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Abstract. The objective of this study is to explore a new class of the Caputo-Hadamard frac-

tional Volterra Fredholm integro-differential equation (Caputo-Hadamard fractional-VFIDE).

The main contributions include establishing and deriving sufficient conditions for the exis-

tence, and uniqueness of solutions for the proposed VFIDE-based Caputo-Hadamard. The

study employs the Banach contraction mapping principle and the Krasnoselskii’s alternative

to ensure the well-posedness of the system and presents a detailed mathematical analysis to

discuss the approximate solution of the proposed problem by using the modified Adomian

decomposition method (ADM). To enhance the comprehension of the findings, concrete ex-

ample is provided to showcase the versatility and practical applicability of the VFIDE-based

Caputo-Hadamard, highlighting the novelty and potential impact of this research.

1. Introduction

In recent decades, fractional calculus has emerged as a key idea in many
areas of mathematica. Fractional order differential equations have been used
more often by researchers to obtain important insights in a variety of domains,
including control theory, electrodynamics, fluid mechanics, dispersion, and
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porous media, (for further details, refer [11, 17, 18, 20, 23, 24, 29]). The study
of the asymptotic behavior of solutions of the fractional integro-differential
equation has been investigated by many researchers, see e.g. [2, 6, 7, 8, 9, 16,
21, 26, 27, 31].

The author of [1], considered the following Caputo fractional VFIDE,{
CD∂

0+κ(s) = ζ(s) + ℘1κ(s) + ℘2κ(s), s ∈ f = [0, 1],
κ(0) = κ0 + ξ(κ),

where 0 < ∂ < 1, CD∂
0+ is Caputo fractional derivative of order ∂, ζ : f→ R,

ξ : C(f,R) → R, J1, J2 : f × f → R are continuous functions and χ1, χ2 :
R → R, i = 1, 2 are Lipschitz continuous functions. To keep our analysis
simple, we’ll employ the following notations:

℘1κ(s) :=

∫ s

0
J1(s, δ)χ1(κ(δ))dδ

and

℘2κ(s) :=

∫ 1

0
J2(s, δ)χ2(κ(δ))dδ.

Based on the justification provided, in order to evaluate and investigate
the existence and uniqueness of the solution, Krasnoselskii and Banach’s fixed
point theorems (FPTs) were used. Our motivation stems from the arguments
presented, which encourage us to assess and look into the prerequisites for
the solution of the Caputo-Hadamard VFIDE using the modified Adomian
decomposition method (MADM).{

CHD∂
a+κ(s) = ζ(s) + ℘1κ(s) + ℘2κ(s), s ∈ f = [1, T ],

κ(0) = κ0 + ξ(κ),
(1.1)

where 0 < ∂ < 1, CHD∂
a+ is Caputo-Hadamard type fractional derivative of

order ∂, ζ : f → R, ξ : C(f,R) → R, J1, J2 : f × f → R are continuous
functions and χ1, χ2 : R → R, i = 1, 2 are Lipschitz continuous functions.
Briefly, we set up

℘1κ(s) :=

∫ s

0
J1(s, δ)χ1(κ(δ))dδ

and

℘2κ(s) :=

∫ 1

0
J2(s, δ)χ2(κ(δ))dδ.

Furthermore, Adomian [3] introduced the Adomian decomposition method
and other numerical methods for solving this kind of equation. For more
information, click here. [10, 12, 13, 14, 32]. The ADM offers both style and
user-friendly functionality. The approach is presented as a sequence in which
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each term can be readily computed using Adomian polynomials tailored to
the nonlinear terms see [3, 4, 5, 15, 22, 25].

Wazwaz in [30] made a small but effective change to ADM to accelerate the
series solution’s convergence. Inc, Ergut, and Cherruault (2005) established
an effective method for applying the ADM correctly for single boundary value
problems (BVPs) and presented a broad framework dealing with the singular
BVPs. It has been demonstrated that the decomposition approach offers a
recursive procedure to construct the explicit solutions for a large range of
non-linear equations, which is a major advantage in most circumstances. For
example, when utilizing the MADM approach, we make reference to [19].

