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1. INTRODUCTION

Differential equations are fundamental in numerous disciplines, including
physics and engineering [14], playing a crucial role in modeling various phe-
nomena where change rates are pivotal. Such phenomena include population
dynamics, chemical reactions, space exploration, disease spread, and climate
variations. Within this realm, the differential game emerges as an application
bridging differential equations and game theory. Game theory, a significant
mathematical domain [6], finds its relevance across social sciences, logic, sys-
tems science, and computer science, notably impacting economics. A key
figure in this field, John Forbes Nash, contributed significantly to game the-
ory, especially in conceptualizing solutions for non-cooperative games involving
multiple players. In these games, each participant is presumed to understand
the equilibrium strategies of their counterparts, implying a mutual awareness
of strategies among players. Differential games, as a subset of game theory,
focus on conflicts or competitions represented through dynamic systems [1],
where the evolution of state variables is governed by differential equations.
These variables effectively encapsulate a systems characteristics, determining
its future behavior in the absence of external influences.

In [2], Hegazy et al. explored the resolution of minmax zero-sum two-
person continuous differential games with fuzzy controls and state trajec-
tories. The study of differential games extends to various real-life applica-
tions [5, 9, 10, 11, 12, 13]. Their work delineated the necessary conditions
for such games and provided a numerical example for illustration. Hemeda,
in [3], introduced an integral iterative method (IIM), an enhancement over the
Picard method (PM), to address nonlinear integro-differential equations and
their systems. Another notable contribution is by Joseph in [4], who inves-
tigated a duopolistic market scenario where two firms engage in competitive
selling over a defined period. Here, each firm’s market share and advertis-
ing efforts constitute their strategic elements. Joseph applied the principle of
maximum along with theorems on general inequality constraints and numerical
techniques to develop solutions.

In our research, we take an alternate route, using a distinct theorem to
determine the essential conditions for an open-loop Nash equilibrium in a
differential game. Our approach involves using the Picard technique for ap-
proximating solutions, creating charts for a comparative study among three
companies, and visually illustrating these comparisons.

This document is organized in the following manner: The second section
introduces the dynamics of the system, the structure of payoff functionals, and
the necessary conditions for an open-loop Nash equilibrium. The third section
is dedicated to deriving a proximate solution through the Picard technique.
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The fourth section offers a discussion on the results, contrasting them with
earlier research, while the fifth and final section provides the conclusion of the
study.

2. PROBLEM FORMULATION

In this segment, we delve into the dynamics governing the system, define
the payoff functionals, and elaborate on the concept of OLNE.

2.1. The Dynamical System. We examine a competitive market scenario
involving three entities: Enterprise A, Enterprise B, and Enterprise C. These
entities are engaged in selling an identical product in a competitive market-
place [4]. Denote the market share of Enterprise A at time ¢ as z(t), that of
Enterprise B as y(t), and that of Enterprise C as 1 — z(t) — y(¢). The control
variables are characterized as follows: wi(t) represents the advertising effort
exerted by Enterprise A at time ¢, ug(t) for Enterprise B, and ug(t) for Enter-
prise C. The growth in the customer base of Enterprise A is directly influenced
by its advertising efforts. Conversely, the advertising initiatives of Enterprises
B and C not only contribute to their growth but also potentially reduce the
customer base of Enterprise A and each other. The dynamics of this system
are thus formulated as:

&(t) = ur () (1 — z(t) — y(t)) — uz(t)x(t) — us(t)x(t), (2.1)
Y(t) = up(t)(1 — x(t) — y(t)) — ua(t)y(t) — us(t)y(t) 2.2
with initial conditions
‘T(O) = X0, y(O) =Y, t€ [07T]7 (23)
subject to the constraints

0<a(t) +y(t) <1. (2.4)

Given the context of a differential game involving three participants, we
introduce the following definition.

Definition 2.1. (Three-Player Differential Game) In a differential game en-
compassing three players over a time span [to,t¢], the following elements are
present:
(1) A set of players, designated as N = {1, 2, 3}.
(2) For each participant ¢ within N, there is a group of control vectors
u;(t) within U; C R™, with U; symbolizing the allowed control inputs
for participant 7.
(3) A duo of state variables [z,y] within X C R"™, where X denotes the
set of allowable states.
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(4) A specific strategy collection ¥; for each player, where the strategy
1; within W, is a rule for decision-making that establishes the control
u;(t) from Uj, relying on the data accessible at time t.

