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Abstract. The purpose of this paper is to prove existence of common random fixed point

in the setting of cone random metric space under weak contractive condition. Our result

generalizes the corresponding recent result of Dhagat et al. [8] (Advances in Fixed Point

Theory, 2(3) (2012), 357-363) and some others.

1. Introduction

Random nonlinear analysis is an important mathematical discipline which
is mainly concerned with the study of random nonlinear operators and their
properties and is needed for the study of various classes of random equations.
The study of random fixed point theory was initiated by the Prague school of
Probabilities in the 1950s [9, 10, 22]. Common random fixed point theorems
are stochastic generalization of classical common fixed point theorems. The
machinery of random fixed point theory provides a convenient way of model-
ing many problems arising from economic theory(see e.g. [17]) and references
mentioned therein. Random methods have revolutionized the financial mar-
kets. The survey article by Bharucha-Reid [7] attracted the attention of several
mathematicians and gave wings to the theory. Itoh [14] extended Spacek’s and
Hans’s theorem to multivalued contraction mappings. Now this theory has be-
come the full fledged research area and various ideas associated with random
fixed point theory are used to obtain the solution of nonlinear random system
(see [4, 5, 6, 11, 20]). Papageorgiou [15, 16], Beg [2, 3] studied common random
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fixed points and random coincidence points of a pair of compatible random
operators and proved fixed point theorems for contractive random operators
in Polish spaces.

In 2007, Huang and Zhang [12] introduced the concept of cone metric space
and establish some fixed point theorems for contractive mappings in normal
cone metric spaces. Subsequently, several other authors [1, 13, 19, 21] studied
the existence of fixed points and common fixed points of mappings satisfying
contractive type condition on a normal cone metric space.

In 2008, Rezapour and Hamlbarani [19] omitted the assumption of normality
in cone metric space, which is a milestone in developing fixed point theory in
cone metric space. In this paper we prove existence of common random fixed
point in the setting of cone random metric spaces under weak contractive
condition. Our result generalizes the corresponding recent result of Dhagat et
al. [8]

Recently, Dhagat et al. [8] introduced the concept of cone random metric
space and proved an existence of random fixed point under weak contraction
condition in the setting of cone random metric spaces. The purpose of this
paper is to extends the result of [8] to the case of more general class of weak
contraction condition.

2. Preliminaries

Definition 2.1. ([8]) Let (E, τ) be a topological vector space. A subset P of
E is called a cone whenever the following conditions hold:

(c1) P is closed, nonempty and P 6= {0};
(c2) a, b ∈ R, a, b ≥ 0 and x, y ∈ P imply ax+ by ∈ P ;
(c3) If x ∈ P and −x ∈ P implies x = 0.

For a given cone P ⊂ E, we define a partial ordering ≤ with respect to P by
x ≤ y if and only if y − x ∈ P . We shall write x < y to indicate that x ≤ y
but x 6= y, while x � y will stand for y − x ∈ P 0, where P 0 stands for the
interior of P .

Definition 2.2. ([12, 23]) Let X be a nonempty set. Suppose that the map-
ping d : X ×X → E satisfies:

(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, y) ≤ d(x, z) + d(z, y) x, y, z ∈ X.

Then d is called a cone metric [12] or K-metric [23] on X and (X, d) is called
a cone metric space [12].
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The concept of a cone metric space is more general than that of a metric
space, because each metric space is a cone metric space where E = R and
P = [0,+∞).

Example 2.3. ([12]) Let E = R2, P = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0}, X = R
and d : X × X → E defined by d(x, y) = (|x − y|, α|x − y|), where α ≥ 0 is
a constant. Then (X, d) is a cone metric space with normal cone P where
K = 1.

Example 2.4. ([18]) Let E = `2, P = {{xn}n≥1 ∈ E : xn ≥ 0, for all n},
(X, ρ) a metric space, and d : X×X → E defined by d(x, y) = {ρ(x, y)/2n}n≥1.
Then (X, d) is a cone metric space.