The rest of this essay is structured as follows: A review of the notations,
definitions, and pertinent lemmas used in fractional calculus that are crucial
to our study is given in Section 2. In Section 3 is the core of the work, where
the authors utilize the Banach contraction mapping principle and Krasnosel-
skii alternative to establish sufficient conditions guaranteeing the uniqueness,
existence solutions for the main problem (1.1). In Section 4, study the MADM
and establish the convergence of the series built by the MADM to the exact
solution of our problem (1.1). In Section 5, we provide a numerical illustration.

2. Auxiliary results

Below, we begin with some basic definitions and lemmas.

Definition 2.1. ([20]) Let ∂ > 0 and κ ∈ L1([0, T ],R). The left-sided frac-
tional integral of Hadamard of order ∂ is given by

HI∂a+κ(s) =

{
1

Γ(∂)

∫ s
a (ln s

δ )∂−1 κ(δ)
δ dδ, ∂ > 0

κ(s), ∂ = 0

provided the right-hand side exists and Γ is the Euler’s Gamma function.

Definition 2.2. ([20]) Let ∂ > 0, κ ∈ ACn([0, T ],R). The definition of
Caputo fractional derivative of order ∂ given by

CD∂
a+κ(s) = D∂

a+

[
κ(s)−

n−1∑
k=0

κ(k)(0)

k!
sk

]
, s ∈ [1, T ], (2.1)

where n = [∂] + 1, [∂] is the integer part of ∂ and D∂
a+ is define by

D∂
a+κ(s) =

(
d

ds

)n
In−∂

0+
κ(s)

=

(
d

ds

)n 1

Γ(n− ∂)

∫ s

a
(s− δ)n−∂−1κ(δ)dδ,

which is the sense of the Riemann-Liouville fractional derivative of order ∂.
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Definition 2.3. ([20]) Let ∂ > 0, κ ∈ ACn([0, T ],R). The Hadamard frac-
tional derivative of order ∂ is given by

HD∂
a+κ(s) =

1

Γ(n− ∂)
ηn
∫ s

a
(ln

s

δ
)n−∂−1 κ(δ)

δ
dδ, a ≤ s,

that is,
HD∂

a+κ(s) = ηn
(
HIn−∂

0+
κ(s)

)
,

where ηn =
(
s dds
)n
, n = −[−∂].

Definition 2.4. ([20]) Let ∂ > 0, κ ∈ ACn([0, T ],R). The definition of
Caputo-Hadamard fractional derivative of order ∂ is given by

CHD∂
a+κ(s) = HD∂

a+

[
κ(s)−

n−1∑
k=0

κ(k)(0)

k!
(ln

s

a
)k

]
, s ∈ [1, T ],

where n = [∂] + 1, and HD∂
a+ is the Hadamard fractional derivative of order

∂.

Lemma 2.5. ([20]) If ∂, β > 0, then

HI∂a+s
β−1 =

Γ(β)

Γ(∂ + β)
(ln

s

a
)∂+β−1. (2.2)

Our theorems now focus on the existence and uniqueness of solutions for
problem (1.1). They rely on Banach’s FPT [28] and Krasnoselskii’s FPT [28].

3. Main results

For fulfillment the main results, we shall pose the following hypotheses.

(A1): Let χ1(κ(s)), χ2(κ(s)) be continuous functions and there exist
constants θχi > 0 such that

|χi(κ1(s))− χi(κ2(s))| ≤ θχi |κ1 − κ2| , i = 1, 2, ∀κ1,κ2 ∈ R.

(A2): The kernels J1(s, δ) and J1(s, δ) are continuous on f × f, and
there exist two constants J ∗i > 0 in f× f such that

J ∗i = sup
s∈f

∫ s

a
|Ji(s, δ)| dδ <∞, i = 1, 2.

(A3): The function ζ : f→ R is continuous on f.

