x, y, z)G(Tx, Ty, Tz) ≤ φ(G(x, y, z))

for all x, y, z ∈ X, where φ ∈ Φ. Then T possesses a unique fixed point in X.
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Proof. Take F (t) = ln(t), t > 0 in Corollary 3.8. �

Definition 3.11. ([2]) Let T : X −→ X and α : X ×X ×X −→ R+ be two
mappings. Then T is said to be α-admissible, if for all x, y, z ∈ X,

α(x, y, z) ≥ 1 =⇒ α(Tx, Ty, Tz) ≥ 1.

Definition 3.12. Let (X,G) be a G-metric space and T : X −→ X be a given
mapping. Then T is said to be an F -(G-α-φ)-contraction of type I, if there
exist functions α : X ×X ×X −→ [0,∞), F ∈ ∆f and φ ∈ Φ such that for all
x, y, z ∈ X,

G(Tx, Ty, Tz) > 0 =⇒ τ + F (α(x, y, z)G(Tx, Ty, Tz)) ≤ F (φ(G(x, y, z))).

Note that if F (t) = ln(t), t > 0, then Definition 3.12 coincides with (G-α-
φ)-contraction mapping of type I in the sense of Jiddah et al. [12].

Corollary 3.13. Let (X,G) be a complete G-metric space. Suppose that
T : X −→ X is an F -(G-α-φ)-contraction of type I satisfying the following
conditions

(i) T is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0, T

2x0) ≥ 1;
(iii) T is G-continuous.

Then T possesses a fixed point.

Proof. Consider Definition 3.1 and let α : X × X × X −→ R+ be a given
mapping. Suppose that T : X −→ X is an α-admissible mapping and take
λ1 = 1, λ2 = λ3 = λ4 = λ5 = 0. Then T is an F -(G-α-φ)-contraction of type
I and so from Corollary 3.8, for all x, y, z ∈ X, F ∈ ∆f and φ ∈ Φ and the
proof follows. �

4. Applications to an integral equation

The importance of fixed point theory to the solution of differential and
integral equations can be considered as having significant value given that
practically almost all real-life problems can be transformed into differential
and integral equations. Huang et al. [10] investigated the conditions for the
existence of a solution to a class of differential equations and whether such
solution is unique using their obtained main result. In this section, we present
an application to an integral equation using one of our obtained results.

Let X be a Banach space, µ an open set of R×R×X, µo = (t0, s0, x0) ∈ µ,
f : µ→ X a continuous function. We need to obtain a closed interval I such
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that t0 ∈ I and a differentiable function x : I → X satisfying{
x′(t) = f(t, s, x(t)), t ∈ I;

x(t0) = x0.
(4.1)

It is obvious that (4.1) satisfies the integral equation

x(t) = x0 +

∫ t

t0

f(t, s, x(s))ds, t ∈ I.

Theorem 4.1. Suppose that the following conditions are satisfied:

(i) there exists a function ζ(t) ∈ L1(t0 − ν, t0 + ν) ∩ R+ for some ν > 0
such that

‖f(t, s, x)− f(t, s, y)‖X + ‖f(t, s, x)− f(t, s, z)‖X
+ ‖f(t, s, y)− f(t, s, z)‖X

≤ ζ(t)

[
‖x− y‖X + ‖x− z‖X + ‖y − z‖X

]
holds for all (t, s, x), (t, s, y), (t, s, z) ∈ µ, where ‖.‖X is a norm defined
on X;

(ii) there exists a constant δ > 0 and a G-closed ball BG(µ0, s) of µ such
that ‖f(t, s, x)‖X ≤ δ for any (t, s, x) ∈ BG(µ0, s).

Then, there exists τ0 > 0 such that for each τ < τ0, (4.1) has a unique solution
x ∈ C1(Iτ , X), where Iτ = [t0 − τ, t0 + τ ].

Proof. Take r = min{ν, s}, τ0 = min{r, rδ}. Let τ < τ0 and ϑ be the G-closed
ball in X. Then, ϑ endowed with the Tehebyshev norm is a complete G-metric
space. By virtue of τ < r, if y, z ∈ ϑ, then

(t, s, y(t)), (t, s, z(t)) ∈ BG(µ0, r) ⊂ µ

for all t ∈ Iτ . Therefore, for y, z ∈ ϑ, define

Ty(t) = x0 +

∫ t

t0

f(t, s, y(s))ds,

Tz(t) = x0 +

∫ t

t0

f(t, s, z(s))ds, t ∈ I

and F (t) = ln(t), t ∈ (0,∞).
We can show that

ln

(
3

2

)
+ F (α(x, y, z)G(Tn+1x, Tn+1y, Tn+1z)) ≤ F (φ(M(x, y, z))) (4.2)
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for any n ∈ N, where

M(x, y, z) =
3

(n+ 1)!

∥∥ζ∥∥n+1

L1(Iτ )
G(x, y, z),

and φ(t) = t
2 for all t > 0. Clearly, (4.2) is equivalent to

α(x, y, z)G(Tn+1x, Tn+1y, Tn+1z) ≤ 2

3
(φ(M(x, y, z)))

=
1

(n+ 1)!

∥∥ζ∥∥n+1

L1(Iτ )
G(x, y, z).

