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Abstract. The article presents a common fixed point result in Menger space in four self-

mappings by using the control function [13] in the context of compatible mappings of type (P )

and additionally provides some implications and applications as corollaries. This research

generalizes the findings of Chaudhary et al. [9], and Pathak et al., [24] as well as expanding

on some similar findings in the literature.

1. Introduction

In 1942, Menger [22] proposed the theory of probabilistic metric space. This
probabilistic approach to metric space assigns a distribution function Mx,y to
any two points x and y. Schweizer and Sklar [25, 26] provided significant
achievements in this area. Continuing this, Sehgal et al. [27] introduced the
first fixed point theorem in Menger space in 1972. For additional information
on this space, refer to [2, 14, 15, 17, 27, 29, 30, 33, 34, 37].

Many authors established fixed point theorems in single and multi-self-
mapping in Menger space, a some of them refer to [3, 5, 18, 21, 32, 35, 36].

Sessa [28] coined the term “weakly commuting mapping” to improve com-
mutativity. Jungck [19] soon expanded this notion to encompass compat-
ible mappings in metric spaces. Mishra [23] established the idea of com-
patible mapping in Menger space. Singh and Jain [31] suggested the con-
cept of weakly compatible mapping in Menger space, and many authors who
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worked on this space created various compatible mapping types see references
[4, 6, 7, 8, 9, 10, 11, 12, 18, 20, 23, 24, 27].

Recently, Chaudhary et al. introduced compatible mappings of type (K)
[10], type (P ) [9] and weakly compatible mapping of type (P ) [11] in Menger
space.

This article uses the control function to create a common fixed point the-
orem in Menger space for four self-mappings. It generalizes the theorem of
Chaudhary et al. [9], [24], and other related results in the literature.

2. Preliminaries

Definition 2.1. ([6]) A mapping F : R → R+ is said to be distribution
function if it is a non-decreasing function, left continuous with inf{F (x) : x ∈
R} = 0 and sup{F (x) : x ∈ R} = 1.

Here, we denote the set of all distribution functions by Ω while H denotes
the specific distribution function defined by:

H(x) =

{
0, if x<0,

1, if x > 0.

Definition 2.2. ([25]) A probabilistic metric space (PM-space) is an ordered
pair (Y,M), where Y is any non-empty abstract set of elements and M :
Y ×Y → Ω is distribution function defined by (p, q)→Mp,q, where Ω = {Mp,q :
p, q ∈ Y } and the distribution function Mp,q satisfy following conditions:

(P1) Mp,q(x) = 1 for every x > 0 if and only if p = q for every p, q ∈ Y ;
(P2) Mp,q(0) = 0 for every p, q ∈ Y ;
(P3) Mp,q(x) = Mq,p(x) for every p, q ∈ Y, and
(P4) Mp,q(x + y) = 1 if and only if Mp,r(x) = 1 and Mr,q(y) = 1 for every

p, q, r ∈ Y,
where, Mp,q(x) represents the value of distribution function Mp,q at x ∈ R,
and it is also denoted by M(p, q, x).

Definition 2.3. ([17]) A mapping t : [0, 1]× [0, 1]→ [0, 1] is called triangular
norm (shortly t-norm) if it satisfies the following conditions:

(T1) t(0, 0) = 0 and t(a, 1) = a for all a ∈ [0, 1];
(T2) t(a, b) = t(b, a) for all a, b ∈ [0, 1];
(T3) t(a, b) < t(c, d) if a< c and b<d for every a, b, c, d ∈ [0, 1]; and
(T4) t(a, t(b, c)) = t(t(a, b), c)) for every a, b, c ∈ [0, 1].
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Definition 2.4. ([7]) A Menger space is a triplet (Y,M, t), where (Y,M) is
PM-space and t is a triangular norm such that for all p, q, r ∈ Y and x, y ∈
R>0:

(P5) Mp,q(x+ y) > t(Mp,r(x), Mr,q(y)).

Remark 2.5. The following statement and results show how the metric space
and probabilistic metric space are connected:

If (Y, d) is metric space then metric d induces a distribution function M
defined by Mp,q(t) = H(t− d(p, q)). If f is contraction and d(fp, fq)<kd(p, q)
in metric space, then, in probabilistic metric space: Mfp,fq(kt)> Mp,q(t), and
when if d(p, q) < t then Mp,q(t) > 1− t. Also, Mfp,fq(kt)> Mp,q(t), whenever
Mp,q(t) > 1− t.

