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Abstract. In this paper, we introduce a novel category of function that we employ to show-

case a fresh set of fixed point outcomes in the context of b-metric spaces for Pϕ-contractions.

Furthermore, we provide several examples to elucidate our principal result. The outcomes

we have obtained provide a broader scope of contraction mappings, such as the Kannan

contraction, in a more general context.
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1. Introduction and Preliminary

Fixed point theory has captivated numerous researchers since 1922, primar-
ily due to the renowned Banach contraction principle (BCP) [9]. The subject
boasts an extensive body of literature and continues to thrive as a highly
dynamic and vibrant area of research in the present era.

Fixed point theorems are well established principles that address the ex-
istence and properties of fixed points. For instance, Karapinar et al. [19]
introduced the notion of Proinov-C b-contraction mapping and explored its
implications within b-metric spaces, which are recognized as a particularly
fascinating abstract framework. In reference [5], the authors offered a detailed
definition of cone metric spaces through the lens of neutrosophic theory, sub-
sequently deriving various results associated with fixed points. The authors in
[23] presented findings related to fixed point theory within the context of fuzzy
b-metric spaces, along with several applications. In [2], the focus was on fixed
point theory concerning modified ω-distance mappings in relation to quasi
metric spaces. The studies in [25, 28] investigated the approximation of fixed
points for specific mappings and provided applications in integral equations.
Additionally, references [1, 3, 4, 20, 24, 26, 27] examined fixed point theory
within the framework of Gb-metric and G-metric spaces. Also, in [30, 31] and
references therein one can find a novel work on fixed point theory in various
distance spaces.

These theorems hold significant value as they serve as crucial tools in es-
tablishing the existence and uniqueness of solutions for diverse mathematical
models. These models encompass a wide range of phenomena encountered
in various fields, including but not limited to steady-state temperature dis-
tribution, neutron transport theory, chemical equations, economic theories,
and fluid flow. Theorems of this nature find application in differential equa-
tions, integral and partial differential equations, variational inequalities, nu-
merical analysis, and real analysis, among others [6, 15, 17]. Indeed, it can
be found in many applications formulated in terms of ordinary differential
equations, partial differential equations, fractional differential equations, etc
[12, 13, 14, 21, 22]. The concept of b-metric space has facilitated the adapta-
tion and extension of Banach’s principle in multiple directions, as evidenced
by the works cited in [8, 10, 11, 16, 29] and the references included therein. In
this manuscript, we commence by presenting the elegant class of Pφ-functions,
which serves as the foundation for our formulation of novel contractions. Fol-
lowing this, we establish the existence and uniqueness of fixed point associated
with these contractions. Subsequently, we derive a series of fixed point results
that are grounded in our principal findings.
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Kannan’s Theorem [18], a well-known generalization of BCP, was famously
demonstrated by Kannan to show that every contraction of Kannan-type has
a distinct fixed point in a complete metric space. This theorem is particularly
significant in the realm of analysis as it offers a valuable insight into the concept
of metric completeness.

Theorem 1.1. (Kannan Theorem) Suppose (X, d) is a complete metric space,
and suppose f : X → X and f fulfills the following condition

d(fΩ, fµ) ≤ k (d(Ω, fΩ) + d(µ, fµ)) ,

where 0 ≤ k < 1
2 . Then f is characterized by having a unique fixed point.

The notion of b-metric spaces was proposed by Bakhtin [8] which has became
well known by Czerwik [16].

Definition 1.2. A function db : X ×X → [0, ∞) is called a b-metric if there
is s ∈ [1, ∞) such that db satisfying:

(d1) db(Ω, µ) = 0 if and only if Ω = µ,
(d2) db(Ω, µ) = db(µ, Ω), ∀ Ω, µ ∈ X,
(d3) db(Ω, µ) ≤ s[db(Ω, z) + db(z, µ)], ∀ Ω, µ, z ∈ X.

The pair (X, db, s) is called a b-metric space.

It should be noted that in the case where s equals 1, the triplet (X, db, s)
forms a metric space. This implies that the properties of a metric space hold
true when s is equal to 1. Henceforth, R+ denotes the set of all nonnegative
real numbers, (X, db, s) means a b-metric space with base s. If f : X → X,
and Ω0 ∈ X, then the Picard sequence (Ωr) generated by f within Ω0 is
denoted by Pseq(Ω0, f); that is, the sequence (Ωr) where Ωr = fΩr−1, n ∈ N,
also we refer by Fix(f) the set of all fixed points of f in X.