Clearly, the above examples show that class of cone metric spaces contains
the class of metric spaces.

Definition 2.5. (See [12]) Let (X, d) be a cone metric space. We say that
{xn} is:

(i) a Cauchy sequence if for every ε in E with 0� ε, then there is an N
such that for all n,m > N , d(xn, xm)� ε;

(ii) a convergent sequence if for every ε in E with 0� ε, then there is an
N such that for all n > N , d(xn, x)� ε for some fixed x in X.

A cone metric space X is said to be complete if every Cauchy sequence in
X is convergent in X.

In the following (X, d) will stands for a cone metric space with respect to a
cone P with P 0 6= ∅ in a real Banach space E and ≤ is partial ordering in E
with respect to P .

Definition 2.6. ([8], Measurable function) Let (Ω,Σ) be a measurable
space with Σ-a sigma algebra of subsets of Ω and M be a nonempty subset
of a metric space X = (X, d). Let 2M be the family of nonempty subsets of
M and C(M) the family of all nonempty closed subsets of M . A mapping
G : Ω→ 2M is called measurable if for each open subset U of M , G−1(U) ∈ Σ,
where G−1(U) =

{
ω ∈ Ω : G(ω) ∩ U 6= ∅

}
.

Definition 2.7. ([8], Measurable selector) A mapping ξ : Ω→M is called
a measurable selector of a measurable mapping G : Ω→ 2M if ξ is measurable
and ξ(ω) ∈ G(ω) for each ω ∈ Ω.

Definition 2.8. ([8], Random operator) The mapping T : Ω ×M → X is
said to be a random operator if and only if for each fixed x ∈M , the mapping
T (., x) : Ω→ X is measurable.
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Definition 2.9. ([8], Continuous random operator) A random operator
T : Ω ×M → X is said to be continuous random operator if for each fixed
x ∈M and ω ∈ Ω, the mapping T (ω, .) : X → X is continuous.

Definition 2.10. ([8], Random fixed point) A measurable mapping ξ : Ω→
M is a random fixed point of a random operator T : Ω×M → X if and only
if T (ω, ξ(ω)) = ξ(ω) for each ω ∈ Ω.

Definition 2.11. ([8], Cone Random Metric Space) Let M be a nonempty
set and the mapping d : Ω×M → X, P ⊂ X be a cone, ω ∈ Ω be a selector,
satisfy the following conditions:

(2.11.1) d(x(ω), y(ω)) > 0 for all x(ω), y(ω) ∈ Ω×X if and only if x(ω) = y(ω),
(2.11.2) d(x(ω), y(ω)) = d(y(ω), x(ω)) for all x, y ∈ X, ω ∈ Ω and x(ω), y(ω)

∈ Ω×X,
(2.11.3) d(x(ω), y(ω)) = d(x(ω), z(ω))+d(z(ω), y(ω)) for all x, y ∈ X and ω ∈ Ω

be a selector,
(2.11.4) for any x, y ∈ X, ω ∈ Ω, x(ω), y(ω) is non-increasing and left contin-

uous in α.

Then d is called cone random metric on M and (M,d) is called a cone random
metric space.

Definition 2.12. (Implicit Relation) Let Φ be the class of real valued
continuous functions ϕ : (R+)4 → R+ non-decreasing in the first argument
and satisfying the following conditions:

x ≤ ϕ
(
y, x, y,

y + x

2

)
or x ≤ ϕ

(
y, x, y,

x

2

)
or x ≤ ϕ(x, y, y, x),

there exists a real number 0 < h < 1 such that x ≤ h y.

3. Main Results

In this section we shall prove a common fixed point theorem under weak
contractive condition in the setting of cone random metric spaces.