Definition 2.6. ([7]) A mapping A : Y → Y in Menger space (Y,M, t) is said
to be continuous at a point p ∈ Y if for every ε > 0 and λ > 0, there exists
ε1 > 0 and λ1 > 0 such that if Mp,q(ε1) > 1− λ1, then MAp,Aq(ε) > 1− λ.

Definition 2.7. ([11]) Let (Y,M, t) be a Menger space and t be a continuous
t-norm. Then,

(a) A sequence {yn} in Y is said to converge to a point y in Y if and only if
for every ε > 0 and λ > 0, there exists an integer N = (N, ε) > 0 such
that Myn,y(ε) > 1− λ for all n>N . In this case, we write lim

n→∞
yn = y.

(b) A sequence {yn} in Y is said to be Cauchy if for every ε > 0 and λ > 0,
there exists an integer N = (N, ε) > 0 such that Myn,ym(ε) > 1−λ for
all n,m>N.

(c) A Menger space (Y,M, t) is said to be complete if every Cauchy se-
quence in Y converges to a point in Y .

Definition 2.8. ([23]) Two mappings A,B : Y → Y are said to be compatible
in Menger space (Y,M, t) if

lim
n→∞

FABxn,BAxn(x) = 1 for all x > 0,

whenever {xn} is a sequence in Y such that lim
n→∞

Axn = lim
n→∞

Bxn = y for

some y in Y .

Definition 2.9. ([9]) Two mappings A,B : Y → Y are said to be compatible
of type (P ) in Menger space (Y,M, t) if

lim
n→∞

MAAxn,BBxn(x) = 1 for all x > 0,

whenever {xn} is a sequence in Y such that lim
n→∞

Axn = lim
n→∞

Bxn = y for

some y in Y .
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Example 2.10. Let (Y, d) be a metric space, where Y = [0,∞) with usual
metric d(x, y) = |x − y| and t(a, b) = ab be t-norm. Defining distribution
function as:

Mx,y(t) =

{
t

t+|x−y| for t > 0,

0 for t = 0

for all x, y ∈ Y . Then, (Y,M, t) is a Menger space.
If A,B : Y → Y are defined by

A(x) =

{
5 for x ∈ [0, 1),

x for x ∈ [1,∞)

and

B(x) =

{
1 for x ∈ [0, 1),

1/x for x ∈ [1,∞).

Taking sequence {kn} where kn = 1 + 1
n , n ∈ N. Then, A,B are compatible

with type P in Menger space but A,B are not compatible mapping.

Theorem 2.11. ([12]) Let (Y,M, t) be a Menger space with the continuous
t− norm t and A : Y → Y be self-mapping. Then, A is continuous at a point
y ∈ Y if and only if for every sequence {yn} in Y converging to a point y,
sequence {Ayn} converges to the point Ay, that is, if yn → y, then it implies
Ayn → Ay.

Proposition 2.12. ([12]) In Menger space (Y,M, t), if t(k, k)>k for all k ∈
[0, 1], then t(a, b) = min(a, b) for all a, b ∈ [0, 1].

We need the following lemmas for the establishment of main results in the
Menger space.

Lemma 2.13. ([31]) Let (Y,M, t) be a Menger space. If there exists k ∈ (0, 1)
such that for all p, q ∈ Y, Mp,q (kx)>Mp,q (x), then p = q.

Lemma 2.14. ([32]) Let {kn} be a sequence in Menger space (Y,M, t), where
t is continuous t−norm and t(x, x)>x for all x ∈ [0, 1]. If there exists a
constant k ∈ [0, 1] such that limn→∞ Mkn,kn+1(kx)>Mkn−1,kn(x) for all x > 0
and n ∈ N , then {kn} is a Cauchy sequence in Y .

3. Main results

Theorem 3.1. Let (Y,M, t) be a complete Menger space with t(a, b) = min(a, b)
for all a, b ∈ [0, 1] and Q,S,R, T : Y → Y be mappings such that

(1) Q(Y ) ⊂ T (Y ) and S(Y ) ⊂ R(Y );
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(2) the pairs (Q,R) and (S, T ) are compatible mappings of type (P );
(3) R and T are continuous, and
(4) there exists a constant k ∈ (0, 1) such that

M(Qx, Sy, kq)≥ ψ{min{M(Rx, Ty, q),M(Sy, Ty, q),M(Qx, Ty, q)}}
for all x, y ∈ Y, and q > 0, and where ψ : [0, 1]→ [0, 1] satisfies
(i) ψ is continuous and non-decreasing on [0, 1];
(ii) ψ(n) > n for all n in [0, 1].