Taking α(x, y, z) = 1, we have

G(Tn+1x, Tn+1y, Tn+1z) ≤ 1

(n+ 1)!

∥∥ζ∥∥n+1

L1(Iτ )
G(x, y, z),

that is, ∥∥Tn+1x− Tn+1y
∥∥+

∥∥Tn+1x− Tn+1z
∥∥+

∥∥Tn+1y − Tn+1z
∥∥

≤ 1

(n+ 1)!

∥∥ζ∥∥n+1

L1(Iτ )

[∥∥x− y∥∥+
∥∥x− z∥∥+

∥∥y − z∥∥]. (4.3)

Note that

sup
t∈Iτ

∥∥Ty(t)− x0
∥∥
X
≤ sup

t∈Iτ

∣∣∣∣∫ t

t0

∥∥f(t, s, y(s))
∥∥
X
ds

∣∣∣∣
≤ δτ
≤ r

and

sup
t∈Iτ

∥∥Tz(t)− x0∥∥X ≤ sup
t∈Iτ

∣∣∣∣∫ t

t0

∥∥f(t, s, z(s))
∥∥
X
ds

∣∣∣∣
≤ δτ
≤ r.

Hence, T maps ϑ into ϑ.
To complete the proof of (4.3), we need to prove by induction on n+ 1, for

every t ∈ Iτ ,∥∥Tn+1x(t)− Tn+1y(t)
∥∥
X

+
∥∥Tn+1x(t)− Tn+1z(t)

∥∥
+
∥∥Tn+1y(t)− Tn+1z(t)

∥∥
≤ 1

(n+ 1)!

(∫ t

t0

ζ(s)ds

)n+1[∥∥x− y∥∥+
∥∥x− z∥∥+

∥∥y − z∥∥]. (4.4)

For n = 1, it is easy to see that (4.4) holds. Suppose that (4.4) is true for
n, n ≥ 2. Then, taking t > t0 (note that it is similar for t < t0), we have
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∥∥
X

+
∥∥Tn+1x(t)− Tn+1z(t)

∥∥
X

+
∥∥Tn+1y(t)− Tn+1z(t)

∥∥
X

=
∥∥T (Tnx(t))− T (Tny(t))

∥∥
X

+
∥∥T (Tnx(t))− T (Tnz(t))

∥∥
X

+
∥∥T (Tny(t))− T (Tnz(t))

∥∥
X

≤
∫ t

t0

[∥∥f(t, s, Tnx(s))− f(t, s, Tny(s))
∥∥
X

+
∥∥f(t, s, Tnx(s))− f(t, s, Tnz(s))

∥∥
X

+
∥∥f(t, s, Tny(s))− f(t, s, Tnz(s))

∥∥
X

]
ds

≤
∫ t

t0

ζ(s)

[∥∥Tnx(s)− Tny(s)
∥∥
X

+
∥∥Tnx(s)− Tnz(s)

∥∥
X

+
∥∥Tny(s)− Tnz(s)

∥∥
X

]
ds

≤ 1

n!

[∫ t

t0

ζ(s)

(∫ s

t0

ζ(w)dw

)n
ds

(∥∥x− y∥∥+
∥∥x− z∥∥+

∥∥y − z∥∥)
=

1

(n+ 1)!

(∫ t

t0

ζ(s)ds

)n+1[∥∥x− y∥∥+
∥∥x− z∥∥+

∥∥y − z∥∥].
(4.4) leads to (4.3), where

sup
t∈Iτ

(∫ t

t0

ζ(s)ds

)n+1

=
∥∥ζ∥∥n+1

, ∀n.

Hence, all the assumptions of Corollary 3.8 are satisfied. Hence, T has a fixed
point which corresponds to the solution of (4.1). �

Remark 4.2.

(i) We can obtain further special cases of Theorems 3.3 and 3.4 by fixing
the parameters λi(i = 1, 2, · · · , 5) and q.

(ii) None of the proposed results in this work can be written in the form
of G(x, y, y) or G(x, x, y). Hence, they cannot be inferred from their
equivalents in metric space.

5. Conclusion

An intriguing generalization of the Banach contraction principle regarding
the existence of fixed points in complete metric space was presented by War-
dowski [29]. In this paper, some new fixed point theorems were established in
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the framework of complete G-metric space via a new type of contractive map-
ping called admissible hybrid F -(G-α-φ)-contraction. Some immediate conse-
quences of the principal ideas were presented. An example which support the
assumptions and effectiveness of the proposed results was constructed. It is
also observed that the established result is an extension of F -contraction in
metric spaces and some related findings in generalized metric spaces. Hence,
the derived fixed point results cannot be reduced to their corresponding ones
in the literature. From the perspective of application, one of the obtained
corollaries was applied to guarantee the conditions for the existence of solu-
tions to a nonlinear integral equation. This work is limited in scope by the fact
that the mathematical formulation, analysis and results presented are purely
abstract. The application to the integral equation has been developed analyt-
ically and conclusion is deduced based on the theoretical formulations of our
theorems. The results obtained herein can be studied and advanced via other
contractions and it will be interesting to apply these concepts in the setting of
various spaces and the concerned mapping can also be extended to set-valued
mappings.

Acknowledgments: The authors are thankful to the editors and the anony-
mous reviewers for their valuable suggestions and fruitful comments to improve
this manuscript.
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