2. Main results

We commence by introducing the subsequent category of function that will
be employed in the subsequent stages of this research.

Definition 2.1. Let Pϕ denotes the set of all continuous functions ϕ : R+ ×
R+ → R+ that satisfies the following condition:

ϕ(a, b) ≤ 2 max {a, b} −min {a, b} .

Subsequently, we present several examples pertaining to the class of Pϕ
functions.

Example 2.2. Let ϕ1, ϕ2, ϕ3 : R+ × R+ → R+ be defined by

(1) ϕ1(a, b) = max{a, b},
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(2) ϕ2(a, b) = |a− b|,
(3) ϕ3(a, b) = a+b

2 .

Then ϕ1, ϕ2, ϕ3 ∈ Pϕ.

Following is the elucidation of Pϕ-contraction, a concept of utmost signifi-
cance in our result.

Definition 2.3. Suppose f is a self-mapping on (X, db, s). Then f is said to
be Pϕ-contraction if there is Pϕ-map ϕ such that for all Ω, µ ∈ X,

Ω 6= µ =⇒ db(fΩ, fµ) < k [db(Ω, µ) + ϕ (db(Ω, fΩ), db(µ, fµ))] , (2.1)

where 0 ≤ k < min
{

1
2s ,

1
s2

}
.

Lemma 2.4. Let f be a self-map on (X, db, s) and let Ω0 ∈ X such that f is
Pϕ-contraction. Then for the Pseq(Ω0, f) if Ωk 6= Ωk+1 for each k ∈ N, then

lim
r→∞

db (Ωr,Ωr+1) = 0.

Proof. For each r∈ N, we have
db (Ωr,Ωr+1) = db (fΩr−1, fΩr)

< k [db (Ωr−1,Ωr) + ϕ (db (Ωr−1,Ωr) , db (Ωr,Ωr+1))]

≤ k [ db (Ωr−1,Ωr) + 2 max {db (Ωr−1,Ωr) , db (Ωr,Ωr+1)}
−min {db (Ωr−1,Ωr) , db (Ωr,Ωr+1)} ] .

Case 1: If max {db (Ωr−1,Ωr) , db (Ωr,Ωr+1)} = db (Ωr−1,Ωr), then

db (Ωr,Ωr+1) <
3k

1 + k
db (Ωr−1,Ωr) .

Case 2: If max {db (Ωr−1,Ωr) , db (Ωr,Ωr+1)} = db (Ωr,Ωr+1), then

db (Ωr,Ωr+1) < 2kdb (Ωr,Ωr+1) < db (Ωr,Ωr+1) ,

which is a contradiction. So, for each r∈ N, we have

db (Ωr,Ωr+1) <
3k

1 + k
db (Ωr−1,Ωr) <

(
3k

1 + k

)r
db (Ω0,Ω1) .

Hence,
lim
r→∞

db (Ωr,Ωr+1) = 0.

�

Lemma 2.5. Let f be a self-map on (X, db, s) such that f is Pϕ-contraction
and let Ω0 ∈ X. Then Pseq(Ω0, f) is a Cauchy sequence.
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Proof. Let m > r. Then

db(Ωr,Ωm) ≤ s[db(Ωr,Ωr+1) + db(Ωr+1,Ωm)]

≤ s[db(Ωr,Ωr+1) + s(db(Ωr+1,Ωm+1) + db(Ωm+1,Ωm))]

= sdb(Ωr,Ωr+1) + s2db(Ωr+1,Ωm+1) + s2db(Ωm+1,Ωm)

< sdb(Ωr,Ωr+1) + s2k[db(Ωr,Ωm)

+ ϕ(db(Ωr,Ωr+1), db(Ωm,Ωm+1))] + s2db(Ωm+1,Ωm)

≤ sdb(Ωr,Ωr+1) + s2k[db(Ωr,Ωm) + 2db(Ωr,Ωr+1)

− db(Ωm,Ωm+1)] + s2db(Ωm+1,Ωm)

= sdb(Ωr,Ωr+1) + s2kdb(Ωr,Ωm) + 2s2kdb(Ωr,Ωr+1)

− s2kdb(Ωm,Ωm+1) + s2db(Ωm+1,Ωm).