(A4): ξ : C(f,R) → R is continuous on C(f) and there exist constant
0 < θξ < 1 such that

|ξ(κ1(s))− ξ(κ2(s))| ≤ θξ |κ1 − κ2| , ∀κ1,κ2 ∈ C(f,R), s ∈ f.
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Lemma 3.1. The function κ ∈ C(f,R) is a solution of the problem (1.1) if
and only if κ is a solution of the integral equation

κ(s) = κ0 + ξ(κ) +
1

Γ(∂)

∫ s

a
(ln

s

u
)∂−1 ζ(u)

u
du

+
1

Γ(∂)

∫ s

a
u−1(ln

s

u
)∂−1

{∫ u

0
J1(u, a)χ1(κ(a))da

+

∫ 1

0
J2(u, a)χ2(κ(a))da

}
du.

Proof. The problem stated in equation (1.1) is considered equivalent to the
integral equation, as stated in this lemma. So, to avoid boring replication, the
proof of this lemma is omitted, as it mirrors certain conventional arguments
found in existing literature. �

3.1. Existence result. Firstly, we will discuss the existence of the solution
of (1.1) by using Krasnoselkii’s FPT [28].

Theorem 3.2. Suppose (A1)− (A4) hold. Then the problem (1.1) has at least
one solution on f If

Λ1 :=

(
θξ +

∑2
i=1 θχiJ ∗i

Γ(∂ + 1)
(ln

T

a
)∂

)
< 1. (3.1)

Proof. Let C(f,R) be a space of continuous functions κ on f with the usual
norm defined by

‖κ‖∞ = sup
s∈f
|κ(s)| .

Take the ball

Ωγ = {κ ∈ C(f,R) : ‖κ‖∞ ≤ γ} ⊂ C(f,R). (3.2)

Obviously, Ωγ is nonempty convex closed subset of C(f,R). Choose γ such

that γ ≥ Λ2
1−Λ1

, where Λ1 < 1,

Λ2 := µ0 +
µζ +

∑2
i=1 µχiJ ∗i

Γ(∂ + 1)
(ln

T

a
)∂ (3.3)

for µζ := sups∈[0,1] |ζ(s)| , µ0 := |κ0| + µξ, µξ = |ξ(0)| , µχ1 := |χ1(0)| and

µχ2 := |χ2(0)| .
The equivalent fractional integral equation to the given problem (1.1) can

be written as follows based on Lemma 3.1

κ = Υ1κ + Υ2κ, κ ∈ Ωγ ⊂ C(f,R), (3.4)



304 S. Y. A. AL-Mayyahi and S. S. Redhwan

where Υ1 and Υ2 are two operators defined on Ωγ by

(Υ1κ)(s) =
1

Γ(∂)

∫ s

a
u−1(ln

s

u
)∂−1

(∫ u

0
J1(u, a)χ1(κ(a))da

+

∫ 1

0
J2(u, a)χ2(κ(a))da

)
du

and

(Υ2κ)(s) = κ0 + ξ(κ) +
1

Γ(∂)

∫ s

a
(ln

s

u
)∂−1 ζ(u)

u
du.

We split the proof into the following steps:

Step 1: We prove that, Υ1κ + Υ2v ∈ Ωγ for each κ, v ∈ Ωγ .
Via (A1) and for any κ, v ∈ Ωγ , we have

|χi(κ(s))| ≤ |χi(κ(s))− χi(0)|+ |χi(0)|
≤ θχi ‖κ‖∞ + |χi(0)|
≤ θχiγ + µχi , for all i = 1, 2,

and

|ξ(v(s))| ≤ |ξ(v(s))− ξ(0)|+ |ξ(0)|
≤ θξ ‖v‖∞ + |ξ(0)|
≤ θξγ + µξ.

Let κ, v ∈ Ωγ . Then

|(Υ1κ)(s) + (Υ2v)(s)|

≤ 1

Γ(∂)

∫ s

a
u−1(ln

s

u
)∂−1

(∫ u

0
|J1(u, a)| |χ1(κ(a))| da

+

∫ 1

0
|J2(u, a)| |χ2(κ(a))| da

)
du

+ |κ0|+ |ξ(v)|+ 1

Γ(∂)

∫ s

a
u−1(ln

s

u
)∂−1 |ζ(u)| du

≤ µ0 + θξγ +
µζ +

∑2
i=1 (θχiγ + µχi)J ∗i

Γ(∂ + 1)
(ln

s

a
)∂ ,

which implies

‖Υ1κ + Υ2v‖∞

≤ µ0 +
µζ +

∑2
i=1 µχiJ ∗i

Γ(∂ + 1)
(ln

T

a
)∂ +

(
θξ +

∑2
i=1 θχiJ ∗i

Γ(∂ + 1)
(ln

T

a
)∂

)
γ

≤ Λ2 + Λ1γ ≤ γ.