2.2. Payoff functionals and OLNE. We now turn our attention to the state
equation representing the games state and the associated payoff functionals.
These are defined as

and for the payoff functionals,

Jiun (t), ua(t), us(t)) = /tf Li(a(t), y(t), ur(t), ua(t), us(t), ) dt, i = 1,2,3.

to
(2.7)
In this scenario, as the information structure is open-loop, each player’s equi-
librium strategy is denoted as u;(t) over the interval ¢t € [to,t¢] for i =1,2,3.

To derive these strategies, we introduce the Hamiltonian function H; for
each player i, given by
Hi(Aiyua, ug,us, t) = Li(z(t), y(t), ui (t), ua(t), us(t), 1)
+ /\zT (f(xa Yy, u1, u2,us, t) + g(l’, Yy, uy, u2,us, t)) ) <28)

1 =1,2,3, where )\; is the co-state vector for player 1.

Definition 2.2. In the context of the three-player differential game outlined
in Definition 2.1, occurring over the interval [to, ], the informational frame-
work for a player ¢ is considered open-loop when, at any moment ¢, the only
information player ¢ can access is the games initial state xg. Consequently,
the strategy set for player i is expressed as V;(t) = xq for t € [tg, ty].

Definition 2.3. Consider the cost functions:

Jl(ul(t),UQ(t),u;g(t)),JQ(’LLl(t),’LLQ(t),u:),(t)) and Jg(ul(t),UQ(t),u:),(t))

for players 1, 2, and 3, respectively. A set of control strategies (uj,u},us)
constitutes a Nash equilibrium strategy if, for each player ¢, where i = 1,2, 3,
the condition J;(uj, ub, ui) < Jij(ui,us, us) holds true.

In simpler terms, the Nash equilibrium implies that no player can improve
their optimization criterion by unilaterally changing their strategy.
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We can now define the payoff functionals for the three firms in our problem
as follows:

T

Ji= / e~ [da(t) — crus (8)] dt, (2.9)
OT

Jo = / e T2t [¢2y(t) — CoU2 (t)] dt, (2.10)
OT

Ty = /0 €T3 (g (1 — 2(t) — y(t)) — caus(t)] dt, (2.11)

where the interval [to, tf] = [0, 77, r; is the interest rate for Firm ¢, ¢; represents
the fractional revenue potential for Firm ¢, and ¢;(s) is the advertising cost
function for the three firms. We assume ¢;(s) = kisz, where k; is a positive

constant. The functions f and I; are defined as

fla(),y(t), ur(t), ua(t), us(t), t) = ur (t)(1 — z(t) — y(t))
—ug(t)x(t) — us(t)x(t), (2.12)
9(@(t), y(t), ua(t), ua(t), us(t),t) = ua(t)(1 — x(t) — y(t))
—u1(t)y(t) — us(t)y(t), (2.13)
Li(x(t),ui(t), ua(t), us(t), t) = ¢r12(t) — c1(ui(t)), (2.14)
Iy(x(t), ur (1), ua(t), us(t), t) = Gay(t) — ca(ua(t)), (2.15)
I3(x(t), un(t), ua(t), us(t), t) = ¢3(1 — x(t) — y(t)) — cs(us(t)).  (2.16)
The Hamiltonian functions for the players are then given by
Hy(h g 1) = () — S04 7 4 ), 217)
Hy(A2, @, y, w1, ug, uz, t) = doy(l) — ]{;2;% + Xof + 9], (2.18)
Hy g2, 01,1, 5.6 = (1= 2(6) — (1) — 25 1 xy(f 4] (219

The following theorem captures the complex dynamics and strategic inter-
actions among three competing firms in a market, each employing strategic
control actions to optimize its respective payoff.