So, we have

(1− s2k)db(Ωr,Ωm) < (s+ 2s2k)db(Ωr,Ωr+1) + (s2 − s2k)db(Ωm,Ωm+1).

Hence by taking the limit as m, r →∞, we get

lim
m,n→∞

db(Ωr,Ωm) = 0,

and so, (Ωr) is a Cauchy sequence. �

Theorem 2.6. Suppose that (X, db, s) is complete and f : X → X is a Pϕ-
contraction. Then Fix(f) is characterized by having a unique element.

Proof. Starting from Ω0 ∈ X, we construct Pseq(Ω0, f). Hence, Lemma 2.5 en-
sures that Pseq(Ω0, f) is Cauchy so, it is convergent inX. Say limr→∞ (Ωr) = $.
We claim that f$ = $ as follows:

db (Ωr+1, f$) = db (fΩr, f$)

< k [db (Ωr, $) + ϕ (db($, f$), db (Ωr,Ωr+1))]

≤ k[db (Ωr, $) + 2 max {db($, f$), db (Ωr,Ωr+1)}
−min {db($, f$), db (Ωr,Ωr+1)}].

So,

lim sup
r→∞

db (Ωr+1, f$) ≤ 2kdb($, f$).

Now,
db($, f$) ≤ s [db ($,Ωr+1) + db (Ωr+1, f$)] .

Taking lim sup to both sides whenever r →∞, we get
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db($, f$) ≤ s (0 + 2kdb($, f$))

= 2skdb($, f$).

Hence, (1−2sk)db($, f$) ≤ 0, and therefore db($, f$) = 0, that is, $ = f$.
Now, to complete the proof, let v ∈ X such that fv = v. Then

db($, v) = db(f$, fv)

< k [db($, v) + ϕ (db($, f$), db(v, fv))]

= kdb($, v).

Hence, (1− k) db($, v) < 0, which is a contradiction, and therefore, $ =
v. �

According to Theorem 2.6 and the inherent nature of the class of Pϕ func-
tions, we are bestowed with a plethora of ensuing outcomes.

Corollary 2.7. Suppose (X, db, s) is complete and f : X → X fulfills the
following condition:

Ω 6= µ =⇒ db(fΩ, fµ) < k (db(Ω, µ) + |db(Ω, fΩ)− db(µ, fµ)|) ,

where 0 ≤ k < min
{

1
2s ,

1
s2

}
. Then Fix(f) is characterized by having a unique

element.

Corollary 2.8. Suppose (X, db, s) is complete and f : X → X fulfills the
following condition:

Ω 6= µ =⇒ db(fΩ, fµ) < k (db(Ω, µ) + max {db(Ω, fΩ), db(µ, fµ)}) ,

where 0 ≤ k < min
{

1
2s ,

1
s2

}
. Then Fix(f) is characterized by having a unique

element.

Corollary 2.9. Suppose (X, db, s) is complete and f : X → X fulfills the
following condition:

Ω 6= µ =⇒ db(fΩ, fµ) < k

(
db(Ω, µ) +

db(Ω, fΩ) + db(µ, fµ)

2

)
,

where 0 ≤ k < min
{

1
2s ,

1
s2

}
. Then Fix(f) is characterized by having a unique

element.



Some results on fixed points in b-metric spaces 257

Corollary 2.10. Suppose (X, db, s) is complete and f : X → X fulfills the
following condition:

Ω 6= µ =⇒ db(fΩ, fµ) < k

(
db(Ω, µ) + αmax {db(Ω, fΩ), db(µ, fµ)}

−min {db(Ω, fΩ), db(µ, fµ)}
)
,

where 1 ≤ α < 2, 0 ≤ k < min
{

1
2s ,

1
s2

}
. Then Fix(f) is characterized by

having a unique.

3. Examples

In this section, we present several examples to demonstrate the practicality
and to elucidate our primary finding.

Example 3.1. The equation
√

6Ω− sin Ω−
√

6 = 0 (3.1)

has a unique solution in [0, π2 ].

