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Abstract. In this paper, we introduce the notion of generalized difference sequence space

4n
m(u) and study lF∞(4n

m, u), cF (4n
m, u) and cF0 (4n

m, u). We give some of their properties

like completeness, solidity, symmetricity.

1. Preliminaries, Background and Notation

A sequence space is defined to be a linear space of real or complex sequences.
Throughout the paper N, R and C denotes the set of non-negative integers,
the set of real numbers and the set of complex numbers respectively. Let
ω denote the space of all sequences (real or complex), l∞ and c respectively,
denotes the space of all bounded sequences, the space of convergent sequences.

The concepts of fuzzy sets and fuzzy set operations were first introduced
by Zadeh [29] and subsequently several authors have discussed various aspects
of the theory and applications of fuzzy sets such as fuzzy topological spaces,
similarity relations and fuzzy orderings, fuzzy measures of fuzzy events, fuzzy
mathematical programming. Matloka [18] introduced bounded and convergent
sequences of fuzzy numbers and studied their some properties. Matloka [18]
also has shown that every convergent sequence of fuzzy numbers is bounded.

0Received May 28, 2013. Revised October 28, 2013.
02000 Mathematics Subject Classification: 40A05, 26A03, 11B05.
0Keywords: Fuzzy set, solidity, symmetricity, convergence free.
0Corresponding author: Ab. Hamid Ganie.



516 A. H. Ganie, N. A. Sheikh and T. Jalal

Later on sequences of fuzzy numbers have been discussed by many others(see,
[1]-[16], [19]-[28]).

Let D denote the set of all closed and bounded intervals X = [a1, a2] on the
real line R. For X, Y ∈ D we define

d(X : Y ) = max(|a1 − b1|, |a2 − b2|),
where X = [a1, a2] , Y = [b1, b2]. It is known that (D, d) is a complete metric
space.

Let I = [0, 1]. A fuzzy real number X is a fuzzy set on R and is a mapping
X : R→ I associating each real number t with its grade membership X(t). A
fuzzy real number X is called convex if

X(t) ≥ X(s) ∧X(r) = min(X(s), X(s)), where s < t < r.

A fuzzy real number X is called if normal if there exists t0 ∈ R such that
X(t0) = 1.

A fuzzy real number X is called if upper semi-continuous if for each ε > 0,
X−1([0, a + ε)) for all a ∈ I and given ε > 0, X−1([0, a + ε)) is open in the
usual topology of R.

The set of all upper semi-continuous, normal, convex fuzzy numbers is de-
noted by R(I). The α-level set of a fuzzy real number X for 0 < α ≤ 1 denoted
by Xα is defined by Xα = {t ∈ R : X(t) ≥ α}. The 0-level set is the closure
of strong 0-cut.

For each r ∈ R, r̄ ∈ R(I) is defined by

r̄ =

{
r̄, if t = r,

0, if t 6= r.

The absolute value of |X| of X ∈ R(I) is defined by(see for instance Kelava
and Seikkala [16])

|X|(t) =

{
max{X(t), X(−t)}, if t ≥ 0,

0, if t < 0.

Let d̄ : R(I)× R(I)→ R be defined by

d̄(X,Y ) = sup
0≤α≤1

d(Xα, Y α).

Then d̄ defines a metric on R(I) (Matloka [18]). The additive identity and
multiplicative identity in R(I) are denoted by 0̄ and 1̄ respectively.

In this paper we introduce lF∞(4n
m, u), cF (4n

m, u) and cF0 (4n
m, u). We study

some of their properties like completeness, solidity, symmetrically.
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Throughout the article ωF , cF , cF0 and lF∞ denote the classes of all, conver-
gent, null, bounded sequence spaces of fuzzy real numbers.

A fuzzy real valued sequence {Xn} is said to be convergent to fuzzy real
number X, if for ε > 0, there exists n0 ∈ N such that d̄(X,Y ) < ε for all
k ≥ n0 (see, [15]).

A fuzzy real valued sequence {Xn} is said to be solid (normal) if (Xk) ∈ EF
implies that (αkXk) ∈ EF for all sequences of scalars (αk) with |αk| ≤ 1, for
all k ∈ N.

Let K = {k1 < k2 < ...} ⊆ N and EF be a sequence space. A k-step space

of EF is a sequence space λE
F

K = {(Xkn) ∈ ωF : (Xn) ∈ EF }.

A canonical preimage of a sequence {Xk} ∈ λE
F

K is a sequence {Yn} ∈ ωF
defined as

Yn =

{
Xn, if n ∈ K,
0̄, otherwise.

A canonical preimage of a step space λE
F

K is a set of all elements in λE
F

K , i.e.,

Y is in canonical preimage of λE
F

K if and only if Y is canonical preimage of

some X ∈ λEF

K .

A sequence space EF is said to be monotone if it contains the canonical
preimages of its step spaces.

A sequence space EF is said convergence free if (Yk) ∈ EF whenever (Xk) ∈
EF and Yk = 0̄ whenever Xk = 0̄.

The difference sequence spaces, H(∆) = {x = (xk) : ∆x ∈ H} ,where
H = l∞ , c and c0, were studied by Kizmaz [17].

It was further generalized by Tripathy and Esi [25], as follows. Let m ≥ 0
be an integer then H(∆m) = {x = (xk) : ∆mx ∈ H} , for H = l∞ , c and c0,
where ∆mxk = xk − xk+m. The idea of Kizmaz [17] was applied by Savas [22]
for introducing the notion of difference sequences for fuzzy real numbers and
study their different properties. The difference sequence space were further
studies by Çolak et al. [6-8], Mursaleen and Başarir [19], Tripathy and Esi
[25] and etc.