Volterra Fredholm integro-differential equation via Caputo-Hadamard type 305

Consequently, we have

Υ1κ + Υ2v ∈ Ωγ .

Step 2: We prove that Υ2 is contraction on Ωγ .
Set κ,κ∗ ∈ Ωγ . It follows from (A4) that

‖Υ2κ −Υ2κ∗‖∞ = sup
s∈f
|Υ2κ(s)−Υ2κ(s)| = sup

s∈f
|ξ(κ(s))− ξ(κ∗(s))|

≤ θξ ‖κ − κ∗‖∞ .

So, Υ2 is a contraction mapping, because of θξ < 1.

Step 3: We prove that, Υ1 is completely continuous on Ωγ .

Stage 1: We prove the continuity of Υ1. Consider {κn} be a sequence such
that κn → κ in C(f,R). So, for κn,κ ∈ C(f,R) and for s ∈ f, we get

|(Υ1κn)(s)− (Υ1κ)(s)|

≤ 1

Γ(∂)

∫ s

a
u−1(ln

s

u
)∂−1

(∫ u

0
|J1(u, a)| |χ1(κn(a))− χ1(κ(a))| da

+

∫ 1

0
|J2(u, a)| |χ2(κn(a))− χ2(κ(a))| da

)
du

≤
∑2

i=1 θχiJ ∗i
Γ(∂ + 1)

ln(
T

a
)∂ ‖κn − κ‖∞ .

Since κn → κ as n → ∞, ‖Υ1κn −Υ1κ‖∞ → 0 as n → ∞. This proves that
Υ1 is continuous on C(f,R).

Stage 2: From Step 1, we observe that

|(Υ1κ)(s)| ≤ 1

Γ(∂)

∫ s

a
u−1(ln

s

u
)∂−1

(∫ u

0
|J1(u, a)| |χ1(κ(a))| da

+

∫ 1

0
|J2(u, a)| |χ2(κ(a))| da

)
du

≤
∑2

i=1 (θχiγ + µχi)J ∗i
Γ(∂ + 1)

ln
( s
a

)∂
.

Thus

‖Υ1κ‖∞ ≤
∑2

i=1 (θχiγ + µχi)J ∗i
Γ(∂ + 1)

ln

(
T

a

)∂
,

which prove the uniform boundedness of (Υ1Ωγ).
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Stage 3: We show that (Υ1Ωγ) is equicontinuous. Take κ ∈ Ωγ . Then for
s1, s2 ∈ f with s1 ≤ s2, we have

|(Υ1κ)(s2)− (Υ1κ)(s1)|

=

∣∣∣∣ 1

Γ(∂)

∫ s2

a
u−1(ln

s2

u
)∂−1

(∫ u

0
|J1(u, a)| |χ1(κ(a))| da

+

∫ 1

0
|J2(u, a)| |χ2(κ(a))| da

)
du

− 1

Γ(∂)

∫ s1

a
u−1(ln

s1

u
)∂−1

(∫ u

0
|J1(u, a)| |χ1(κ(a))| da

+

∫ 1

0
|J2(u, a)| |χ2(κ(a))| da

)
du

∣∣∣∣
≤ 1

Γ(∂)

(∫ s2

s1

u−1(ln
s2

u
)∂−1

∫ u

0
|J1(u, a)| |χ1(κ(a))| dadu

+

∫ s1

0
u−1

∣∣∣(ln s2

u
)∂−1 − (ln

s1

u
)∂−1

∣∣∣ ∫ u

0
|J1(u, a)| |χ1(κ(a))| dadu

)
+

1

Γ(∂)

