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Abstract. It is proved that the distance between two disjoint closed sets are not equal

to zero where at least one set is bounded in cone metric space. Some common fixed point

theorems for multi-valued mappings are obtained in cone metric space. It is proved that

multi-valued mappings have common fixed point which generalized the C. T. Aage and J.

N. Salunke’s result in cone metric space.

1. Introduction

In 2007, Huang and Zhang [1] generalized the concept of metric space and
introduced the concept of cone metric space. After that some fixed point
theorems have been given in [2-4]. Many authors also investigated the fixed
points for multi-valued mappings in metric spaces. In [8] Wardowski proved
some results about multi-valued mappings in cone metric space. Furthermore,
Rezapour and Hamlbarani respectively in [5] and [6] used the Hausdroff cone
metric and gave some common fixed point theorems.

Definition 1.1. ([1]) Let E be a real Banach space and P be a subset of E.
Then P is called a cone, if it satisfies following conditions:
(1) P is closed, non-empty and P 6= {0};
(2) ax+ by ∈ P , for all x, y ∈ P and a, b are non-negative real numbers;
(3) P ∩ (−P ) = {0}.
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Given a cone P ⊂ E, we define a partial ordering � with respect to P by
x � y if and only if y − x ∈ P . We say x� y if and only if y − x ∈ intP .

Definition 1.2. ([1]) Let X be a non-empty set. Suppose that the mapping
d : X ×X → E satisfies:
(1) 0 � d(x, y), for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X.
Then d is called a cone on X and (X, d) is called a cone metric space.

Definition 1.3. ([5]) (1) Let X be a cone metric space and B ⊂ X. A point
b in B is called an interior point of B, whenever there exists a point c, 0� c,
such that N(b, c) ⊂ B, where

N(b, c) = {y ∈ X : d(y, b)� c}.

(2) A subset A ⊂ X is called open, if each element of A is an interior point.
The family β = {N(x, c) : x ∈ X, 0� c} is a sub-basis for a topology on X.

We denotes this cone topology by τc which is Hausdroff and first countable.

Lemma 1.4. ([5]) Let (x, d) be a complete cone metric space, P be a normal
cone constant M = 1 and A be a compact set in (x, τc). Then for every x ∈ X,
there exists a0 ∈ A such that

‖d(x, a0)‖ = inf
a∈A
‖d(x, a)‖.

Lemma 1.5. ([5]) Let (X, d) be a cone metric space, P be a normal cone with
normal constant M = 1 and A,B be two compact sets in (x, τc). Then

sup
x∈B

d
′
(x,A) <∞,

where d
′
(x,A) = infa∈A ‖d(x, a)‖, for each x in X.

If A is a single point set, then A = {y}, so d
′
(x, y) = ‖d(x, y)‖.

Definition 1.6. ([6]) Let X be a cone metric space, P be a normal cone with
normal constant M = 1. Hc denotes all compact sets of (x, τc), A ∈ Hc(X).
Define

hA : Hc(X)→ [0,∞), dH : Hc(X)×Hc(X)→ [0,∞),

hA(B) = sup
x∈A

d
′
(x,B), dH(A,B) = max{hA(B), hB(A)}.
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Lemma 1.7. ([11]) Let (X, d) be a cone metric space, P be a normal cone
with normal constant one and T : X → Hc(X). Then

‖d(x, Tx)‖ = ‖ inf
y∈Tx

d(x, y)‖ = inf
y∈Tx

‖d(x, y)‖.

In this paper, we study the problem between two closed sets and the com-
mon fixed points of multi-valued mappings.

2. Main results

Definition 2.1. (X, d) is a cone metric space, A ⊂ X. If for any x, y ∈ A,
there exists M > 0 such that ‖d(x, y)‖ ≤M , then we say A is norm bounded.

Lemma 2.2. If X is a cone metric space, B ∈ Hc(X), infb∈B ‖d(x, b)‖ = 0,
then x ∈ B.

Proof. By infb∈B ‖d(x, b)‖ = 0, there exists {bn} ⊂ B such that ‖d(x, bn)‖ < 1
n .

So lim
n→∞

d(x, bn) = 0. Thus bn → x as n→∞. Since B is closed, x ∈ B. �

Theorem 2.3. If A,B ∈ Hc(X), dH(A,B) = 0, we have A = B.

