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1. INTRODUCTION

Many physical problems of interest are defined by ODEs or PDEs with
appropriate initial or boundary conditions. These problems are often formu-
lated in practice and engineering sciences as threshold problems, boundary
value problems, or boundary value threshold problems, which tend to be more
mathematically rigorous and physically more realistic [22]. The Laplace trans-
form method is particularly useful for solving these problems. This method is
useful for resolving the response of systems managed by the variable as equal
to the initial data [21].

A partial differential equation is very important in mathematical physics
[10], wave equation is known as the fundamental equation in mathematical
physics and appears in many branches of physics such as mathematics and
engineering [18]. Although it is important to obtain exact solutions to partial
equations in applied mathematics, finding new ways of discovering new realities
or approximate solutions for [30] is still a difficult problem.

In recent years, many authors have devoted to studying the solution of
differential equations using different methods. Among them, experiments
are Laplace variational iteration method, differential transform method [3],
Laplace [17], Fourier, double Laplace transform [13], Sumudu transform [12,
17] and Adomian decomposition method. This article discusses the solutions
of differential equations and partial differential equations that arise in mathe-
matics, physics, and engineering sciences. We present new methods based on
Laplace and Sumudu transforms to be used in modifications or analogues of
Laplace-Sumudu transforms.

The Laplace transform of the {(x) function in [8] is defined as:
L{¢(x)} = / e P*((x)dx, Re(p) >0 (1.1)
0
and its inverse denoted by L~! is defined by

c+ioo
(@) = LHE(P)} = — / e C(p)dp, > 0.

21 — 00

In [7, 19, 20] the authors describe the g-analogue of the famous Laplace
transform of g-Jackson [15] integrals

1

/OOO eq(—sp)C(p)dgp. (1.2)
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The Sumudu transform was introduced by Watugala [26], its recorded fre-
quency is more than Laplace, than an average

A%amW}zAweﬂawmm, we (—m,m)

The Sumudu transform for a time function ((p) is calculated by factoring
Sumudu’s transformation variable u as part of the ((p) function and then
integrating against e™”. This u is significant in the first function and {(p)
becomes ((up) to preserve units and dimensions.

In [2], the authors describe the g-analogue of the Sumudu transform as
follows:

S{C(p);s} = (1_1q)8 /OOO eq(—g)C(P)qu’ s € (71, 72).

For further details in g-calculus go through [1, 4].

The paper is organized section wise. In the next section, we introduce some
of the key points and results that are important to provide important results.
In section 3, we introduce the g-Laplace-Sumudu transform, which provides
some advantages such as convergence, absolute convergence. In section 4, we
examine the convolution product and in subsection 4.1, we provide some prop-
erties of ¢-Laplace-Sumudu transform. In section 5, we give some examples to
illustrate the main results. Finally, in section 6, the method has been used to
solve some well-known partial differential equations.

2. PRELIMINARIES

In this section, we list important terms and symbols used in this paper.
The g—shifted factorials for ¢ € (0,1) and a € C are defined as

n—1
(qo=1 (9)n=]]0-ad), n=12 .,
k=0
(@50)oc = lim (a3q)n = [T - adh).
k=0
Also we write
1—g® (4 On
alg=——, |al=——5-, nel
The g—derivatives of a function f is given in [16] as:
C(z) — C(gz :
(D)) = =)y g

(1-qz '
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and (D4¢)(0) = ¢’(0) provided ¢’(0) exists.
If ¢ is differentiable, then (Dy()(z) tend to ¢'(x) as ¢ tends to 1. For n € N,
we have

D, =D (DNt = Df.

9 q

The g—derivative of product of two functions is defined as
Dy (C-n)(x) = n(x) Dol () + ((qx) Dgn(x)-

The g—integrals from 0 to a and from 0 to oo is called the ¢g—Jackson integral,
defined in [15] by

[ @y == clag™a"
0 n=0
and
[c@rda=a-a 3
0 n=—oo
provided these sums converge absolutely. The integration by parts in terms of
q—calculus is given by
b b
/n(w)DqC(x)dqu = ¢(0)n(b) = ¢(a)n(a) — /C(qw)an(ﬂf)dqﬂf- (2.1)

a

The g—analogues of the exponential function is described in [14, 16] as
oo Zn
B = ¢"" VP = (=(1 - )21 ¢)w

and
0 n
z 1 1
o = , 2] < —,
! n;) [nlg! (1= @)z @) 1—gq

these g-exponentials are analogues of classical exponential functions and sat-
isfies the relationship.
z __ ,z Z _ R4z
Dyeg = ey, DyE; = E]
and

2T —Z _ I —2Z . % __
quq —Eq eq—l.