Theorem 2.4. (Open-Loop Nash Equilibrium Conditions) Given that f(x(t),
y(t)a U1 (t)v u2 (t)) u3 (t)a t) and g(l’(t), y(t), ul (t)a U2 (t) Ug( ) ) describe the mar-
ket share dynamics of firms 1 and 2, respectively, and assuming

Ii(x(t)v y(t)v uy (t)’ U2 (t)’ U3(t), t)a
fori1=1,2,3 are continuously differentiable over R™, that is, f,g : R™ x R® x
[0,7] — R with f,g € C!, s = Z;)':l sj, and I; € C' fori = 1,2,3. If



220 Essam El Siedy, Shahd H. Alkharaz, Maan T. Alabdullah and Yasmin Adel
ui(t), to <t <ty are open-loop Nash equilibrium strategies and x*(t), y*(t),
to < t <ty are the corresponding state trajectories, then there exist three
costate vectors \; : [to,tf] = R", and three Hamiltonian functions:

Hi(Aiy @, y, ur, ug, uz, t) = Li(a(t), y(t), ua (), ua(t), us(t), t)
+ A f(,y,u1, ug, u3, 1)
+ M g(x, y, u1, ug, us, t) (2.20)
such that the following conditions are met:
(1)
&t = [ (), y" (1), ui(t), up(t), uz(t), ),
g =g (1), 5" (1), ui(t), up(t), uz(t), 1),
2*(0) = zo,  ¥7(0) = yo.
(2) The dynamics of the costate vectors are defined by:
_OH;(Ni, 2", y", uy, uj, ug, t)

Ai(t) =
i(t) Ox
B OH; (i, x*, y*, uj, ub, uj, t) (2.21)
oy '
fori=1,2,3.
(3) The optimality conditions for the control strategies are:
1(A1, 2%, Y%, ul, ud, ul, t) =0, (2.22)
Ou
2(Ao, 2%,y ) Uy, Ug, Ug,s ) =0, (2.23)
Ous
3(Ag, ", y*, ui, uj, u3, t) -0 (2.24)
Ous
with boundary conditions for the initial states x*(0) = xg, y*(0) = yo,
and terminal conditions for the costate vectors \i(ty) = 0 for i =
1,2,3.

Proof. Existence of State Trajectories: By the definition of the state trajecto-
ries, we have

@t = [ (t),y" (1), ur(t), ua(t), uz(t), 1), (2.25)
gt =g (t),y7 (1), ui(t), ua(t), uz(t), t) (2.26)

with initial conditions z*(0) = zo, y*(0) = yo.
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Costate Equations: For each player ¢, the Hamiltonian H; is given by
Hi(Niy @, y,un, ug,ug, t) = Ii(@(t), y(t), ui(t), ua(t), us(t), 1)
+ )\Z-Tf(x, Y, U1, u2, uz, t)
+ M g(z,y,ur, ug, us, t). (2.27)
The dynamics of the costate vectors \; are

\ 8H’L )\iax*ay*vujkvu)k)uik)t aH’L )\i7x*7y*7U*7u*7U*7t
)\z(t) — ( ax 1 2 3 ) _ ( ay 1 2 3 ) (228)

Optimality Conditions: The optimality conditions require that
aHl()\la 1:*, y*v ’U,T, U;, 'LL;;, t)

—0 2.29

o , (2.29)

OHz(Na,a*,y*, uf, ub, uf, t) 0, (2.30)
Ous

OHz(As, ", y" i, uz, vz, t) _ (2.31)
Ous

Boundary Conditions: The boundary conditions are given by
z*(0) =z0, ¥*(0) =wo, Ni(ty)=0, fori=1,2,3. (2.32)

These conditions together ensure that the strategies w'(t) for i = 1,2, 3 form
an open-loop Nash equilibrium for the differential game, as they satisfy the
necessary conditions for optimality and state evolution. O

3. IMPLEMENTING THE PICARD TECHNIQUE FOR APPROXIMATE SOLUTIONS

In this section, we investigate the solution’s existence for the system outlined
in equations (2.21) to (2.24) as per [7, 8]. We employ the Picard method to
ascertain an approximate solution and examine its convergence. The system,
simplified from the necessary conditions of an OLNE game, is represented as

:’b:fl(ﬁvy))‘lv)@?)‘:%t)a y:fZ(xvyaAlv)\Qv)‘:%t)) (31)

).\1 — f3(xvy7 )\17)\27)\37t) - le, (32)
Ay = fa(@,y, M1, Ao, A t) — g, (3.3)
A3 = f5(z,y, A1, Ao, A3, t) + 203 (3.4)

with initial conditions

z(0) = zo, y(0) = yo, (3.5)
MT) =0, M(T)=0, Xs(T)=0.

