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Abstract. In this paper, we introduce and study a novel iterative approach for fixed point

(FP) approximation under nonexpansive mapping of the Reich–Suzuki type(RSN). We fur-

ther show that the suggested approach converges quicker than some existing iterative schemes

for this kind of mapping. Furthermore, we provide some strong convergence findings as

well as weak convergence results for our novel iterative approach for FPs of RSN mapping.

Additionally, we conduct a numerical experiment to demonstrate the effectiveness of our

innovative iterative approach.

1. Introduction

Functional analysis is a mathematical discipline that expands vector and
space notions from finite to infinite dimensions. It has emerged as a funda-
mental basis for contemporary applied mathematics in recent decades. FP
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theory, on the other hand, is an important and rapidly emerging area of non-
linear functional analysis. It refers to outcomes that describe the presence of
FPs. It ensures a meaningful solution to these problems. A large literature
on FP theory is accessible in several publications [3, 4, 16, 17, 18, 23, 24, 28].
The fundamental concepts of FP theory can be divided into two primary cat-
egories. The first is to determine the required and sufficient criteria under
which an operator allows FPs. Another option is to use schematic techniques
to find such FPs. Another significant idea in FP theory is the study of the
behaviors of FPs, like stability, data dependence, etc. However, a variety of
iterative approaches have been developed to approximate the FPs of various
mapping classes.

A novel iterative approach was presented by Mann [10] in 1953.

ηs+1 = (1− αs) ηs + αsΩ ηs, ∀s ≥ 0, (1.1)

where Ω : A → A is a mapping such that A is a subset of Banach space B,
as ∈ (0, 1) and a sequence {ηs} is generated by η0 ∈ A.

The Mann method is expanded from a single step to two steps by the
Ishikawa [7] iterative method, which is as follows:{

ηs+1 = (1− αs) ηs + αsΩ µs,

µs = (1− βs) ηs + βsΩ ηs,
(1.2)

where αs, βs ∈ (0, 1).

The Mann and Ishikawa iterative methods are both extended by the Noor
[11] iterative method, which is stated as follows:

ηs+1 = (1− αs) ηs + αsΩ µs,

µs = (1− βs) ηs + βsΩ σs,

σs = (1− ρs) ηs + ρsΩ ηs.

(1.3)

The technique developed by Agarwal et al. [2] is a minor modification of
the Ishikawa method, as described below:{

ηs+1 = (1− αs) Ωηs + αsΩ µs,

µs = (1− βs) ηs + βsΩ ηs.
(1.4)

The three-step iterative method utilized by Abbas and Nazir [1] is as follows:
ηs+1 = (1− αs) Ω µs + αsΩ σs,

µs = (1− βs) Ωηs + βsΩ σs,

σs = (1− ρs) ηs + ρsΩ ηs.

(1.5)
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In recent years, distinguished mathematicians have proposed numerous iter-
ative schemes that expedite convergence to the fixed point [5, 9, 14, 15, 22, 27].
Regarding the estimation of the FPs of nonexpansive mapping of the RSN
type, we provide a new iterative technique:

ηs ∈ A, s ∈ N,
µs = Ω((1− αs) ηs + αsΩ ηs),

ξs = Ω(Ω (µs)),

ηs+1 = Ω( (1− βs) Ωµs + βsΩξs),

(1.6)

for all s ≥ 0, where αs, βs ∈ (0, 1).

This study is made especially for RSN mapping, the iterative approach
(1.6) converges more quickly than the well-known iterative methods now in
use. For nonexpansive mapping of the RSN type, we demonstrate both weak
and strong convergence findings of the approach (1.6). We further demonstrate
numerically that, in comparison to many other iterative methods currently in
use, the iterative approach (1.6) converges more quickly. The results of this
work improve and extend the corresponding results in the literature.

2. Preliminaries

In this section, the basic definitions and facts related to this work are re-
called. Throughout this work, F(Ω) denotes the collection of all FPs of Ω
and A is a nonempty subset of a Banach space B (briefly BN-space). Let B∗
be the dual of B and consider < ., . > indicates the generalized duality pair-
ing between B and B∗. Then, for any u ∈B the normalized duality map is the
multi-valued map J : B→2B

∗
which is described by:

J (u) = {q ∈ B∗ : < u, q >= ‖u‖2 = ‖q‖2}.

Consider D = {u ∈ B : ‖u‖ = 1}. Then B is termed as smooth if the limit

lim
e→0

‖u+ eq‖+ ‖u‖
e

exists for any u, q ∈ D. Assume that the limit of the equation above exists
and is uniformly obtained for q ∈ D. In this situation, the norm of B is
termed Fréchet differentiable.