Jackson also describes the g-analogue of the classical gamma function in
[24, 25, 27, 28, 29, 31, 32, 33].
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[e.e]
I(t) = [at~te™%dx by
0

Fq(t) = (q’ q)oo (1_q)1_t7 t#oa_la_27

(@' @)oo

This also satisfies

T (t+1) = [],T(t), Ty(1) =1 and lim Ty(t) = T(t), Re(t) > 0.

q—1—
The I'; function has the g-integral representation as
1/(1—q

)
T,(s) = / t BTt
q 5) - q q
0
oo/(1—q)

1 =
— / T E T dyt.

The g-integral representation of I'; based on g-exponential function e; and
g-integral representation of g-beta function is defined in [23] as follows:

For all s,¢ > 0, we have

00/(1—q)
T, (s) = Ky(s) a* e Tdgw
0
and
s STt )
B,(t,s) = K,(t /fct‘l( 2 ey o,
q( ) q( ) (=23 q)oo q
0
. (_Q7 _1; q)OO
where in [6], K4(t) = (¢ gt q)
log(1 —
If M € Z, we obtain
log(q)

Ly(s) = Kq(s)/o a:s_leq_g”dqx

o0

—1p—qt
:/ts E;dt.
0
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3. THE ¢-LAPLACE-SUMUDU TRANSFORM

Definition 3.1. Let ¢ = (¢1,¢2) € (0,1), (s,t) € C and f be a function of
two variables x and y defined on Ry, + X Ry, 4. Then the g-Laplace-Sumudu
transform of f is defined by the double integral in the form:

1 oo o0
§LaSy(f)(s,t) = Hy(s,t) = W//eqsmy/tf(x,y)dqaquy (3.1)
00

provided the integral exists, where R, + = {¢",n € Z} and

1
[1—(1—qz]'/1 for 0<z<—0) g<1,
e, = 1—-g¢q

[1—(¢—1)az]~Ya1, for >0, ¢>1.

Remark 3.2. For suitable function f, Hz(f)(s,t) = H(f)(s,t), when ¢ tends
to (1,1).

3.1. Convergence of ¢-Laplace-Sumudu transform.

Yy
1 by 1
Lemma 3.3. If the integral (17) [ eq t f(z,y)dqy converges at 1= to say,

1
then this integral converges for n > tp.

1 ¥
Proof. Assume a(z,y) = a0 Je v f(x,v)dgv, 0<t< oo. Then, clearly
)
a(x,0) =0 and lim;_,o a(x,y) exists, because integral
LT
(1 - q) /6(1 tf(x7y)dqy
0

1
converges at n = {p.

By fundamental theorem of calculus

1 —toy £
O‘y(x7y): (1_q)eq f( 2 Y)-
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Choose € and R such that 0 < € < R, then

R R Y

[ et s = s [ ea " autea - i

€ €

R
= / eq_(l/t_tO)yay(x, y)dgy

= ;q(l/”())ya(w, qy)|E
R
- [ a1/t + ey gy
:eq—e(l/t—to)R (z,qR) — (l/t to)e oz, ge)
R
—(1/t—10) [ al.ag)e Oy,

€

1
(1—9)

Now let ¢ — 0 on both sides
R Y

R
(1 —Q)/eq b i@ y)dgy = eg /0 Ra(z, qR)(1/t—ty /Oé 2, qy)es Ay,
’ 0

Again let R — oo, if % > 1o the first term on right side approaches to 0, then
we have

0o g 00

/ ty dgy = —(1/t —to) /a x,qy)e 1/t to)ydqy, for % > to,
0 0

this proves lemma if right side integral converges.
But by limit test obviously as y approaches to oo, that is, limy—,o a(z,y) =