Under these assumptions for our problem:
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(1) Functions fi(x(t),y(t), A1(t), Aa(t), A3(t),t) : R™ x R™ x R™ x R"™ X
[0,7] — R are continuous, with positive constants M; such that |f;| <
M;, for i =1,2,3,4,5.

(2) These functions f; fulfill the Lipschitz condition with constants Lj;,
where 0 < L; < 1, for i = 1,2,3,4,5 as follows:

| fr(z,y, A, A2, As, 1) — fal@',y, Aty Ao, A, t)| < Lafo — 2], (3.7)
| fa(, 4, A1, A2, A3, t) — fi(@, 4, My Ao, Mg, t)| < Laly — o/, (3.8)
| f3(2,y, A1, A2, A3, t) — fa(z, 9, p1, A2, Az, t)| < La|A1 — paf, (3.9)
| fa(@,y, A1, A2, A3, t) — f3(2, 9, A1, p2, A3, t)| < Laf A2 — paf, (3.10)
|f5(2, 9, A1, A2, A3, t) — fa(w,y, A1, A2, p3,t)| < Ls|A3 — p3|. (3.11)

To demonstrate the existence of the solution for the system (3.1)-(3.6), we
integrate equations (3.1), (3.2), (3.3), and (3.4) yielding:

2(t) = 70 +/0t oy A Ao A, ) dt, (3.12)
y(t) = yo + /t Ta(m,y, A1, A2, A3, t) dt, (3.13)
() = —g1(t—T / Fals A1, Ao, A ) dt, (3.14)
Molt) = —o(t — T / far, A, Do, A, 1) dt, (3.15)
As(t) =2¢3(t =T / Fo (2, A1, Ag, Mg, ) dt. (3.16)

Upon differentiating the integral forms in equations (3.12) to (3.16), we
derive:

= fi(®,y, A1, A2, A3, 1), (3.17)
= fa(®,y, A1, A2, A3, 1), (3.18)
= f3(x,y, \1, A2, A3, t) — 1, (3.19)
= fa(z,y, M1, A2, A3, 1) — o2, (3.20)
= f5(,y, A1, A2, Mg, t) + 263 (3.21)

Inserting ¢ = 0 in equations (3.12) and (3.13) and ¢t = T in equations (3.14),
(3.15), and (3.16) yields:
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z(0) =z + /00 fi(x,y, A1, Ao, Ag, t) dt = o, (3.22)
y(0) = yo + /00 fo(@,y, A1, A2, As, t) dt = yo, (3.23)
M(T) = —n (T —T) + /TT Lo\ Ay A £) dit = 0, (3.24)
No(T) = —6o(T — T) + /TT 192 M, Ao, Aa £) di = 0, (3.25)
Na(T) = 25(T — T) + /TT P59 M, A, A £) dit = 0. (3.26)

The equivalence of the system (3.1)-(3.6) with these integral equations (3.12)-
(3.16) confirms the existence of a solution.

Applying the Picard method to the integral equations (3.12)-(3.16), we con-
struct solutions as sequences:

¢

xn(t) = 330+/ f1(Zn—1,Yn—1, Mn—1, A2n—1, A3 n—1,t) dt, x(0)=x0, (3.27)
0
¢

yn(t) = y0+/ fo(n—1,Yn—1, AMin—1, A2n—1, A3 n—1,t) dt,, y(0)=yo, (3.28)
0

T

AMn(t) = o1(t — T)-i-/ [3(Zn—1,Yn—1, Mn—1, A2n—1, A3n—1, 1) dt, Ao =0,
t

(3.29)

T
Ao (t) = —pa(t — T)+/ fa(Zn—1,Yn—1, Mn—1, A2n—1, A3 n—1,t) dt, Ao =0,
t
(3.30)

T

A3 n(t) = p3(t — T)+/ I5(Zn—1,Yn—1, Mn—1, A2n—1, A3 n—1,t) dt, Azo=0
t

(3.31)

forn=1,2,3,....