Proof.

dH(A,B) = max{hB(A), hA(B)}
= max{sup

x∈A
inf
b∈B
‖d(x, b)‖, sup

x∈B
inf
a∈A
‖d(x, a)‖}

= 0.

So

sup
x∈A

inf
b∈B
‖d(x, b)‖ = 0; sup

x∈B
inf
a∈A
‖d(x, a)‖ = 0.

Since

‖d(x, b)‖ ≥ 0(∀x ∈ A, b ∈ B); ‖d(x, a)‖ ≥ 0(∀x ∈ B, a ∈ A),

it follows that

inf
b∈B
‖d(x, b)‖ = 0; inf

a∈A
‖d(x, a)‖ = 0.

By lemma 2.2, for any x ∈ A, we have x ∈ B. So A ⊂ B. On the other
hand, B ⊂ A. This implies that A = B. �

Theorem 2.4. If X is a cone metric space, A,B ∈ Hc(X), then there exists
b0 ∈ B such that

‖d(a0, b0)‖ ≤ dH(A,B) + ε,

for each a0 ∈ A and ε > 0.
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Proof. For any a0 ∈ A, we have dH(A,B) ≥ infb∈B ‖d(a0, b)‖. So ∀ε > 0, we
have dH(A,B) + ε ≥ ‖d(a0, b0)‖. �

Theorem 2.5. Let F1 and F2 are two disjoint closed sets in cone metric space
and P is a normal cone with normal constant one. Assume that there are at
least one sets norm bounded, then d(F1, F2) 6= θ, where

d(F1, F2) = inf{d(a, b), a ∈ F1, b ∈ F2}.

Proof. Without loss of generality, we set F1 is a norm bounded set. For any
x ∈ F1, y ∈ F2, we have ‖d(x, y)‖ > 0.

At first, we will show that inf{‖d(a, b)‖, a ∈ F1, b ∈ F2} > 0. Suppose on
the contrary inf{‖d(a, b)‖, a ∈ F1, b ∈ F2} = 0. Then there exist {xn} ⊂ F1,
{yn} ⊂ F2, such that

‖d(xn, yn)‖ ≤ 1

n
.

Let E = {xn}
⋃
{yn}. Claim that E is a infinite bounded set. In fact, since

F1 is norm bounded, then there exists M1 > 0, such that for any xn, xm ∈ E,
we have ‖d(xn, xm)‖ ≤M1. Consequently,

‖d(xn, ym)‖ ≤ ‖d(xn, xm)‖+ ‖d(xm, ym)‖ ≤M1 +
1

m
≤M1 + 1,

‖d(yn, ym))‖ ≤ ‖d(xn, ym)‖+ ‖d(xn, yn)‖ ≤M1 +
1

m
+

1

n
≤M1 + 2.

Let M = M1 + 2. Then for any x, y ∈ E, we have ‖d(x, y)‖ ≤M. So E has a
accumulation point x0. let znk

→ x0.

Case1. {znk
} contains infinite points {xnk

} of {xn}. Let {xnk
} ⊂ {xn}, xnk

→
x0, so

‖d(ynk
, x0)‖ ≤ ‖d(ynk

, xnk
)‖+ ‖d(xnk

, x0)‖ → 0.

We get {ynk
} ⊂ {yn} and ynk

→ x0.

Case2. {znk
} contains infinite points {ynk

} of {yn}. One can get {xnk
} ⊂ {xn},

xnk
→ x0.

Case3. {znk
} contains infinite points {xnk

} of {xn} and infinite points {ynk
}

of {yn}.
From the cases we have {xnk

} ⊂ {xn} and xnk
→ x0 as n → ∞. {ynk

} ⊂
{yn} and ynk

→ x0 as n → ∞. So x0 is a accumulation point of F1 and F2,
this is a contradiction. So

inf{‖d(a, b)‖, a ∈ F1, b ∈ F2} > 0.

According to Lemma 1.7, we have ‖ inf{d(a, b), a ∈ F1, b ∈ F2}‖ > 0. So
inf{d(a, b), a ∈ F1, b ∈ F2} 6= θ. It follows that d(F1, F2) 6= θ. �
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Theorem 2.6. Let X be a complete cone metric space with normal constant
M = 1, T1, T2 : X → Hc(X) be two multi-valued maps satisfying the condition

αdH(T1(x), T2(y)) + βd
′
(x, T1(x)) + γd

′
(y, T2(y)) ≤ δd′(x, y)

for all x, y ∈ X and α, β, γ > 0 where β < δ, γ < δ, δ < α + β + γ. Then
T1 and T2 have common fixed point. It means there exists x ∈ X such that
x ∈ T1(x) and x ∈ T2(x).