Noting that if ψ∈Ψ, class of all mappings ψ : [0, 1]→ [0, 1],
then ψ(0) = 0, ψ(1) = 1, and ψ(n)>n for all in [0, 1].

Then Q,S,R, T have a unique common fixed point in Y .

Proof. Since we have Q(Y ) ⊂ T (Y ) and S(Y ) ⊂ R(Y ) for any u0 ∈ Y , so
there exists a point u1 ∈ Y such that Qu0 = Tu1 = v1, and for u1, we may
choose u2 ∈ Y such that Su1 = Ru2 = v2, and so on.

And inductively, we may construct sequence {un} and {vn} in Y such that

Qu2n−2 = Tu2n−1 = v2n−1

and
Su2n−1 = Ru2n = v2n

for n = 1, 2, .... Putting x = u2n and y = u2n+1 in condition (4), then we
obtain

M(Qu2n, Su2n+1, kq) = M(v2n+1, v2n+2, kq)

≥ ψ{min{M(Ru2n, Tu2n+1, q),M(Su2n+1, Tu2n+1, q),

M(Qu2n, Tu2n+1, q)}}
or

M(v2n+1, v2n+2, kq) ≥ ψ{min{M(v2n, v2n+1, q),M(v2n+2, v2n+1, q),

M(v2n+1, v2n+1, q)}}
≥ ψ{min{M(v2n, v2n+1, q),M(v2n+1, v2n+2, q)}}.

Similarly, we obtain

M(v2n+2, v2n+3, kq) ≥ ψ{min{M(v2n+1, v2n+2, q),M(v2n+2, v2n+3, q)}}.
Therefore, for every n ∈ N ,

M(vn, vn+1, kq) ≥ ψ{min{M(vn−1, vn, q),M(vn, vn+1, q)}}.
Consequently,

M(vn, vn+1, q) ≥ ψ{min{M(vn−1, vn, k
−1q),M(vn, vn+1, k

−1q)}} (3.1)

and

M(vn, vn+1, k
−1q) ≥ ψ{min{M(vn−1, vn, k

−2q),M(vn, vn+1, k
−2q)}}. (3.2)
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After combining inequalities (3.1) and (3.2), we get

M(vn, vn+1, q) ≥ ψ{min{M(vn−1, vn, k
−1q),

min{M(vn−1, vn, k
−2q),M(vn, vn+1, k

−2q)}}}
= ψ{min{min{M(vn−1, vn, k

−1q),M(vn−1, vn, k
−2q)},

M(vn, vn+1, k
−2q)}}. (3.3)

Since k ∈ (0, 1) and M is non-decreasing, we obtain

min{M(vn−1, vn, k
−1q),M(vn−1, vn, k

−2q)} = M(vn−1, vn, k
−1q).

Then inequality (3.3) gives

M(vn, vn+1, q) ≥ ψ{min{M(vn−1, vn, k
−1q),M(vn, vn+1, k

−2q)}}.
Continuing in this way, we get

M(vn, vn+1, q) ≥ ψ{min{M(vn−1, vn, k
−1q),M(vn, vn+1, k

−mq)}}.
Since k ∈ (0, 1) and M is non-decreasing and supM = 1 as m→∞,

M(vn, vn+1, k
−mq)→ 1.

So, it follows that

M(vn, vn+1, q) ≥ ψ{min{M(vn−1, vn, k
−1q)}}

or

M(vn, vn+1, kq) ≥ ψ{M(vn−1, vn, q)}
for all n ∈ N and q > 0.

Now, by property of ψ, we have

M(vn, vn+1, kq) ≥M(vn−1, vn, q)}.
So, by Lemma 2.2, {vn} is Cauchy sequence in Y .

Since the Menger space (Y,M, t) is complete, so {vn} converges to a point
z in Y and consequently the subsequences {Qu2n−2} , {Tu2n−1} , {Su2n−1} ,
{Ru2n} of {vn} also converges to z. As Qu2n, Ru2n → z and (Q,R) is com-
patible mappings of type (P ), then as n→∞

M(QQu2n, RRu2n, q/2) = 1. (3.4)

Since Ru2n → z and R is continuous, RRu2n → Rz.