Theorem 3.1. Let (X, d) be a complete cone random metric space with respect
to a cone P and let M be a nonempty separable closed subset of X. Let S and
T be two continuous random operators defined on M such that for ω ∈ Ω,
S(ω, .), T (ω, .) : Ω×M →M satisfying the condition:

d(S(x(ω)), T (y(ω))) ≤ ϕ
(
d(x(ω), y(ω)), d(x(ω), S(x(ω)), d(y(ω), T (y(ω)),

d(x(ω), T (y(ω)) + d(y(ω), S(x(ω))

2

)
(3.1)
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for all x, y ∈ X and ω ∈ Ω. Then S and T have a unique common random
fixed point in X.

Proof. For each x0(ω) ∈ Ω×X and n = 0, 1, 2, . . . , we choose x1(ω), x2(ω) ∈
Ω×X such that x1(ω) = S(x0(ω)) and x2(ω) = S(x1(ω)). In general we define
sequence of elements of X such that x2n+1(ω) = S(x2n(ω)) = S2n+1(x0(ω))
and x2n+2(ω) = T (x2n+1(ω)) = T 2n+2(x0(ω)). Then

d(x2n+1(ω), x2n(ω))

= d(S(x2n(ω)), T (x2n−1(ω))

≤ ϕ
(
d(x2n(ω), x2n−1(ω)), d(x2n(ω), S(x2n(ω)), d(x2n−1(ω), T (x2n−1(ω)),

d(x2n(ω), T (x2n−1(ω)) + d(x2n−1(ω), S(x2n(ω))

2

)
≤ ϕ

(
d(x2n(ω), x2n−1(ω)), d(x2n(ω), x2n+1(ω)), d(x2n−1(ω), x2n(ω)),

d(x2n(ω), x2n(ω)) + d(x2n−1(ω), x2n+1(ω))

2

)
≤ ϕ

(
d(x2n(ω), x2n−1(ω)), d(x2n(ω), x2n+1(ω)), d(x2n−1(ω), x2n(ω)),

d(x2n−1(ω), x2n(ω)) + d(x2n(ω), x2n+1(ω))

2

)
.

Hence from definition 2.12, we have

d(x2n+1(ω), x2n(ω)) ≤ h d(x2n(ω), x2n−1(ω)).

Similarly, we obtain

d(x2n(ω), x2n−1(ω)) ≤ h d(x2n−1(ω), x2n−2(ω)).

Hence

d(x2n+1(ω), x2n(ω)) ≤ h2 d(x2n−1(ω), x2n−2(ω)).

On continuing in this process, we get

d(x2n+1(ω), x2n(ω)) ≤ h2n d(x1(ω), x0(ω)).

Also for n > m, we have

d(xn(ω), xm(ω)) ≤ d(xn(ω), xn−1(ω)) + d(xn−1(ω), xn−2(ω)) + · · ·
+d(xm+1(ω), xm(ω))

≤ (hn−1 + hn−2 + · · ·+ hm) d(x1(ω), x0(ω))

≤
( hm

1− h

)
d(x1(ω), x0(ω)).
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Let 0� c be given. Choose a natural numberN such that
(

hm

1−h

)
d(x1(ω), x0(ω))�

c for every m ≥ N . Thus

d(xn(ω), xm(ω)) ≤
( hm

1− h

)
d(x1(ω), x0(ω))� c,

for every n > m ≥ N . This shows that the sequence {xn(ω)} is a Cauchy
sequence in Ω×X. Since (X, d) is complete, there exists z(ω) ∈ Ω×X such
that xn(ω)→ z(ω) as n→∞. Hence, we have

d(z(ω), S(z(ω)))

≤ d(z(ω), x2n+2(ω)) + d(x2n+2(ω), S(z(ω))

= d(z(ω), x2n+2(ω)) + d(S(z(ω), T (x2n+1(ω))

≤ d(z(ω), x2n+2(ω))

+ ϕ
(
d(z(ω), x2n+1(ω)), d(z(ω), S(z(ω))), d(x2n+1(ω), T (x2n+1(ω))),

d(z(ω), T (x2n+1(ω))) + d(x2n+1(ω), S(z(ω)))

2

)
≤ d(z(ω), x2n+2(ω))

+ ϕ
(
d(z(ω), x2n+1(ω)), d(z(ω), S(z(ω))), d(x2n+1(ω), x2n+2(ω)),

d(z(ω), x2n+2(ω)) + d(x2n+1(ω), S(z(ω)))

2

)
.