Proof. Let x0 ∈ X, by lemma 1.4, there exists x1 ∈ T1x0 satisfying

d
′
(x0, T1x0) = ‖d(x0, x1)‖.

We also have x2 ∈ T2x1,
d
′
(x1, T2x1) = ‖d(x1, x2)‖.

By this way, there is a sequence {xn}n≥1 in X such that

x2n−1 ∈ T1x2n−2, x2n ∈ T2x2n−1.
So

d
′
(x2n−2, T1x2n−2) = ‖d(x2n−2, x2n−1)‖,
d
′
(x2n−1, T2x2n−1) = ‖d(x2n−1, x2n)‖.

For all n ≥ 1, therefore

‖d(x2n+1, x2n)‖
= d

′
(x2n, T1x2n) ≤ hT2x2n−1(T1x2n) ≤ dH(T2x2n−1, T1x2n)

≤ δ

α
‖d(x2n−1, x2n)‖ − β

α
d
′
(x2n, T1x2n)− γ

α
d
′
(x2n−1, T2x2n−1)

≤ δ

α
‖d(x2n−1, x2n)‖ − β

α
‖d(x2n+1, x2n)‖ − γ

α
‖d(x2n−1, x2n)‖.

It follows that

(1 +
β

α
)‖d(x2n+1, x2n)‖ ≤ (

δ

α
− γ

α
)‖d(x2n, x2n−1)‖.

Let h1 = δ−γ
α+β , so

‖d(x2n+1, x2n)‖ ≤ h1‖d(x2n, x2n−1)‖.
Similarly,

‖d(x2n+2, x2n+1)‖ ≤
δ − β
α+ γ

‖d(x2n+1, x2n)‖.

Let h2 = δ−β
α+γ , consequently, we have

‖d(x2n+2, x2n+1)‖ ≤ h2‖d(x2n+1, x2n)‖.
So

‖d(x2n+2, x2n+1)‖ ≤ (h2h1)
n‖d(x2, x1)‖;
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‖d(x2n+1, x2n)‖ ≤ (h2h1)
n‖d(x1, x0)‖.

For m > n, then

‖d(x2n, x2m)‖
≤ ‖d(x2n+1, x2n)‖+ ‖d(x2n+2, x2n+1)‖+ · · ·+ ‖d(x2m, x2m−1)‖
≤ (h2h1)

n‖d(x1, x0)‖+ (h2h1)
n‖d(x2, x1)‖+ (h2h1)

n+1‖d(x1, x0)‖
+ · · ·+ (h2h1)

m−1‖d(x1, x0)‖+ (h2h1)
m−1‖d(x2, x1)‖

≤ (h2h1)
n

1− h2h1
(‖d(x2, x1)‖+ ‖d(x1, x0)‖).

‖d(x2m, x2n)‖ → 0 as n→∞. By the same way, we get ‖d(x2n+1, x2m+1)‖ → 0
and ‖d(x2n, x2m+1)‖ → 0 as n → ∞. It is easy to verify that {xn}n≥1 is a
Cauchy sequence in X. There exists x∗ ∈ X such that xn → x∗.

d
′
(x∗, T1x

∗) ≤ d
′
(x,∗ , T2x2n−1) + dH(T2x2n−1, T1x

∗)

≤ ‖d′(x∗, x2n)‖+
β

α
‖d(x∗, x2n−1)‖

−γ
α
‖d(x2n−1, x2n)‖ − β

α
‖d′(x∗, T1x∗).

So

d
′
(x∗, T1x

∗) ≤ α

α+ β
‖d(x∗, x2n)‖

+
δ

α+ β
‖d(x∗, x2n−1)‖ −

γ

α+ β
‖d(x2n−1, x2n)‖.

Let n→∞, clearly, d
′
(x∗, T1x

∗) = 0. It implies x∗ ∈ T1x∗. By the same way,
one can get x∗ ∈ T2x∗. Therefore x∗ is a common fixed point of T1 and T2.

In[10], T1 and T2 are single-valued mappings, so in this paper we extended
Theorem 2.1 to multi-valued mappings. �
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