1
0. Therefore, integral on right converges for n > to. Hence
o Y
g 1
)dqy converges for n > tp.
0
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oy
1
Lemma 3.4. If integral {(z,s) f eq ¥ f(x,y)dgy converges for - > 59 and

if fe ¢ (2, 8)dgx converges at t = to, then fe ¢ (z, s)dgx converges for
t > to.-

Proof. The proof is same as above Lemma 3.3. g
Theorem 3.5. Let f(x,y) be function of two variables continuous in Ry, 4 x

Ry, + or continuous in the positive quadrant of xy-plane and is of exponential
order e“ % _ Then the integral

r—Y
= Zt//eq tfx,y)dgxdyy (3.2)
00

1 1
exists for all s and : provided Re(s) > ¢ and Re(g) > d.

Proof. We proceed to prove this theorem by using above Lemmas.

) 00 00 o
(1—61)2t//6q U f (2, y)dgwdyy
0 0

e jq)t/e;sx (1 jq)t/eq_y/tf(%y)dqy dg
0 0
— a i " /eqsxg(m,t)dqm, (3.3)
0
where ((z,t) = a 1 ) zoeq_y/tf(x,y)dqy, which converges by Lemma 3.4.

e 1
And by Lemma 3.3, [ ¢ y/tf(x,y)dqy converges for n > tp and g € (0,1).
0

1
Therefore, the integral on right side of (3.3) converges for s > s, n > tp.

1 oo o0
— 7smfy/tf(x Ydgzdgy
- 275//6‘1 9t
(1-9) )

1
converges for s > sp and n > tg. This completes the proof. O

Hence, the integral
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Corollary 3.6. If the integral (3.3) diverges at s = sp and t = tg, then the
integral (3.3) diverges at s > so and t > to.

Corollary 3.7. The region of the convergence of the integral (3.3) is the pos-
itive quadrant of the xy—plane.

1
Theorem 3.8. If the integral (3.3) converges absolutely at s = so and 7= to,

1
then integral (3.3) converges absolutely for s > sy and n > 1.
Proof. We can write
1
e;sx*y/t\f(x,y)\ <e, " for sp<s<oo, tg< 7 <o

Therefore,

1 0000 o . 5000 o
o [ [ e led < = [ [ @ lagad
00 00

1 X er—
from hypothesis A [ [ e "7 f(x,y)|dgrdyy converges for s > sg
—4q)"t o 0
1 1
and n > to. Hence, (3.3) converges absolutely for s > sy and n > tp. O

4. @-LAPLACE-SUMUDU CONVOLUTION PRODUCT
Definition 4.1. The convolution of two functions g(z,y) and h(z,y) is de-
noted by (g * xh)(x,y) and defined as

T Y

1
(g **h) (2, y) = (1_(])20//9(93 = ¢y —n)h(¢,n)deCdgn.

0

Proposition 4.2. (Convolution Theorem) Let 4L,Sy[g(x,y)] = G(s,t) and
qLzSylh(z,y)] = H(s,t) be two positive scalar functions of x and y. Then
quSy[(g * *h)(ﬂ?7 y)] = tG(Sv t)H(S7 t)a
1
(1—-q)?

where g(z,y) * xh(x,y) =

C—xg

Yy
Ofg(:v — ¢,y —nh(¢,n)deCdyn.
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Proof. We know that
gLaSy{g(@,y) = xh(z,y)} (s, )

1 o> o0 o
= (1_(])%//@(1 v/t (g xh)(x, y)dgzdyy, (4.1)
0 0

oLz Sylg(z, y) = xh(z,y)}(s,1)