In fact, it is clear that the solution of Equation (3.1) is the fixed point of
the self-map f on X = [0, π2 ] which defined by fΩ = 1 + 1√

6
sin Ω. Now, define

db : X ×X → ∞ by db(Ω, µ) = (Ω − µ)2, also, define ϕ : R+ × R+ → R+ by
ϕ(a, b) = a+b

2 . Then, clearly (X, db, 2) is a complete b-metric space, and also,
ϕ ∈ Pϕ. Moreover for Ω, µ ∈ X with Ω 6= µ, we have

db(fΩ, fµ) =
(

1√
6

sin Ω− 1√
6

sinµ
)2

= 1
6(sin Ω− sinµ)2

≤ 1
6(Ω− µ)2

<
1

6

(
(Ω− µ)2 +

(Ω− 1− 1
10 sin Ω)2 + (µ− 1− 1

10 sinµ)2

2

)
.

Hence, f in a Pϕ contraction, and so, Theorem 2.6 ensures that f has a unique
fixed point.

Example 3.2. Define X as the set of all n × n matrices over the complex
numbers, denoted as Mn(C), and examine the spectral norm ‖.‖ : X → [0,∞),
also referred to as ‖S‖ = s1, where s1 is the greatest singular value of the
matrix S.
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It is evident that (X, ‖.‖) forms a Banach space due to the fact that X is
a norm space with finite dimensionality.

Let Q, Ai, Bi ∈ X for i ∈ {1, 2, . . . , N} be such that
N∑
i=1

‖Ai‖ ‖Bi‖ ≤ 1,

define db : X ×X → [0, ∞) by db(S, T ) = ‖S − T‖, also, define ϕ : R+ ×
R+ → R+ by ϕ(a, b) = max {a, b}. Then the function f : X → X defined by

f(S) = Q+
1

4

N∑
i=1

(AiSBi) has a unique fixed point in X.

In fact, it is Clear that (X, db, 1) is a complete b-metric space, and also,
ϕ ∈ Pϕ. Moreover for S, T ∈ X with S 6= T , we have

db (f(S), f(T )) = ‖f(S)− f(T )‖

=

∥∥∥∥∥Q+
1

4

N∑
i=1

(AiSBi)−Q−
1

4

N∑
i=1

(AiTBi)

∥∥∥∥∥
=

1

4

∥∥∥∥∥
N∑
i=1

(AiSBi)−
N∑
i=1

(AiTBi)

∥∥∥∥∥
=

1

4

∥∥∥∥∥
N∑
i=1

(AiSBi −AiTBi)

∥∥∥∥∥
=

1

4

∥∥∥∥∥
N∑
i=1

Ai(S − T )Bi

∥∥∥∥∥
≤ 1

4

N∑
i=1

‖Ai(S − T )Bi‖

≤ 1

4

N∑
i=1

‖Ai‖ ‖S − T‖ ‖Bi‖

=
1

4
‖S − T‖

N∑
i=1

‖Ai‖ ‖Bi‖

≤ 1

4
‖S − T‖

<
1

4

[
‖S − T‖+ max

{∥∥∥∥∥S −Q−
N∑
i=1

(AiSBi)

∥∥∥∥∥ ,∥∥∥∥∥T −Q−
N∑
i=1

(AiTBi)

∥∥∥∥∥}].
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Hence, f is a Pϕ-contraction, and so, Theorem 2.6 ensures that f has a unique
fixed point.

4. Fixed point for Pϕ-Kannan contractions

Definition 4.1. On (X, db, s), a map f : X → X is said to be a Pϕ-Kannan
contraction if there is Pϕ-map ϕ such that for all x, y ∈ X,

Ω 6= µ =⇒ db(fΩ, fµ) ≤ k [db(Ω, fΩ) + ϕ (db(Ω, fΩ), db(µ, fµ))] ,

where 0 ≤ k < 1
2s .

Lemma 4.2. Suppose f is a self-map on (X, db, s) and let Ω0 ∈ X such that f
is Pϕ-Kannan contraction. Then for Pseq(Ω0, f) if Ωk 6= Ωk+1 for each k ∈ N,
then limr→∞ db (Ωr,Ωr+1) = 0.

Proof. For each r∈ N,

db (Ωr,Ωr+1) = db (fΩr−1, fΩr)

≤ k [db (Ωr−1,Ωr) + ϕ (db (Ωr−1,Ωr) , db (Ωr,Ωr+1))]

≤ k [ db (Ωr−1,Ωr) + 2 max {db (Ωr−1,Ωr) , db (Ωr,Ωr+1)}
−min {db (Ωr−1,Ωr) , db (Ωr,Ωr+1)} ] .