(∫ s2

s1

u−1(ln
s2

u
)∂−1

∫ u

0
|J2(u, a)| |χ2(κ(a))| dadu

+

∫ s1

0
u−1

∣∣∣(ln s2

u
)∂−1 − (ln

s1

u
)∂−1

∣∣∣ ∫ u

0
|J2(u, a)| |χ2(κ(a))| dadu

)
,

which implies

|(Υ1κ)(s2)− (Υ1κ)(s1)| ≤ (θχ1γ + µχ1)J ∗1
Γ(∂)

(∫ s2

s1

u−1(ln
s2

u
)∂−1du

+

∫ s1

a
u−1

∣∣∣(ln s2

u
)∂−1 − (ln

s1

u
)∂−1

∣∣∣ du)

+
(θχ2γ + µχ2)J ∗2

Γ(∂)

(∫ s2

s1

u−1(ln
s2

u
)∂−1du

+

∫ s1

a
u−1

∣∣∣(ln s2

u
)∂−1 − (ln

s1

u
)∂−1

∣∣∣ du) ,
which tends to zero as s2−s1 → 0. So, (Υ1Ωγ) is equicontinuous. The Arzela-
Ascoli theorem indicates that Υ1 is relatively compact and thus completely
continuous. According to Krasnoselkii’s FPT [28], the problem (1.1) has at
least one solution in C(f,R). �
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3.2. Uniqueness result. We give the uniqueness of the solution of the prob-
lem (1.1).

Theorem 3.3. Assume (A1)− (A4) hold. If(
θξ +

∑2
i=1 θχiJ ∗i

Γ(∂ + 1)
ln(

T

a
)∂

)
< 1, a ≤ s, (3.5)

then the problem (1.1) has a unique solution on f.

Proof. We transfer the problem (1.1) into a fixed point problem, that is,

κ = Θκ, κ ∈ C(f,R),

where Θ : C(f,R)→ C(f,R) defined by

(Θκ)(s) = κ0 + ξ(κ) +
1

Γ(∂)

∫ s

a
u−1(ln

s

u
)∂−1ζ(u)du

+
1

Γ(∂)

∫ s

a
u−1(ln

s

u
)∂−1

(∫ u

0
J1(u, a)χ1(κ(a))da

+

∫ 1

0
J2(u, a)χ2(κ(a))da

)
du, s ∈ f.

Let κ,κ∗ ∈ C(f,R), then for s ∈ f, we get

|Θκ(s)−Θκ∗(s)|
≤ |ξ(κ(s))− ξ(κ∗(s))|

+
1

Γ(∂)

∫ s

a
u−1(ln

s

u
)∂−1

(∫ u

0
J1(u, a) |χ1(κ(a))− χ1(κ∗(a))| da

)
du

+
1

Γ(∂)

∫ s

a
u−1(ln

s

u
)∂−1

(∫ 1

0
J2(u, a) |χ2(κ(a))− χ2(κ∗(a))| da

)
du

≤ θξ ‖κ − κ∗‖∞ +
1

Γ(∂)

∫ s

a
u−1(ln

s

u
)∂−1J ∗1 θχ1 ‖κ − κ∗‖∞ du

+
1

Γ(∂)

∫ s

a
u−1(ln

s

u
)∂−1J ∗2 θχ2 ‖κ − κ∗‖∞ du

≤
(
θξ +

J ∗1 θχ1 + J ∗2 θχ2

Γ(∂ + 1)
ln(

T

a
)∂
)
‖κ − κ∗‖∞ ,

which implies

‖Θκ −Θκ∗‖∞ ≤

(
θξ +

∑2
i=1 θχiJ ∗i

Γ(∂ + 1)
ln(

T

a
)∂

)
‖κ − κ∗‖∞ .

Consequently, given the conditions outlined in (3.5), we can deduce that Θ
functions as a contraction operator. Therefore, in accordance with Banach’s
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FPT [28], it possesses a unique fixed point. This leads us to conclude that the
problem stated in 3.5 has a singular solution. �

4. Approximate solution

First, we recall the classical ADM where the solution of the proposed prob-
lem is obtained in the form of a series as

κ =

∞∑
n=0

κn (4.1)

and the nonlinear terms χ1, χ2 and ξ are decomposed as

χ1 =

∞∑
n=0

℘n, χ2 =

∞∑
n=0

ωn, ξ =

∞∑
n=0

$n, (4.2)

where ℘n, ωn, $n are Adomian polynomials for all n ∈ N, and write

κ = κ(λ) =
∞∑
n=0

λnκn = κ0 + λκ1 + λ2κ2 + · · ·+ λkκk + · · ·, (4.3)