Definition 2.1. A BN-space B is termed as uniformly convex (UC-Space) if,
for every ε ∈ (0, 2], there exists δ > 0 such that for

‖u1‖ ≤ 1, ‖u2‖ ≤ 1, ‖u1 − u2‖ > ε, then ‖u1+u2‖
2 ≤ δ u1, u2 ∈ B.

Definition 2.2. ([21]) A mapping Ω : A → A is termed as satisfying condition
(C) if 1

2 ‖u1 − Ωu1‖ ≤ ‖u1 − u2‖ implies ‖Ωu1 − Ωu2‖ ≤ ‖u1 − u2‖ for any
u1, u2 ∈ A.
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Definition 2.3. ([6]) A map Ω : A → B is demiclosed at u ∈ A if for every
sequence {us} in A and q ∈ B, us → q and Ωus → u indicates that q ∈ A and
Ωq = u.

Definition 2.4. ([13]) A mapping Ω : A → A is termed as Reich–Suzuki-type
nonexpansive mapping(RSN) if there is γ ∈ [0, 1) such that for

1

2
‖u1 − Ωu1‖ ≤ ‖u1 − u2‖ ,

then

‖Ωu1 − Ωu2‖ ≤ γ ‖u1 − Ωu1‖+ γ ‖u2 − Ωu2‖
+ (1− 2γ) ‖u1 − u2‖ (2.1)

for all u1, u2 ∈ A.

Lemma 2.5. ([25]) Let Ω: A→A be a mapping. If Ω is RSN mapping with
F(Ω) 6=∅, then the followings are true:

(i) If Ω is RSN map, then ‖Ωu− Ωu∗‖ ≤ ‖u− u∗‖ for any choice of u ∈
A and u∗ ∈ F(Ω).

(ii) If Ω fulfills condition (C), then Ω is RSN map.

Lemma 2.6. ([19]) Let B be a UC−space and {ηs} be a real sequence
with 0 < us ≤ ηs ≤ qs < 1 for each s ≥ 1. Assume that {us}, {qs} are
two sequences of B with limsups→∞ ‖us‖ ≤ ϑ, limsups→∞ ‖qs‖ ≤ ϑ and
limsups→∞ ‖ηsus + (1− ηs)qs‖ = ϑ hold for some ϑ ≥ 0. Then

limsup
s→∞

‖us − qs‖ = 0 .

Definition 2.7. ([12]) Let A ⊆ B, where A nonempty closed convex subset,
and {us} be a bounded sequence in B. We put

r (u, {us}) := limsup
s→∞

‖u− us‖

for u ∈ B, then the asymptotic radius of {us} concerning A is

r ( A, {us}) := inf{r (u, {us}) : u ∈ B}.
The asymptotic center of {us} concerning A is

A ( A, {us}) := {u ∈ B : r (u, {us}) = r ( A, {us})}.

Lemma 2.8. ([26]) Let Ω: A→A be a mapping. If Ω is RSN map, then for
every u1, u2 ∈ A, the following inequality is true:

‖u1−Ωu2‖≤
(

3+ω

1−ω

)
‖u1−Ωu1‖+ ‖u1−u2‖ . (2.2)



New iteration approach for approximating fixed points 241

Definition 2.9. ([20]) A mapping Ω: A→A is said to have a fulfilled condition
(I ) if there exists a function h : [0,∞)→ [0,∞) (nondecreasing) with h (0) =
0 and for m > 0, then h(m) > 0 with

‖u−Ωu‖ ≥ h(d (u,Ωu) )

for every u ∈ A, where d (u, Ωu) = infu∗∈F(Ω) ‖u−u∗‖.

3. Main results

Some convergence findings of the iterative (1.6) for nonexpansive mapping
of the RSN type are shown in this section.

Lemma 3.1. Let Ω: A→A be RSN mapping where A ⊆ B (nonempty, closed
and convex) of BN-space B with F(Ω) 6=∅. Assume {ηs} be the sequence pro-
duced by the iterative (1.6). Then

lim
s→∞

‖ηs − η∗‖

exists for each η∗ ∈ F(Ω).