Case 1: If max {db (Ωr−1,Ωr) , db (Ωr,Ωr+1)} = db (Ωr−1,Ωr), then

db (Ωr,Ωr+1) ≤
3k

1 + k
db (Ωr−1,Ωr) .

Case 2: If max {db (Ωr−1,Ωr) , db (Ωr,Ωr+1)} = db (Ωr,Ωr+1), then

db (Ωr,Ωr+1) ≤ 2kdb (Ωr,Ωr+1) < db (Ωr,Ωr+1) ,

which is a contradiction. So, for each r∈ N, we have

db (Ωr,Ωr+1) ≤
3k

1 + k
db (Ωr−1,Ωr) ≤

(
3k

1 + k

)r
db (Ω0,Ω1) .

Hence,

lim
r→∞

db (Ωr,Ωr+1) = 0.

�

Lemma 4.3. Let f be a self-map on (X, db, s) such that f is Pϕ-Kannan
contraction and let Ω0 ∈ X. Then Pseq(Ω0, f) is a Cauchy sequence.
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Proof. Let m > r. Then

db(Ωr,Ωm) ≤ sdb(Ωr,Ωr+1) + s2db(Ωr+1,Ωm+1) + s2db(Ωm+1,Ωm)

≤ sdb(Ωr,Ωr+1) + s2k[db(Ωr,Ωr+1) + ϕ(db(Ωr,Ωr+1),

db(Ωm,Ωm+1))] + s2db(Ωm+1,Ωm)

≤ sdb(Ωr,Ωr+1) + s2k[db(Ωr,Ωr+1) + 2db(Ωr,Ωr+1)

− db(Ωm,Ωm+1)] + s2db(Ωm+1,Ωm).

Hence by taking the limit as m, r → ∞, we get lim
m,n→∞

db(Ωr,Ωm) = 0, and

so, (Ωr) is a Cauchy sequence. �

Theorem 4.4. Suppose that (X, db, s) is complete and f is a self-mapping
on X such that f is a Pϕ-Kannan contraction. Then Fix(f) is characterized
by having a unique element.

Proof. Starting from Ω0 ∈ X, we construct Pseq(Ω0, f). Hence, Lemma 4.3
ensures that Pseq(Ω0, f) is Cauchy so, it is convergent in X. Say lim

r→∞
Ωr = $.

We claim that f$ = $ as follows:

db (Ωr+1, f$) = db (fΩr, f$)

≤ k [db (Ωr,Ωr+1) + ϕ (db($, f$), db (Ωr,Ωr+1))]

≤ k[db (Ωr,Ωr+1) + 2 max {db($, f$), db (Ωr,Ωr+1)}
−min {db($, f$), db (Ωr,Ωr+1)}].

So,

lim sup
r→∞

db (Ωr+1, f$) ≤ 2kdb(u, f$).

Now,

db($, f$) ≤ s [db ($,Ωr+1) + db (Ωr+1, f$)] .

Taking lim sup to both sides whenever r →∞, we get

db($, f$) ≤ s (0 + 2kdb($, f$))

= 2skdb($, f$).

Hence, (1− 2sk)db($, f$) ≤ 0, and therefore db($, f$) = 0 so, $ = f$.
Now, let v ∈ X such that fv = v, then if $ 6= v we have
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db($, v) = db(f$, fv)

≤ k [db($, f$) + ϕ (db($, f$), db(v, fv))]

= 0.

Therefore, $ = v. This completes the proof. �

By establishing the function ϕ : R+×R+ → R+ by ϕ(a, b) = b and applying
Theorem 4.4, we are able to obtain the subsequent result.

Remark 4.5. Theorem 1.1 is a consequence result of Theorem 4.4.

5. Conclusion

We have unveiled the Pϕ function category, which we utilized to present a
novel array of fixed point results within the realm of b-metric spaces specif-
ically for contractions. In addition, we have offered a variety of examples to
clarify our main findings. The results we have achieved expand the horizons
of contraction mappings, including the Kannan contraction, within a more
encompassing framework. This class of functions can be employed in alterna-
tive contexts of distance spaces to create diverse forms of contractions and to
demonstrate novel fixed point theorems.
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