If the sequences {zy (1) }, {yn(t) }, {0 ()}, {20 ()}, {A3,n(t)} converge, then
the infinite series for (l‘j —a:j,l), (yj —yj,l), ()\173‘ — )\l,jfl), ()\Z,j - )\2’]’71), and
(A3,j — A3 j—1) are convergent. Hence, the solutions will be x,y, A1, A2, and As,
where

x(t) = nh_)rgo xn(t), (3.32)
y(t) = lim y, (1), (3.33)

n—o0
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Ai(t) = Tim Ay (1), (3.34)
)\2(15) = nllﬁr{.lo AQ’n(t), (3.35)
A3(t) = lim Az (1), (3.36)

To establish the uniform convergence of these sequences, we consider their
associated series:

(xn - xn—l)v Z(yn - yn—l)’ (337)
n=1 n=1
> A= An1), Y Qom—Aan1), D (s —Azn-1).  (3.38)
n=1 n=1 n=1
For n =1, we have
t
1 — Ty = / fl(a:'()’ Yo, ()\1)07 ()‘2)07 ()\3)07 t) dt, (339)
0
’.731 — .%0‘ S MlT, (3.40)
t
=m0 = [ oo, (o, (o Qo 1) (3.41)
0
1 — yol < MoT, (3.42)

T
(A1 — (M)o = —¢>1(75—T)+/t f3(z0, %0, (A1)o, (A2)o, (A3)o, t) dt, (3.43)

[(A)1 = (A1)l < (é1 + M3)T, (3.44)
T

(A2)1 — (A2)o = —¢>2(75—T)+/t f1(z0, %0, (A1)o, (A2)0, (A3)0, 1) dt, (3.45)

[(A2)1 — (A2)o| < (¢2 + My)T, (3.46)

T

()i = oo = 200(t =)+ [ fav. s, (o, Qo o), (347)
|(A3)1 — (A3)o| < (g3 + M5)T. (3.48)
Subsequent estimation for x, —Zn—1, Yn—Yn—1, (A1 )n—(A1)n-1, A2)n—(A2)n-1,

and (A3)n — (A3)n—1 gives:
|zy, — Xp—1| < L1T|Tp—1 — Tn—2|, ( )
[Yn — Yn—1] < LaT|yn—1 — Yn—2|, (3.50)
|(AD)n = (M)n-1] < LsT[(M)n-1 — (M)n-2], (3.51)
|(A2)n = (A2)n—-1] < LaT[(A2)n-1 — (A2)n-2], (3.52)
|(A3)n = (A3)n—1] < LsT[(A3)n—1 — (A3)n—2|- (3.53)



Optimized strategies for open-loop Nash equilibrium problem

Applying estimation for n = 2, we obtain:
|wo — 21| < L1 T2t — 2o,
\zo — 1| < LM T?.
For n = 3, it follows that:
|zg — x| < L1T|zg — 1],
|23 — 29| < LIM T3,
and in general,
|2y — Zp—1| < L’ll_lMlT”.
Applying the same estimation for y, — y,—1, we get:
ly2 = y1| < LTy — o,
ly2 — 11| < LoMoT?,
lys — yo| < LEMLT®,
and in general,
[Yn = yn1| < Ly~ MaT™.
Similarly, we estimate for (A1), — (A1)p—1:
[(An)2 — (A)1| < LsT[(A1)1 — (>\1) B
[(A)2 = (M| < La(¢n + M3)T?,
(A1) = (Mol < L3(¢1 + M3)T?,
and in general,
|(A)n = (A)n1| < LE (¢ + Ms)T™.
We proceed similarly for (A2), — (A2)n—1 and (A3)n — (A3)n—1
[(A2)2 = (A2)1] < LaT'|(A2)1 — (A2)ol,
[(A2)2 = (A2)1| < La(¢2 + Ma)T?,
[(A2)3 = (A2)a| < Li(¢2 + Mu)T?,
|(A2)n — (Ao)n—1| < LY (o2 + My)T™,
and
[(A3)2 = (As)1| < LsT[(As)1 — (A3)ol,
[(A3)2 = (Ma)1| < Ls(¢s + Ms)T?,
(A3)3 — (Aa)2| < LE(¢3 + M5)T°,
|(A3)n — (Ag)n—1| < LE™H(¢3 + M5)T™.

225

(3.59)
(3.60)
(3.61)

(3.62)

(3.63)
(3.64)
(3.65)
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Given that L; < 1 for ¢ = 1,2,3,4,5 and T < 1, the series Y 7, (z, —
l'n—l)’ Z;.Lozl(yn - yn—l)v Zzozl(()\l)n - ()\1)71—1)7 220:1(()\2)71 - ()\Q)n—l)v and
o021 ((A3)n — (A3)n—1) are uniformly convergent. Therefore, the sequences
Ton®} Avn AR} {O2)n(D)} and {(Xs)a(t)} converge uniformly.