Proof. Consider η∗ ∈ F(Ω). Based on Lemma 2.5, we have

‖µs − η∗‖ = ‖ Ω ( (1− αs) ηs + αsΩ ηs)− Ωη∗‖
≤ (1− αs) ‖ηs − η∗‖+ αs ‖Ω ηs − Ωη∗‖
≤ (1− αs) ‖ηs − η∗‖+ αs ‖ ηs − η∗‖
= ‖ηs − η∗‖ , (3.1)

‖ξs − η∗| = ‖Ω (Ω (µs)) − η∗‖
≤ ‖Ω (µs) − η∗‖
≤ ‖µs − η∗‖
≤ ‖ηs − η∗‖ (3.2)

and

‖ηs+1 − η∗‖ = ‖Ω( (1− βs) Ωµs + βsΩξs)− η∗‖
≤ ‖(1− βs) Ωµs + βsΩξs − η∗‖
≤ (1− βs) ‖Ωµs − η∗‖+ βs ‖Ωξs − η∗‖
≤ (1− βs) ‖µs − η∗‖+ βs ‖ ξs − η∗‖
≤ (1− βs) ‖ηs − η∗‖ + βs ‖ηs − η∗‖
= ‖ηs − η∗‖ . (3.3)

Thus, lims→∞ ‖ηs − η∗‖ exists. �
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Lemma 3.2. Let Ω: A→A be RSN mapping where A ⊆ B (A a nonempty
closed convex). Let {ηs} produced by the iterative (1.6). Then F(Ω) 6=∅ if and
only if {ηs} is bounded and lims→∞ ‖Ωηs − ηs‖ = 0 .

Proof. Assume F(Ω) 6=∅ and η∗ ∈ F(Ω). From Lemma 3.1, lims→∞ ‖ηs − η∗‖
exists and {ηs} is bounded. Put

lim
s→∞

‖ηs − η∗‖ = b. (3.4)

Then, from (3.1), (3.2) and (3.4), we have

limsup
s→∞

‖µs − η∗‖ ≤ b (3.5)

and

limsup
s→∞

‖ξs − η∗‖ ≤ b. (3.6)

Recalling Lemma 2.5, we have

limsup
s→∞

‖Ωηs − η∗‖ ≤ limsup
s→∞

‖ηs − η∗‖ = b. (3.7)

Also, from (1.6) and Lemma 3.1, we obtain

‖ηs+1 − η∗‖ = ‖Ω( (1− βs) Ωµs + βsΩξs)− η∗‖
≤ ‖(1− βs) Ωµs + βsΩξs − η∗‖
≤ (1− βs) ‖Ωµs − η∗‖+ βs ‖Ωξs − η∗‖
≤ (1− βs) ‖µs − η∗‖+ βs ‖ ξs − η∗‖
≤ ‖µs − η∗‖ − βs ‖µs − η∗‖+ βs ‖ ξs − η∗‖
≤ ‖ηs − η∗‖ − βs ‖ηs − η∗‖+ βs ‖ ξs − η∗‖ .

This implies that

‖ηs+1 − η∗‖ − ‖ηs − η∗‖ ≤
‖ηs+1 − η∗‖ − ‖ηs − η∗‖

βs
≤ ‖ ξs − η∗‖ − ‖ηs − η∗‖ . (3.8)

Therefore, we have

b ≤ liminf
s→∞

‖ξs − η∗‖ .

From (3.6) and (3.8), we obtain

b = lim
s→∞

‖ξs − η∗‖ . (3.9)
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Using (1.6), we have

b = lim
s→∞

‖ξs − η∗‖

= lim
s→∞

‖Ω (Ω (µs))− η∗‖

= lim
s→∞

‖(Ω (µs))− η∗‖

= lim
s→∞

‖µs − η∗‖

= lim
s→∞

‖[Ω((1− αs) ηs + αsΩ ηs)]− η∗‖

= lim
s→∞

‖[(1− αs) ηs + αsΩ ηs)]− η∗‖

= lim
s→∞

‖(1− αs) (ηs − η∗) + αs(Ω ηs − η∗)‖ .

Since 0 < αs < 1, then from Lemma 2.6, we have

lim
s→∞

‖Ω ηs − ηs)‖ = 0. (3.10)

In contrast, assume that {ηs} is bounded and

lim
s→∞

‖Ω ηs − ηs)‖ = 0.