χ1 = χ1(λ) =

∞∑
n=0

λn℘n = ℘0 + λ℘1 + λ2℘2 + · · ·+ λk℘k + · · ·, (4.4)

χ2 = χ2(λ) =

∞∑
n=0

λnωn = ω0 + λω1 + λ2ω2 + · · ·+ λkωk + · · ·, (4.5)

ξ = ξ(λ) =

∞∑
n=0

λn$n = $0 + λ$1 + λ2$2 + · · ·+ λk$k + · · ·. (4.6)

By utilizing the previous formulas (4.3), (4.4), (4.5) and (4.6), we deduce
that

℘n =
1

n!

[
dn

dλn

(
χ1

∞∑
i=0

λiκi

)]
λ=0

,

ωn =
1

n!

[
dn

dλn

(
χ2

∞∑
i=0

λiκi

)]
λ=0

,

$n =
1

n!

[
dn

dλn

(
ξ
∞∑
i=0

λiκi

)]
λ=0

,
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where κ0, κ1, κ2, ... are repeatedly specified by
κ0(s) = κ0 + HI∂a+ (ζ(s)) ,

κk+1(s) = $k + HI∂a+
(∫ s

0 J1(s, δ)℘kdδ
)

+ HI∂a+
(∫ 1

0 J2(s, δ)ωkdδ
)
, k ≥ 1.

(4.7)

Here, we use the MADM. Therefore, the scheme (4.7) gives

κ0(s) = κ0 +R1(s),

κ1(s) = R2(s) +$0 + HI∂a+
(∫ s

0 J1(s, δ)℘0dδ
)

+ HI∂a+
(∫ 1

0 J2(s, δ)ω0dδ
)
,

κk+1(s) = $k + HI∂a+
(∫ s

0 J1(s, δ)℘kdδ
)

+ HI∂a+
(∫ 1

0 J2(s, δ)ωkdδ
)
, k ≥ 1.

(4.8)

Now, we will study the convergence theorem of the solution based on the
MADM.

Theorem 4.1. Assume that (A1)−(A4) and (3.1) are satisfied, if the solution
κ(s) =

∑∞
i=0 κi(s) and ‖κ‖∞ <∞ is convergent, then it converges to the exact

solution of the problem (1.1).

Proof. We omit the proof because it resembles some works in the literature
[10]. �

Example 4.2. Consider an integro-differential equation with Caputo-Hadamard
fractional derivative CHD

1
3

1+
κ(s) = 2√

π

(
4s

3
2

Γ(6) + s
1
2

)
+ s3

Γ(7) + s
Γ(8)

+1
4

∫ s
0 (1 + s− u)κ(u)du + 5

18

∫ 1
0 e

u−sκ2(u)du,

, s ∈ [1, e] (4.9)

with the nonlocal condition

κ(0) =
1

5
κ(

1

4
), (4.10)

where

∂ =
1

3
, κ0 = 0, ξ(κ(s)) =

1

5
κ(

1

4
),

ζ(s) =
2√
π

(
4s

3
2

Γ(6)
+ s

1
2

)
+

s3

Γ(7)
+

s

Γ(8)
,

J1(s, δ) =
1

4
(1 + s− δ), J2(s, δ) =

5

18
eδ−s.
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Then clearly, θχ1 = θχ2 = 1, θξ = 1
5 .

µζ : = sup
s∈[0,1]

|ζ(s)| = ‖ζ‖∞

=
2√
π

(
4e

3
2

Γ(6)
+ e

1
2

)
+

e3

Γ(7)
+

e

Γ(8)

= 2. 057 4,

J ∗1 =
1

4
sup
s∈f

∫ s

0
|1 + s− δ| dδ =

1

8
.

J ∗2 =
5

18
sup
s∈f

∫ s

0

∣∣∣eδ−s∣∣∣ dδ =
5

18
sup
s∈f

e−s
∫ s

0

∣∣∣eδ∣∣∣ dδ
=

5

18
(1− 1

e
).