Applying the Picard method, we approximate a solution for our problem:
Upon simplifying the equations for a three-player system, we derive the fol-
lowing expressions:

A A A
i=Y ez -2yt D)1 —a—y)— Z2@r+y—Da+ 2@ +y)z, (3.75)
kl k2 k3
. /\2 /\1 )\3
y=_(2r-y+1)(1-z-y)— —(—z—2y+Ly+_—(z+y)y, (3.76)
ko k1 ks
- A 3\ 2\
M=M (-2 + D+ 220 —y+ 1) - Z@+y) ), (377
ko1 > ks
3 3\ 2
o= o (Bt oozt + 2220y - R k) o 619
1 kz kg
: 3 3\ 2
g =Ng | T (—w—2y+1) + (<20 —y+1) — Tz +y) ) + 265, (3.79)
k1 ) ks

x(0) = xo, (3.80)
y(0) = wo, (3.81)
M(T) =0, (3.82)
Ao(T) = 0, (3.83)
A3(T) =0 (3.84)

Integrating equations (3.75) through (3.79), the system can be represented as:

2(t) _:c0+/0 (ﬁ<—x—2y+1)(1 _z—y)

k1
A A
20ty — Dz + B+ y)x) dt, (3.85)
ks ks
t )\2
v =wo+ [ (Fl2r—y+DA-z-y)
0 2
A A
~ Pz -2y Dy + e+ y)y)dt, (3.86)
o ks
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T
A1(t) = /t <?)]:\11(—x —2y+1)+ 3;\22(—295 —y+1)
- 2;;(93 +y) — gi)l)dt, (3.87)
(T 3n 3\
()= [ (Free =241+ T2y +1)
- 2]:\33(56 +y) — ¢2)dt, (3.88)
(T 3n 3\
Na(t) = /t (e -2+ D+ P22 -y + )
- 2%3(90 + ) + 263 di. (3.89)
3

Applying the Picard method to equations (3.85) to (3.89), we formulate:

t

A1) n—

zn(t) = 7o +/ (( 1]31 S(~Zpo1 = 201 + 1)1 — Ty — Yn-1)
0

A2)n— A3)p—
_( 2) ! (zxn—l+yn—1_1)xn—1+(3)71($n—1+yn—1)xn—1 dt,
k2 kg
(3.90)
t
A2)p—
yn(t) =Y +/ (( 2]3 ! (_23377,—1 —Yn—1+ 1)(1 —Tn—-1— yn—l)
0 2
- (Al)n—l (_wn—l — 2Yp—1+ 1)yn—1
k1
+ ()\3>n—1 (xnfl + ynfl)ynfl)dt; (391)
ks
T 3(A )
o) = [ (B gy 2y 1)
t K
+ 3(>‘2)an (_21:71—1 — Yp—1+ 1)
ko
2 _
- M(ﬂcnq + Yn—1) + ¢1>dt, (3.92)
k3
T
3(A)n—
O = [ (A= gy 2y + )
t k1
+ M(_2xnfl — Yn_1+ 1)
)
- 2(Az)"_1(a:n_1 + Yn—1) + ¢2>dt, (3.93)
3
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T
Oaln0) = [ (P s — 2 1)
3(A2)n—1

+ (_23371—1 — Yn—1 + 1)
ko
20\3)n—
- (Zl(;ﬂnl Y1) + 2¢53)dt (3.94)

with initial conditions:

2(0) =0, y(0)=wo, (AM)o=0, (A2)o=0, (A3)o=0.  (3.95)

At the initial iteration n = 1, the following expressions are obtained:

r1(t) = 20 + /Ot (()\1)0(_960 —2yo + 1)(1 — z0 — vo)

ki
—(Z)O(on +yo — D)ag + (/\;3)0 (zo + yo)a:0> dt, (3.96)
n(®) =+ [ (G220 + 01— 0 -0

- (Akll)o (=0 — 2yo + 1)yo + (A]j;)o (20 + yo)yo> dt, (3.97)

A (8) = /tT (3(2)0(—% “aye 1)+ 3(22)0(—2% o+ 1)
- (2 o (zo + o) +¢>1> (3.98)