:ujw%o/o/egsm_y/t{a—lqvo//g

0
X h(x—Cy— U)dchqn}dqxdqy

/ / 1+ (g — 1)(sz + /07 (C,n)
0 0

T—C,Y— 77) dqCdgndgxdyy

_ 1 Ji B 1/q—1

T 1- ot /9 /1+q 1)(sz +y/t)] /1
0 z=( Yy=n

% h(z — ¢,y —n)d qun}d wdgy. (4.2)
Let
1= [ [+ =Dty e - Gy = .
z=CY=n

Putting + — { = v and y — n = v, then

I= [+ (g = D6+ /) [ 11+ (= sut o) o
0 0

X [1+ (g = 1)(sC+ /D)9 1+ (g — 1) (su +v/t)]V/9
X [T+ (¢ — D{(u+ s+ (v +n)/t}] Y h(u, v)d,udyv.
Let
[+ (g = D)(sC+ /0] L+ (g = ) (su+v/t)] /07!
x [1+ (g = D{(u+¢)s + (v +n) /)7 fa(u,v) = B*(u,v).
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Then
Wz —Cy—n) = [1+ (g = 1)(s¢+n/0)] 77 1+ (¢ = 1) (su+v/t)] 74
(L4 (g = D{(u+ Qs + (v + )/} 0 (x = Cy =),

oLz Sylg(z,y) = xh(z,y)}(s,1)

1_q)4t//9CU (14 (¢ —1)(s¢ +n/t)) Vet

0 0

x//1+ q—1)(su+v/t)]” 1/Q*1h*(x—g,y—n)dqxdqy}dquqn
0 0

~ LeSla¢.mH =5
< [oo [+ @ = G+ s+ (om0 0 o = Gy = m)dydan
0 0

=q LaSy{9(C,m)} -t g LaSy{h™ (2, y) }eLaSy{g(z, y) * xh(z, y) } (s, 1)
=1G(s,t) - H(s,t).

g

4.1. Properties. In this section, some interesting properties of ¢-Laplace-
Sumudu transform are given which intersects with classical ones when ¢ tends

o (1,1).
Remark 4.3. (Scaling) For a real number £,

Sulkf @ )60 = oy / / kf (e y)es Y dyadyy

k
= W//f(xay)eqswy/tdqxdqy
0 0
=k q LxS’y[f(x,y)](s,t).

Remark 4.4. (Linearity) We have

gLaSylmf(z,y) + ng(z, y)](s,t)
=m-q Ly Sy[f(x,y)] +n-q LaSylg(x,y)](s, t).
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oLaSylmf(z,y) +ng(z,y)](s, 1)
- (1_1(1)% / / [mf (2, y) + ng(z, y)le; ¥/ dyzdyy
0 0
s {/ [ mite e | | n9<x7y>eq8”“dqwdqy}
00 00
= mgLeSy[f(x,y)] + ngLaSylg(x,y)](s,t).

Remark 4.5. For a > 0 and b > 0, we have

oLaSyle ™ f(w,9))(s,) = f(s + a,1/t +b)
1 I —ar— —sr—
B (1—q)2t//6‘1 byeq y/tf(xvy)dqxdqy
00
1 oo OO - B
e / / e T e V) f(2, y)dgrdyy
00
= f(s—i—a, 1/t+0b).

Remark 4.6. For a > 0 and b > 0, we have

o Loy L (ax)g(by)) (s, 1) = ulq)t [ e rangtndad
0 0

Put ax =n and by = m, then

(LS a)g o)) = = / / e ™ (n)g(m)dyndym

1 1 —sn/a 1 —m/bt
= / e fmdn s [ Mgm)dm
0

F(s/a): %g(l/bw.
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Remark 4.7.

LS @) = o [ [ e r@dgad
0 0

o0

1 r —sx 1 —
] I g [
0

— 1 eq_y/t =
=1 T [—1/1&]0

o

—_— £ S . 2
- f( ) (1 _ q)t
_ fwe
(1—q)
f#)
Similarly, we have ;LgSy[f(y)] = (1—q)s

5. EXAMPLES

Example 5.1. If f(z,y) =1 for x > 0, y > 0, then for 1 < ¢ < 2,
1
(1-q)%(2—-q)*s

¢LaSy{1} =

In fact,

LS, {1} = 275// —sry/t g wd,y

(1—q) 2t //eqsw[l + (g — 1)y/t]71/q71dqxdqy
0 0

_ ! /e_sx[1+(q—1)y/t]q‘2/q_1 o
A EL

qg—1

289
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o0

(1—q 2—q O/e dgx
o
7(1—Q)2(2—Q)(2—Q)5

B 1
(1= q)%(2—q)%s

Example 5.2. If f(z,y) = e2*™ for all z,y, then

1 1 1
LS, {et® by} — .
et S R P )b
In fact,
1 [e.olNe ]
quSy{ega:-i—by} _ M//egx-&-bye—sx y/tdqitdqy
0 0
1_q2t//ezsa —y(1/t— b)dxdqy
0 0
1 1 1