Taking the limit as n→∞, we have

d(z(ω), S(z(ω))) ≤ 0 + ϕ
(

0, d(z(ω), S(z(ω))), 0,
d(z(ω), S(z(ω)))

2

)
≤ 0.

Thus −
(
d(z(ω), S(z(ω))

)
∈ P . But d(z(ω), S(z(ω))) ∈ P . Therefore by defi-

nition 2.1(c3) d(z(ω), S(z(ω)) = 0 and so S(z(ω)) = z(ω).
In an exactly similar way we can prove that for all ω ∈ Ω, T (z(ω)) = z(ω).

Hence S(z(ω)) = T (z(ω)) = z(ω). This shows that z(ω) is a common random
fixed point of S and T .

Uniqueness: Let v(ω) be another random fixed point common to S and T ,
that is, for ω ∈ Ω, S(v(ω)) = T (v(ω)) = v(ω). Then for ω ∈ Ω, we have
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d(z(ω), v(ω)) = d(S(z(ω)), T (v(ω)))

≤ ϕ
(
d(z(ω), v(ω)), d(z(ω), S(z(ω))), d(v(ω), T (v(ω))),

d(z(ω), T (v(ω)) + d(v(ω), S(z(ω)))

2

)
≤ ϕ

(
d(z(ω), v(ω)), d(z(ω), z(ω)), d(v(ω), v(ω)),

d(z(ω), v(ω)) + d(v(ω), z(ω))

2

)
≤ ϕ

(
d(z(ω), v(ω)), 0, 0, d(z(ω), v(ω))

)
which gives

d(z(ω), v(ω)) ≤ 0.

Hence d(z(ω), v(ω)) = 0, it follows that z(ω) = v(ω) and so z(ω) is a unique
common random fixed point of S and T . This completes the proof. �

Remark 3.2. Our result extends the corresponding result of Dhagat et al.
[8] (Advances in Fixed Point Theory, 2(3) (2012), 357–363).

Example 3.3. Let M = R and P = {x ∈ M : x ≥ 0}, also Ω = [0, 1]
and Σ be the sigma algebra of Lebesgue’s measurable subset of [0, 1]. Let
X = [0,∞) and define a mapping d : (Ω×X)×(Ω×X)→M by d(x(ω), y(ω)) =
|x(ω) − y(ω)|. Then (X, d) is a cone random metric space. Define random

operator T form (Ω×X) to X as T (ω, x) = 1−ω2+x
2 . Also sequence of mapping

ξn : Ω→ X is defined by ξn(ω) = (1− ω2)1+(1/n) for every ω ∈ Ω and n ∈ N .
Define measurable mapping ξ : Ω → X as ξ(ω) = (1 − ω2) for every ω ∈ Ω.
Hence (1− ω2) is the random fixed point of the random operator T .

Example 3.4. Let M = R and P = {x ∈ M : x ≥ 0}, also Ω = [0, 1] and Σ
be the sigma algebra of Lebesgue’s measurable subset of [0, 1]. Let X = [0,∞)
and define a mapping d : (Ω×X)× (Ω×X)→M by d(x(ω), y(ω)) = |x(ω)−
y(ω)|. Then (X, d) is a cone random metric space. Define random operators S

and T form (Ω×X) to X as S(ω, x) = 1−ω2+2x
3 and T (ω, x) = 1−ω2+3x

4 . Also

sequence of mapping ξn : Ω→ X is defined by ξn(ω) = (1−ω2)1+(1/n) for every
ω ∈ Ω and n ∈ N . Define measurable mapping ξ : Ω→ X as ξ(ω) = (1− ω2)
for every ω ∈ Ω. Hence (1−ω2) is a common random fixed point of the random
operators S and T .
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