M(RRu2n, Rz, q/2) = 1 (3.5)

as n→∞. Combining (3.4) and (3.5), we get

M(QQu2n, Rz, q) = 1

as n→∞, that is,

QQu2n → Rz. (3.6)
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Similarly, we may prove when T is continuous as n→∞,

SSu2n−1 → Tz. (3.7)

Putting x = Qu2n and y = Su2n−1 in relation (3.4), we get

M(QQu2n, SSu2n+1, kq) ≥ ψ{min{M(RQu2n−1, TSu2n−1, q),

M(SSu2n−1, TSu2n−1, q),

M(QQu2n, TSu2n−1, q)}}.

Taking the limit as n→∞ and using (3.6) and (3.7), we get

M(Rz, Tz, kq) ≥ ψ{min{M(Rz, Tz, q),M(Tz, Tz, q),M(Rz, Tz, q)}},

M(Rz, Tz, kq) ≥ ψ{min{M(Rz, Tz, q),M(Rz, Tz, q)}},
M(Rz, Tz, kq) ≥ ψ{M(Rz, Tz, q)}

or

M(Rz, Tz, kq) ≥M(Rz, Tz, q),

by property of ψ. So, by Lemma 2.1, Rz = Tz. Taking x = z and y = Su2n−1
then from condition inequality (4)

M(Qz, SSu2n−1, kq) ≥ ψ{min{M(Rz, TSu2n−1, q),M(SSu2n−1,

TSu2n−1, q),M(Qz, TSu2n−1, q)}}.

Taking the limit as n→∞, using (3.7) and TSu2n−1 → Tz,

M(Qz, Tz, kq) ≥ ψ{min{M(Rz, Tz, q),M(Tz, Tz, q),M(Qz, Tz, q)}}
= ψ{min{M(Tz, Tz, q),M(Tz, Tz, q),M(Qz, Tz, q)}}
= ψ{min{M(Qz, Tz, q)}}
= ψ{M(Rz, Tz, q)}
> M(Qz, Tz, q).

So, by Lemma 2.1, Qz = Tz. Putting, x = y = z in condition (4), we get,

M(Qz, Sz, kq) ≥ ψ{min{M(Rz, Tz, q),M(Sz, Tz, q),M(Qz, Tz, q)}}
= ψ{min{M(Rz,Rz, q),M(Sz,Qz, q),M(Qz, Tz, q)}}
= ψ{min{M(Sz, Tz, q)}}
= ψ{min{M(Sz,Qz, q)}}
= ψ{M(Sz,Qz, q)}
> M(Sz,Qz, q).

So, by Lemma 2.1, Qz = Sz. Thus, we get

Qz = Sz = Tz = Rz.
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Lastly, from the condition (4),

M(Qu2n, Sz, kq) ≥ ψ{min{M(Ru2n, T z, q),M(Sz, Tz, q),M(Qu2n, T z, q)}}.
Taking the limit as n→∞, using Qu2n → z and Ru2n → z, we get

M(z, Sz, kq) ≥ ψ{min{M(z, Sz, q),M(Sz, Sz, q),M(z, Sz, q)}}
= ψ{min{M(z, Sz, q)}}
= ψ{M(z, Sz, q)}
> M(z, Sz, q).

So, by Lemma 2.1, z = Sz. Thus, we get z = Qz = Sz = Tz = Rz and z is a
common fixed point of Q,S,R, T .

For uniqueness, let w be another common fixed point of Q,S,R, T . Then,

M(z, w, kq) = M(Qz, Sw, kq)

≥ ψ{min{M(Rz, Tw, q),M(Sw, Tw, q),M(Qz, Tw, q)}}
= ψ{min{M(z, w, q),M(Sw, Sw, q),M(z, w, q)}}
= ψ{M(z, w, q)}
> M(z, w, q).

So, by Lemma 2.1, z = w. This completes the proof. �

If we take R = T , then we obtain the following result:

Corollary 3.2. Let (Y,M, t) be a complete Menger space with t(a, b) = min{a, b}
for all a, b ∈ [0, 1] and Q,S,R : Y → Y be mappings such that

(1) Q(Y )
⋃
S(Y ) ⊂ R(Y );

(2) the pairs (Q,R) and (S,R) are compatible mappings of type (P );
(3) R be continuous, and
(4) there exists a constant k ∈ (0, 1) such that

M(Qx, Sy, kq) ≥ ψ{min{M(Rx,Ry, q),M(Sy,Ry, q),M(Qx,Ry, q)}}
for all x, y ∈ Y, and q > 0, and where ψ : [0, 1]→ [0, 1] satisfies
(i) ψ is continuous and non-decreasing on [0, 1];
(ii) ψ(n) > n for all n in [0, 1].