(A2 ( —z0— 240 + 1) + 3(222)0(—2330 — g0+ 1)
- k X3)o % (z0 + 10) +¢>2> (3.99)

(As ( 20— 2y0 + 1) + 3(22)0 (—2z0 — yo + 1)
kg (:vo +90) — 2¢3> (3.100)

with the initial conditions:

z(0) ==z0, y(0)=w0, (AM)o=0, (MA2)o=0, (X3)o=0.  (3.101)
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The first approximations for x, A1, Ao, and A3 are thus given by:

z1(t) =20, y1(t) = vo, (3.102)
(A)1(t) = 1t = T), (3.103)
(A2)1(t) = ga(t = T), (3.104)
(A3)1(t) = —2¢3(t = T) (3.105)

Consequently, the initial approximations for ui, us, us, ¢1, co, and cg are:

o1t —=T)(—x0 — 2yo + 1)

(w1 = o : (3.106)
(u)y = 227 T)(_]ffo “wtl) (3.107)
(u)y = 20200 = Z;)(:UO T30), (3.108)
(1)1 :% (¢1(t_T>(_ZO_2y°+1)>2, (3.109)
(c2)1 = % (¢2(t_T)(_;2$0_y0+1)>2, (3.110)
(esh =22 (_%3“ _Z;)("”O + y°)>2. (3.111)

At the second iteration n = 2, the system evolves as follows:

wa(t) = wo + /Ot (()\1)1 (=21 =2y + 1)(1 — 21 — 1)

k1
- (222)1 (221 + 31 — 1)1 + (233)1 (2 + y)a ) b, (3.112)
ya(t) = yo + /Ot ((222)1 (=221 — g1+ 1)(1 — 21 — 91)
- (Akll)l (—w1 —2y1 + Dyr + (A]j’g)l (1 + gy )dt,  (3.113)
P:(t) = /tT (3(211)1(_5”1 —2y 1)+ 3(222)1 (—2a1 —y1 + 1)
- 2(25)1 (1 1) + 61 )t (3.114)
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3(A2)1
ko

T
(A2)2(t) = /t (3()\1)1 (=21 -2y +1) + (=271 —y1+1)

k1

- 2(23)1@1 ) + ¢2) dt, (3.115)
3

T
(A3)2(t) = /t (3(2)1 (—z1 — 2y + 1) + 3(25)1 (=221 —y1 4+ 1)

2()\3)1
k3

Thus, the second approximation for x, y, A1, A2, and A3 can be expressed as:

.Tg(t) =120+ /Ot <¢51(tk1—T)(_x0 — 2y + 1)(1 — X0 — yo)

—¢2(tk_ ) (2z0 +yo — 1)wo — 2¢3(]i —1)
2 3

y2(t) = yo + /Ot (M(—Qﬂ?o —yo+ 1)(1 =20 — o)

ko
¢1(t = T) 2p3(t — T)
ks

(x1+wy1) — 2¢3) dt. (3.116)

(o + yo):co> dt, (3.117)

— ———(—x0 —2yo + L)yo — (o + yo)yo) dt, (3.118)

k1

T —
(A1)2(t) = /t (W(_% —2yo + 1)

n 3pa(t —T)

ko
_ 23(t—T)

k3

T J—

Oalat) = [ (P2 o - 20+ 1)
3(;52(75 — T)
+ =
_ 203(t—T)

ks

T _
Oann(0 = [ (3 204 1)

3po(t —T)

+ 7]{2

2(t—T)
k3

(=220 —yo + 1)

(zo + o) + ¢1)dt, (3.119)

(—2z0 —yo + 1)

(zo +yo) + ¢2)dt, (3.120)

(=220 —yo+ 1)

(zo + o) — 2¢3)dt. (3.121)
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After solving the integrals, the equations become:
2

— 2k1koxf s — 2k1k — 2k ksad
2k1koks ( 1h21003 1k2Z0yoPs3 1k3xgde
— kiksmoyoda + k1kszods + koksady + 3kakszoyody