Let η∗ ∈ A(A, {ηs}). Then, based on Lemma 2.8, we have

r ( Ωη∗, {ηs}) = lim
s→∞

sup ‖ηs − Ωη∗)‖

≤
(

3 + ω

1− ω

)
lim
s→∞

sup ‖Ωηs − ηs‖+ lim
s→∞

sup ‖ηs − η∗‖

= lim
s→∞

sup ‖ηs − η∗‖

= r ( η∗, {ηs}) .
This implies that Ωη∗ ∈ A(A, {ηs}). Since B is UC-space, then A(A, {ηs})
has only one element. Consequently, we acquire Ωη∗ = η∗. �

Lemma 3.3. If Theorem 3.4’s presumptions are all valid, then

lim
s→∞

ps(J (p∗1, p
∗
2))

exists for any p∗1, p
∗
2 ∈ F(Ω); specifically,

lim
s→∞

(p− q,J (p∗1, p
∗
2)) = 0

for p, q ∈ ωw(ps), where ωw(ps) represents the whole collection of weak points
of {ps}.

Proof. Lemma 2.3 in [8] provides the basis for the conclusion. �

Theorem 3.4. Let B,A,Ω, and {ηs} be as given in Lemma 3.2. Suppose
either of the following hypotheses are valid:
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(a) B meets Opials condition and I − Ω is demiclosed at zero;
(b) B possesses a Frchet differential norm.

If F(Ω) 6= ∅, then {ηs} converges weakly to a point of A.

Proof. Based on Lemma 3.1, lims→∞ ‖ηs − η∗‖ exists. It suffices to show that
{ηs} possesses a unique weak subsequential limit in F(Ω).

Consider {ηsi} and {ηsj} are two subsequences of {ηs}, that converge weakly
to b and y.

Consider case (a) is valid. Subsequently from Lemma 3.2, lims→∞ ‖Ω(ηs)−
ηs‖ = 0 and by the demiclosedness of I −Ω, we have that (I −Ω)b = 0. That
is, Ωb = b; equivalently, y = Ωy.

Afterwards, we demonstrate uniqueness. Because b, y ∈ F(Ω), then
lims→∞ ‖ηs−b‖ and lims→∞ ‖ηs−y‖ exist. If b 6= y , so from Opial’s condition,
we have

lim
s→∞

‖ηs − b‖ = lim
si→∞

‖ηsi − b‖

< lim
si→∞

‖ηsi − y‖

= lim
s→∞

‖ηs − y‖

= lim
sj→∞

∣∣ηsj − y∣∣
< lim

sj→∞

∣∣ηsj − b∣∣
= lim

s→∞
‖ηs − b‖ .

This leads to a contradiction, implying that b = y. Additionally, assuming
that (b) is valid, we can use Lemma 3.3 we have 〈ηs,J (u1 , u2)〉 = 0. Hence,

‖b− y‖2 = 〈b− y,J (b− y)〉 indicates that b = y. �

Theorem 3.5. Let Ω, A,B be given as in Lemma 3.2. Then the sequence {ηs}
produced by (1.6) converges to an element of F (Ω) if and only if

lim inf
s→∞

d(ηs, F (Ω)) = 0,

where d(ηs, F (Ω)) = inf {‖ηs − η∗‖ : η∗ ∈ F (Ω)}.

Proof. Assume that lim infs→∞ d(ηs, F (Ω)) = 0 and consider the sequence
η∗ ∈ F (Ω). According to Lemma 3.1, lims→∞ ‖ηs − η∗‖ exists. It is enough
to prove {ηs} is Cauchy in A. Because

lim inf
s→∞

d(ηs, F (Ω)) = 0,

then given ϑ > 0, there is ω◦ ∈ N such that for each s ≥ ω◦ ,

d (ηs, F (Ω)) <
ϑ

2
,
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that is,

inf{‖ηs − η∗‖ : η∗ ∈ F(Ω)} < ϑ

2
.

In particular,

inf{
∥∥ηω◦ − η∗

∥∥ : η∗ ∈ F(Ω)} < ϑ

2
.

Thus, there exists η∗ ∈ F (Ω) such that∥∥ηω◦ − η∗
∥∥ < ϑ

2
.

Now for s, ω ≥ ω◦ , we have

‖ηs+ω − ηs‖ ≤ ‖ηs+ω − η∗‖+ ‖ηs − η∗‖
≤
∥∥ηω◦ − η∗

∥∥+
∥∥ηω◦ − η∗

∥∥
= 2

∥∥ηω◦ − η∗
∥∥

< ϑ.

This means that {ηs} is Cauchy in A. Since A is closed, there is q ∈ A with
lims→∞ ηs = q . Now,

lim
s→∞

d (ηs, F (Ω)) = 0

implying that

d (q, F (Ω)) = 0,

that is, q ∈ F (Ω) . �

4. Numrical result

To demonstrate the superior convergence rate of the new iterative approach
compared to other iterative procedures, an illustrative example is displayed
below.