(-2 (s —a)(1/t—b)

Example 5.3. If f(z,y) = Z(aerby) , then

oo o0
qLaS {ez aff+by) = 2t // Za:Hby —sz— y/tdqmdqy
0 0

1 1
~(1-gp (Q—Q) (s —ia)(1/t — ib)
1 1 ~ (s+ia)(1/t +1ib)
C(1=9? 2-9t (s2+a?)(1/t? +07)
1 (s/t —ab) + i(a/t + bs)

T (1922 -q?  (s2+a)(1/t + %)
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Example 5.4. If f(z,y) = (xy)", then

1 oo o0 o
gLaSy{(zy)"} = (l_q)gt//(my)neq y/tdqxdqy
00

1 _ _
- (1_q)2t/ €T g / e "'y dgy.
0 0

Putting sz = m, then

o0 d oo
gLz Sy{(zy)"} = A= /(m/s)neq_mi, ' /e«;y/tyndqy
0 0

1 FQ(n+1) —y/t, n

Similarly by putting y/t = p, we get

Ty(n+ 1)t

Example 5.5. If f(z,y) = cosq(az + by), then
1 (st — ab)
(1-q)? (s24+a?)(t?+0?)

qLazSy{cosq(ax + by)} = 5

In fact, we have

i b —1 b
ilarthy) | —ilar+hy)

2

cosq(ax + by) =

Therefore,

qLzSy{cosq(ax + by)}

1 ; —i(ax
= 5 [ ZeSAC ) 4, LS, e om0y

291

00 00 00 00
1 ) ,
_ 5 //ef](aa:-i—by)eq—sac—y/tdqwdqy+ //eq—Z(aac-i—by)e(;sac—y/tdqxdqy ’
0 0 0 0

which with the help of Example 5.2 and Example 5.3, we have
qL2Sy{cosq(ax + by)}
1 (s/t —ab)? — (a/t + bs)?
22 —q)* (s2+a?)(s2—a?)(1/t +b2t)(1/t — b%t)’
Similarly, we have sing(az + by), coshq(azx + by) and sinhg(az + by).




292 J. A. Ganie, H. A. Rivi, A. A. Bhat, F. A. Sulaiman and D. K. Jain

6. APPLICATION

In this section, we give some applications of Lz-Laplace-Sumudu transform
in Heat, Wave and Space-time telegraphic equations.

Heat diffusion equation: Consider the following ¢-diffusion equation [11].

St t)—k‘sg—“(x t), z€(-00,00), teR (6.1)
5qt ) - 5q5132 s )y ) ) + .

with initial conditions:
u(z,0) =0, for 0 <z < oo,

gZ(o ) =0, u(0,t) = f(2).

Applying g-Laplace-Sumudu transform to equation (6.1) both sides, where
s and r are transform variables, we have

Ls[‘;t(m)}( r)=k- LS[;?

q

(z, t)] (s, 7).
Now with the help of results by Lokenath and Bhatta [8, pp. 275], we have
LSy, O], 7) — + Lfulr, 0)](s)
= ks2 Ly Sy, 1)) (s, 1) — ksS,[u(0, £)](r) — kS, [ 0 t)} (r).

This implies that
(1/r — kSQ)quSy[u(x, t)](s,r)
= LLlu(a,0)(5) ~ ks, S u(0.0](r) ~ kS, |32(0.0)] ()
Hence, we have

(1/r — ks)qLaSy[u(z,)](s, ) = 0 — ksS{f(£)} —
That is,

LS, [u(z,)](s,7) = W

or

) = (L5 | ZE e o

provided the inverse transform exists for each term in R.H.S.
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Generalized wave equation: The generalized wave equation in [5] is defined
as

u
q
_ 2
5qt2(w,t) c 5qx2(az , ) =0 (6.2)

with initial conditions:

u(x,0) = f(z) and —iqz(m,O) =g(x), =>0,
q
0.)=0 and 2%0,t) = 0.
u(0,t) = an 5,7

Apply g-double Laplace transform to equation (6.2), we have

it implies
L8, fuCe.0)1) = S Lalu(e0](6) = 1Ly | 35.0)] (9
2 dqu
{5t ute0)s.r) = 8, u0.0)(0) = 5, | $20.0] ()} =0
Therefore, we have
aLaSylule, 0](s,7) — LS Jula, )]s, 7)
— L@ 0l + 1Ly [ .0 o)
+ c258,[u(0,1)](r) + 28, [izx(O, t)] (r)