Then Q,S,R have a unique common fixed point in Y .

As the consequences of the above Theorem 3.1, we may establish the fol-
lowing results:

Corollary 3.3. Let (Y,M, t) be a complete Menger space with t(a, b) = min(a, b)
for all a, b ∈ [0, 1] and Q,S,R, T : Y → Y be mappings such that

(1) Q(Y ) ⊂ T (Y ) and S(Y ) ⊂ R(Y );
(2) the pairs (Q,R) and (S, T ) are compatible mappings of type (P );
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(3) R and T be continuous, and
(4) there exists a constant k ∈ (0, 1) such that

M(Qx, Sy, kq) ≥ ψ{min{M(Rx, Ty, q),M(Sy, Ty, q),

M(Sy,Rx, 2q),M(Qx, Ty, q)}}

for all x, y ∈ Y, and q > 0, where ψ : [0, 1]→ [0, 1] satisfies
(i) ψ is continuous and non-decreasing on [0, 1];
(ii) ψ(n) > n for all n in [0, 1].

Then Q,S,R, T have a unique common fixed point in Y .

Proof. We have

M(Qx, Sy, kq) ≥ ψ{min{M(Rx, Ty, q),M(Sy, Ty, q),

M(Sy,Rx, 2q),M(Qx, Ty, q)}.

Since we have from definition of Menger space

M(Sy,Rx, 2q) ≥ min{M(Sy, Ty, q),M(Ty,Rx, q)}.

So, we obtain

M(Qx, Sy, kq) ≥ ψ{min{M(Rx, Ty, q),M(Sy, Ty, q),M(Sy, Ty, q),

M(Ty,Rx, q),M(Qx, Ty, q)}
= ψ{min{M(Rx, Ty, q),M(Sy, Ty, q),M(Qx, Ty, q)}.

Hence, from Theorem (3.1), Q,S,R, T have a unique common fixed point in
Y . �

Corollary 3.4. Let (Y,M, t) be a complete Menger space with t(a, b) = min(a, b)
for all a, b ∈ [0, 1] and Q,S,R, T : Y → Y be mappings such that

(1) Q(Y ) ⊂ T (Y ) and S(Y ) ⊂ R(Y );
(2) the pairs (Q,R) and (S, T ) are compatible mappings of type (P );
(3) R, and T be continuous, and
(4) there exists a constant k ∈ (0, 1) such that

M(Qx, Sy, kq) ≥ ψ{min{M(Rx, Ty, q),M(Qx, Ty, q)}}

for all x, y ∈ Y, and q > 0, where ψ : [0, 1]→ [0, 1] satisfies
(i) ψ is continuous and non-decreasing on [0, 1];
(ii) ψ(n) > n for all n in [0, 1].

Then Q,S,R, T have a unique common fixed point in Y .



274 Ajay Kumar Chaudhary

Proof. We have

M(Qx, Sy, kq) ≥ ψ{min{M(Rx, Ty, q),M(Qx, Ty, q)}}
= ψ{min{M(Rx, Ty, q),M(Qx, Ty, q), 1}}
= ψ{min{M(Rx, Ty, q),M(Qx, Ty, q),M(Sy, Sy, 4q)}}
≥ ψ{min{M(Rx, Ty, q),M(Qx, Ty, q),

M(Sy,Rx, 2q),M(Rx, Sy, 2q)}}
≥ ψ{min{M(Rx, Ty, q),M(Qx, Ty, q),M(Sy,Rx, 2q),

M(Rx, Ty, q),M(Ty, Sy, q)}}
≥ ψ{min{M(Rx, Ty, q),M(Sy, Ty, q),

M(Sy,Rx, 2q),M(Qx, Ty, q)}}.
Hence, from Corollary 3.3, Q,S,R, T have a unique common fixed point in
Y . �

4. Conclusion

This research focuses on the Menger probabilistic metric space, with estab-
lished results acquired by control functions. This remarkable work generalizes
and extends the results of Chaudhary et al. [9] and Pathak et al. [24] by using
control functions in Menger spaces and presents some extra consequences as
an application of the basic Theorem 3.1.
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