Example 4.1. Let (R, ‖.‖) be a BN-space with the usual norm and A = [5, 7].
Let Ω : A → A be a mapping described by:

Ωu=

{
u+20

5 , if u < 7,
4, if u = 7.

To demonstrate that Ω is RSN-mapping, the subsequent cases are considered.

Case 1: If u, v < 7, then
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γ |u− Ωu|+γ |v − Ωv|+(1− 2γ) |u− v| = 1

2

∣∣∣∣u−(
u+ 20

5
)

∣∣∣∣+ 1

2

∣∣∣∣v−(
v + 20

5
)

∣∣∣∣
=

1

2

∣∣∣∣4u− 20

5

∣∣∣∣+
1

2

∣∣∣∣4v − 20

5

∣∣∣∣
≥ 1

2

∣∣∣∣(4u− 20

5

)
− (

4v − 20

5
)

∣∣∣∣
=

1

2

∣∣∣∣(4u

5

)
− (

4v

5
)

∣∣∣∣
=

2

5
|u− v|

≥ 1

5
|u− v|

= |Ωu− Ωv| .

Case 2: If u < 7 and v =7, then

γ |u− Ωu|+ γ |v − Ωv|+ (1− 2γ) |u− v| = 1

2

∣∣∣∣4u− 20

5

∣∣∣∣+
1

2
|7− 4|

=
1

2

∣∣∣∣4u− 20

5

∣∣∣∣+
3

2

≥
∣∣∣u
5

∣∣∣
= |Ωu− Ωv| .

Case 3: If u =7 and v <7, then

γ |u− Ωu|+ γ |v − Ωv|+ (1− 2γ) |u− v| = 1

2
|7− 4|+ 1

2

∣∣∣∣4v − 20

5

∣∣∣∣
=

3

2
+

1

2

∣∣∣∣4v − 20

5

∣∣∣∣
≥
∣∣∣v
5

∣∣∣
= |Ωu− Ωv| .

Case 4: If u =7 and v =7, then

γ |u− Ωu|+ γ |v − Ωv|+ (1− 2γ) |u− v| ≥ 0 = |4− 4|
= |Ωu− Ωv| .

Therefore, Ω is RSN- mapping and has fixed point 5.

Table 1 and Figure 1 show how the new iterative approaches rate of con-
vergence compares to other iterative approaches using Matlab.
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Table 1. Comparison of convergence rates for various itera-
tion approaches

Step New
(1.6)

SP
[12]

CR
[13]

Mann
[10]

Ishikawa
[11]

1 5.5 5.5 5.5 5.5 5.5
2 5.334 5.075 5.023 5.180 5.799
3 5.002 5.002 5.001 5.064 5.788
4 5.000 5.001 5.000 5.023 5.468
5 5.000 5.000 5.000 5.008 5.698
6 5 5.000 5.000 5.003 5.671
7 5.000 5.000 5.001 5.460
8 5.000 5.000 5.000 5.376
9 5.000 5.000 5.000 5.096
10 5.000 5.000 5.000 5.024
11 5.000 5.000 5.000 5.006
12 5.000 5.000 5.000 5.001
13 5.000 5 5.000 5.000
14 5 5.000 5.000
15 5.000 5.000
16 5.000 5.000
17 5.000 5.000
18 5.000 5.000
19 5.000 5.000
20 5.000 5.000
21 5.000 5.000
22 5.000 5.000
23 5.000 5.000
24 5.000 5.000
25 5.000 5.000
26 5.000 5.000
27 5.000 5
28 5.000
29 5.000
30 5.000
31 5.000
32 5.000
33 5.000
34 5.000
35 5
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Figure 1. Graphic illustration of the convergence of iterative approaches

Table 2 indicates the number of iterations required for certain iterative ap-
proaches to reach the FP. The new iterative approach converges more quickly
than the other methods, as shown in the data.

Table2. Number of iterations

Iterative approaches Number of iterations

New iteration 6

SP iteration 14

CR iteration 13

Mann iteration 35

Ishikawa iteration 27
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5. Conclusion

In this study, we introduce a novel iterative approach for estimating the FPs
of RSN mapping. Our novel iterative method converges faster than previous
well-known iterative algorithms, as shown by numerical evidence. In addition,
we proved convergence results for RSN mapping in UC-space. A comparison of
the convergence performance between the novel iterative approach (1.6) and
some well-known iterative strategies is presented using an example of RSN
mapping. In future work, it is also planned to study the non-expansion multi-
valued mapping of the RSN type and establish some convergence theorems.

Acknowledgments: The author thanks for the support of Rambhai Barni
Rajabhat University.
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