Hence,

o LaSylu(a, t)](s,r){1/r? — *s*} = *Lq{f( )}(s) + %Lq{g(ﬂﬁ)}(S) +0+0.
That is,

VLS, futo,t]s.r) = PAL LT al o)
o) = (oLosy) ! [T

-1
provided Lo{f(2)} + rLeig(@)} exists for each term in R.H.S.
(1 —c2s2r2)
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Space-time telegraphic equation: Consider the following generalized space-
time telegraphic equation

5 Oou 52

c (Sq—x(:c ) 5, Z;( t ) (a+,6’)5—u(x,t)—a5u(x,t) = [*Ha+1)(B+1)] exp(z-+t)
(6.3)
with initial conditions:
W0.0) = (1) and §0.1) = ey 1),
Oqu
u(z,0) = eq(x) and ?(a:,()) = eq(x).

Applying g-Laplace-Sumudu transform on equation (6.3), we get
62u 52u
2 %
c 5,07 (x,t)] q LSy [5 2 (z, t)]
dqu
— (o + B)gL2Sy [5 " (x, t)] — afy Ly Sy [u(z,t)]
q
=g LaSy[c® — (a4 1) (B + 1)] expy(z + 1),

quSy

this implies,
2 (S8, [uli, 0)(5, 1) — 58 [u(0, 0)(r) — Sylua 0, ))(r)}
— {ogaliaSy (e, 1](s. 1) — 5 Lyfu(r, 0)](s) — + Lfue(, 0))(5)}
~ (atbeta){ g LuSylul, ))(5,7) 4 Lofu(z,0)](5))
- aﬂquSy[u(CU, )](87 7’)
= - (a+1)(B+ 1)Lz Sy{exp,(z +t)}(s, 7).
That is,

0232qusy [u(z,t)](s, ) — CQSSq{eq(t)} - CQSq[eq(t)](r)

SaLaSylute,0)(s,0) - :%muw>

— Laleq(@))(5) — (@ B) (g LaSyfula, 0))(5,7) + - Lyleg(@)](s)}

—aﬁqL Sylu(z, )](s,7)
=[c* = (a + (B + D]gLaSy{expy(x + )} (s,7).
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Hence, we get

o Lyfey(@)](6) +
+ [ = (a+ 1)(B+ D]y LaSy{expy(z + 1)},

We have the help of above examples,

1
quSy{equ(x + t)} - (1 . q)2(2 _ q)Q(S _ 1)(1/7“ — 1)7
1
Lo{eq(z)} = m
and
g B 1
O} =g —ga-9
Substitute these results in above equation, we have
<6282 — Tiz — (OZT‘FB) - OZB) quSy[u(xa t)](sa T)
c?s? c?
Tl a-s)  (-0E- -
4 1 + 1 + (a+B)
r2(l-gq)(r—1) r(l-g)(r—1) r(l1-gq)(r—1)
N A —(a+1)(B+1)
(1-9¢)*(2—q)*(s—1)(1/r—1)
_ _1 r? A(s?+1)
u(@,t) = (LaSy) {(c232r2 — (a4 B)r—aprz—1) [(1 —q)(2—-q)(1—3s)
+ 1+ (a+B)r 02—(04+1)(5+1) }}
rPl-qg(r-1) (1-¢*2-¢*(s—1)(1/r—1)

provided the inverse transform exists for each term in R.H.S.
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7. CONCLUSION

In this study, a new double integral transform called the double ¢-Laplace-
Sumudu transform were presented. Several properties and theorems related to
the linearity, existence and the double convolution theorem were introduced.
The results are developed and tested with the help of examples. We find that
this research focuses on the same direction with the possibility of using par-
tial differential equations in explaining physical phenomenon. Therefore, we
recommend that this study is continued using the applications of this method.
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