Further, in Tripathy et al. [28] generalized the above notions and unified
these as follows:

∆n
mxk = {x ∈ ω : (∆m

n xk) ∈ Z} ,
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where

∆n
mxk =

n∑
µ=0

(−1)µ
(
n
r

)
xk+mµ

and

∆n
0xk = xk∀ k ∈ N.

Following [4-29], we introduce the difference sequences of fuzzy real numbers
type as follows:

H(∆m
n , u) = { (Xk) : (u∆m

n X) ∈ H} ,

for H = lF∞ , c
F and cF0 , where u = (uk) is such that uk 6= 0 for all k ∈ N.

We note that if n = 1, we get results obtained by Sheikh and Ganie(see,
[24]).

2. Main Results

Theorem 2.1. The sequence spaces lF∞(4n
m, u), cF (4n

m, u) and cF0 (4n
m, u) are

complete metric spaces by the metric

%(X,Y ) =
m∑
k=0

d̄(ukXk, ukYk) + sup
k
d̄(uk∆

n
mXk, uk∆

n
mYk). (2.1)

Proof. The proof is left as an easy exercise for the reader. �

Theorem 2.2. The sequence spaces lF∞(4n
m, u), cF (4n

m, u) and cF0 (4n
m, u) are

not solid in general.

Proof. We consider only cF (4n
m, u). Thus to prove the result we consider the

following examples:
Let

Xl(t) =



lt+l+1
l+1 , if − 1− 1

l ≤ t ≤ 0,

l+1−lt
l+1 , if 0 ≤ t ≤ 1 + 1

l ,

0̄, otherwise.

Now taking l = 3 and uk = 1 = n for all k ∈ N, we have that
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u4n
mXl(t) =



tl2+2l2+3lt+8l+3
2l2+3lt+8l+3

, if − 2− 1
l −

1
l+3 ≤ t ≤ 0,

−tl2−3lt+2l2+8l+3
2l2+3lt+8l+3

, if 0 ≤ t ≤ 2 + 1
l + 1

l+3 ,

0̄, otherwise.

Now, lim
l
43

1Xl(t) = X, where

X(t) =



t+2
2 , if − 2 ≤ t ≤ 0,

2−t
2 , if 0 ≤ t ≤ 2,

0̄, otherwise.

Thus, Xl ∈ cF (43
1). Now consider the sequence of scalars (αl) defined by

(αl) =


1, if l = 3k − 2, for k ∈ N,

0̄, otherwise.

Then, (αlXl) = {X1, 0̄, 0̄, X4, 0̄, 0̄, X7, 0̄, 0̄, X10, ...}. But

(43
1αnXn) = {X1 −X4, 0̄, 0̄, X4 −X7, 0̄, 0̄, ...} /∈ cF (43

1).

Hence, cF (u4n
m) is not solid. �

Theorem 2.3. The sequence spaces lF∞(u4n
m), cF (u4n

n) and cF0 (u4n
n) are not

symmetric.

Proof. We consider only cF (u4n
m). Thus to prove the result we consider the

following examples with m = 1 = n and uk = 1 ∀ k ∈ N :
Consider the sequence X = {N,H,N,H,N,H, ...}, where

N =



t+4
4 , if − 4 ≤ t ≤ 0,

4−t
4 , if 0 ≤ t ≤ 4,

0̄, otherwise,
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and

H =



t+5
5 , if − 5 ≤ t ≤ 0,

5−t
5 , if 0 ≤ t ≤ 5,

0̄, otherwise.

Now, consider the re-arrangement (Yn) of the sequence (Xn) as

(Yn) = (N,N,H,H,N,N, ...) /∈ CF (41
1), but (Xn) ∈ (41

1).

Hence, cF (u4n
m) is not symmetric for any m ∈ N. �

Theorem 2.4. The sequence spaces lF∞(u4n
m), cF (u4n

m) and cF0 (u4n
m) are

not convergence free.

Proof. We consider only cF (u4n
m). Thus to prove the result we consider the

following examples with m = 3 and u = 1 = n.
Consider the sequence (Xl) defined as follows :

Xk(t) =



kt+k+1
k+1 , if − 1− 1

k ≤ t ≤ 0,

k+1−kt
k+1 , if 0 ≤ t ≤ 1 + 1

k ,

0̄, otherwise.

Now taking k = 3 and uk = 1 = n for all k ∈ N, we have that

41
3Xk(t) =



tk2+2k2+3kt+8k+3
2k2+3kt+8k+3

, if − 2− 1
k −

1
k+3 ≤ t ≤ 0,

−tk2−3kt+2k2+8k+3
2k2+3kt+8k+3

, if 0 ≤ t ≤ 2 + 1
k + 1

k+3 ,

0̄, otherwise,

and lim
k
41

3Xk(t) = X, where

X(t) =



t+2
2 , if − 2 ≤ t ≤ 0,

2−t
2 , if 0 ≤ t ≤ 2,

0̄, otherwise.
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Thus, (Xk) ∈ cF (41
3). Now consider

Yk(t) =



t+k
k , if − k ≤ t ≤ 0,

k−t
k , if 0 ≤ t ≤ k,

0̄, otherwise.

41
3Yk(t) =



t+2k+3
2k+3 , if − 2k − 3 ≤ t ≤ 0,

2k+3−t
2k+3 , if 0 ≤ t ≤ 2k + 3,

0̄, otherwise.

Clearly (Yk) ∈ cF (41
3) is not convergence free. �
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