— 2kokszodr + 2kaksyid1 — 3koksyodr + ko km)

t2
t Thikoks

1 3
+ §k1k3$0yo¢2 — kokszdr — 516274539001/0(;51

332(15) =20+

(kl koxd s + kikazoyods + k1ksrdde

3 1
+ koksypdr — Skeksyodr + §k2k3¢1), (3.122)
/2

o+ —( — 2 kozoyods — 2k kaydos + 2kikswids
2k1koks

ya(t) =y

+ 3k1kszoyopa — 3k1kszod + kiksysda — 2k1ksyode
+ k1ksda + kakszoyodr + 2kaksydd1 — k2k3y0¢1>

t2
— (kk kikoyd ds — kiksxl
+ Tk1k2k3< 1k2z0yod3 + k1kaygds — ki1kszgpo
3 1
- §k1k3$0y0¢2 + koksxoyodr + 2kaksyidr — §k2k3y0¢1>, (3.123)
T3
A t) = — 8k1k 8k1k
(A1)2(t) 3k1k2k3( 1k2xoP103 + 8k1kayoP103

+ 6k1k3x0d102 + 3k1ksyop1d2 — 3k1ksd192
+ kakszodt + Gkokayost — Shakaor )

t3
k1k ki1k
SErkaks (8 1kazop1 03 + S8k1kayod103

+ 6k1k3zod1d2 + 3k1ksyop1 92 — 3k1ksd1d2
— 3koksxopr — 6koksyod1 + 3]62]433@251), (3.124)

T3
(A2)2(t) =  Shikoks (8k1k2$0¢2¢3 + 8k1kayod203
+ 6k1kszopo + 3ki1ksyodo — 3k1k3po

+ 3koksxoprd2 + 6koksyod1do — 3/€2k3¢1¢2)

t3
— | 8k 1k 8k1k 6k k
* 3k1k2k3( 1kazod2¢3 + 8k1kayopags + 6k1kszod2

+ 3k1k3yopo — 3k1k3pa — 3kokzzod1 2
— 6kak3yod102 + 3k2/€3¢1¢2)7 (3.125)

+
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TS
(A3)2(t) = ikl (16k17€2$0¢§ + 16k1kayod3 + 12k1kszodads

+ 6k1k3yopap3 — 6k1kspadz + 6kakszod1P3

+ 12k2k3yod1 93 — 6k2k3¢1¢3>
t3

3k koks

+ 6k1k3yopaps — 6ki1kspads + 6kakszopips

(16k1k23}0¢§ + 16k1k2y0¢§ + 12k1 ksxodo0s

+ 12koksyod1d3 — 6k‘2k‘3¢1¢3>- (3.126)

The second-order approximations for the control and cost functions are
given by:

(A)2(8) (=22(t) — 2ya(t) + 1)

(u1)2 = o , (3.127)
o = Q220 () 1) 125
= ~OE0) 1), 5120,
(e = (@), (3.130)
(e2)2 = 2 (u)o)?, (3.131)
(es) = 2 (us)a)?. (3.132)

With specified values g = 0,y9 = 0,91 = 0.1,¢2 = 0.3, k1 = 0.25,ky =
0.5,¢3 = 0.2,k3 = 0.75, and T' = 1, a comparative analysis of the approximate
solutions for the three firms in the model is presented in the ensuing figures.

Figure 1 illustrates the approximate optimal state solutions for the problem.
In this scenario, x, y, and 1 — z — y denote the market shares of Firm 1, Firm
2, and Firm 3, respectively, at various time points ¢. The figure captures the
evolution of market shares for the three firms over time.

Figure 2 displays the approximate optimal control solutions. The variables
u1, uz, and ug signify the advertising efforts of Firm 1, Firm 2, and Firm 3.
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Figure 1: Market Shares
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FiGure 1. Market Share Dynamics of Firm 1, Firm 2, and
Firm 3 Over Time.

Figure 2: Advertising Efforts
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F1GURE 2. Advertising Strategies of Firm 1, Firm 2, and Firm
3 Over Time.
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Figure 3: Advertising Costs
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FIGURE 3. Advertising Costs of Firm 1, Firm 2, and Firm 3

Over Time.
Figure 4: Costate Variables
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FiGURE 4. Costate Variable Trends for Firm 1, Firm 2, and
Firm 3 Over Time.

4. CONCLUSION
The studys exploration into the application of the Picard method within the

context of Nash equilibrium in differential games marks a significant advance-
ment in the understanding of strategic dynamics in competitive markets. The
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results not only validate the methods applicability but also open avenues for
its use in broader strategic and economic modeling. Future research could ex-
pand this approach to more complex scenarios, incorporating varying market
conditions and player behaviors.
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