Hence,

Λ1 :=

(
θξ +

∑2
i=1 θχiJ ∗i

Γ(∂ + 1)
ln(e)

)
≈ 0.227 52 < 1.

As consequence of Theorem 3.3, the problem (4.9)-(4.10) has a unique solution
on [1, e].

Applying the operator I
1
2

0+
to both sides of equation (4.9), we get

κ(s) =
1

5
κ(

1

4
) + HI

1
3

1+

(
2√
π

(
4s

3
2

Γ(6)
+ s

1
2

)
+

s3

Γ(7)
+

s

Γ(8)

)

+ HI
1
3

1+

(
1

4

∫ s

0
(1 + s− u)κ(u)du

)
+ HI

1
3

1+

(
5

18

∫ 1

0
eu−sκ2(u)du

)
.

Suppose

R(s) = HI
1
3

1+

(
2√
π

(
4s

3
2

Γ(6)
+ s

1
2

)
+

s3

Γ(7)
+

s

Γ(8)

)

=
2√
π

4

Γ(6)

(
HI

1
3

1+
u

3
2

)
(s) +

2√
π

(
HI

1
3

1+
u

1
2

)
(u)

+
1

Γ(7)

(
HI

1
3

1+
u3

)
(u) +

1

Γ(8)

(
HI

1
3

1+
u

)
(s)

=
8Γ(5

2)
√
πΓ(6)Γ(17

6 )
(ln s)

11
6 +

2Γ(3
2)

√
πΓ(11

6 )
(ln s)

5
6

+
Γ(4)

Γ(7)Γ(13
3 )

(ln s)
10
3 +

Γ(2)

Γ(7
3)

(ln s)
4
3 .
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Now, we apply the modified ADM,

R(s) = R1(s) +R2(s),

where

R1(s) =
8Γ(5

2)
√
πΓ(6)Γ(17

6 )
(ln s)

11
6

and

R2(s) =
2Γ(3

2)
√
πΓ(11

6 )
(ln s)

5
6 +

Γ(4)

Γ(7)Γ(13
3 )

(ln s)
10
3 +

Γ(2)

Γ(7
3)

(ln s)
4
3 .

The modified recursive relation

κ0(s) = R1(s) =
8Γ(5

2)
√
πΓ(6)Γ(17

6 )
(ln s)

11
6 ,

κ1(s) = R2(s) + HI
1
3

1+

(
1

4

∫ s

0
(1 + s− u)℘0(u)du

)
+ HI

1
3

1+

(
5

18

∫ 1

0
eu−sω0(u)du

)
+$0(s)

=
2Γ(3

2)
√
πΓ(11

6 )
(ln s)

5
6 +

Γ(4)

Γ(7)Γ(13
3 )

(ln s)
10
3 +

Γ(2)

Γ(7
3)

(ln s)
4
3

+ HI
1
3

1+

(
1

4

∫ s

0
(1 + s− u)κ0(u)du

)
+ HI

1
3

1+

(
5

18

∫ 1

0
eu−sκ0(u)du

)
+

1

5
κ0(

1

4
)

=
2Γ(3

2)
√
πΓ(11

6 )
(ln s)

5
6 +

Γ(4)

Γ(7)Γ(13
3 )

(ln s)
10
3 +

Γ(2)

Γ(7
3)

(ln s)
4
3

+ HI
1
3

1+

(
1

4

∫ s

0
(1 + s− u)

8Γ(5
2)

√
πΓ(6)Γ(17

6 )
(ln u)

11
6 du

)

+ HI
1
3

1+

(
5

18

∫ 1

0
eu−s

8Γ(5
2)

√
πΓ(6)Γ(17

6 )
(ln u)

11
6 du

)

+
1

5

8Γ(5
2)

√
πΓ(6)Γ(17

6 )
(ln

1

3
)
11
6

= 0,

κ2(s) = 0,

...

κn(s) = 0.
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Therefore, the obtained solution is

κ(s) =

∞∑
i=0

κi(s) =
8Γ(5

2)
√
πΓ(6)Γ(17

6 )
(ln s)

11
6 .
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