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Abstract. Motivated by the well-posedness results in [Nonlinear Anal. Ser. B: RWA. 4(3)
(2003), 483-501; Nonlinear Anal. Ser. B: RWA. 11(5) (2010), 3453-3462] for the models
describing the propagation of high frequency electromagnetic waves in nonlinear dielectric
media, because of their mathematical context, we study a similar model and prove results
about existence, uniqueness, the asymptotic behavior and an asymptotic expansion of the

solution up to order N in a small parameter A with error AV t3,

1. INTRODUCTION

In this paper, we consider the following problem:
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Find a pair (u, P) of functions satisfying
Ut — Ugy + a(x)uy + B(x) Py(z,t) = f(z,1), 0 <z <1,0<t < T,
uz(0,t) = hu(0,t) + Aug(0,t), u(1,t) =0, (1.1)
u(z,0) = to(z), u(z,0)=1u1(z),
where h > 0, A > 0 are given constants and g, @1, f, a, 8 are given functions

satisfying conditions specified later, and the unknown functions u(z,t) and
P(x,t) satisfy the following integral equation

P(z,t) = Py(z) + [§ gx,t — 8)G(ula, s), P(z,s))ds, (1.2)

for 0 <z < 1,0 <t < T, where g, G, P, are given functions. Problem (1.1),
(1.2) may be considered as the generalizations of mathematical models of high
frequency electromagnetic waves in nonlinear dielectric media given in [1], [4].
In [4], by using the Galerkin method, Y. Zaidan proved existence, uniqueness
and continuous dependence of the following problem

Ey—E.. +a(z)E:+ B(2)Pu(z,t) = f(2,1),0<2<1,0<t < T,
Pi(z,t) = =G(P(z,t)) +vE(2,1),0< 2 < 1,0 < t < T,

E.(0,t) = AE;(0,t), E(1,t) =0,

E(z,0) = Eo(2), Ei(2,0) = Ey(2), P(2,0) =0,

(1.3)

where A > 0, are given constants and E’o, El, f, G, a, B are given functions.
Problem (1.3) is a mathematical model describing the propagation of high
frequency electromagnetic pulses in dielectric materials. It is realistic model
that includes a nonlinear function of the polarization P given by the nonlinear
Debye equation, the electric field E is polarized with oscillations in the xz-
plane only, an absorbing boundary condition is placed at z = 0 to prevent the
reflection of waves. In [1], Banks and Pinter also established well-posedness
results for the following model describing the propagation of high-intensity
electromagnetic waves in a nonlinear medium

Ett — Ezz + OZ(Z)Et + B(Z)Ptt(z,t) = f(Z,t), O0<z< 1, O0<t< T,

E.(0,t) = AE,(0,t), E(1,t) = 0, (1.4)
E(2,0) = Ey(2), Ei(2,0) = E1(2),
and
P(z,t) = fg g(z,t —s)[E(x,s) + G(E(x,s))] ds, (1.5)

where A > 0 is given constant and E’O, E’l, g, G, k, a, 8 are given functions.
Eq (1.5) is a representation of the polarization P by a nonlinear convolution.
This formulation can be interpreted as a generalization of the Debye or Lorentz
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polarization models in the sense that the polarization dynamics is driven by a
nonlinear function of the electric field F.

The original ideas in [1], [4] lead to the study of problem (1.1), (1.2) because
of their mathematical context.

Applying the methods and techniques used in [5]-[8], we prove existence,
uniqueness, asymptotic behavior and asymptotic expansion of the solution of
problem (1.1), (1.2).

The structure of the paper is as follows. Section 2 presents some required
preliminaries. The existence and uniqueness of a weak solution to problem
(1.1), (1.2) are given in Section 3. At first, by techniques used in [6] and [8],
we associate with problem (1.1), (1.2) a linear recurrent sequence {(um,, Pn)}
which is bounded in a suitable space of functions. Next, the proof is done by
using the Galerkin method associated to a priori estimates, weak convergence
and compactness techniques. Furthermore, based on the methods as in [5]
and [7], the asymptotic behavior of solutions as A\ — 04 and an asymptotic

expansion of solutions up to order N in a small parameter A with error AV +3
are also discussed in Sections 4 and 5, respectively. The results obtained here
may be considered as the generalizations of those in [1], [4].

2. PRELIMINARIES

Put Qr = (0,1) x (0,7), T > 0. We denote the usual function spaces used
in this paper by the notations C™[0, 1], W™P = W™P (0,1), LP = WP (0,1),

m=Wm2(0,1),1 <p<oo,m=0,1,---. Let {-,-) be either the scalar
product in L? or the dual pairing of a continuous linear functional and an
element of a function space. We denote by ||-||;, the norm in L?, with 1 <
p < oo, p # 2. The notation |-|| stands for the norm in L? and we denote
by || - ||x the norm in the Banach space X. We call X’ the dual space of X.
We denote by LP(0,7;X), 1 < p < oo for the Banach space of real functions
u : (0,7) — X measurable, such that ||ul|r(o,rx) < +o0, with

1/p
(5 Hut®)liZeae) ™, it 1<p < oo,
HUHLP(O,T;X) =
esssupl||u(t)||x, if p=o0.
0<t<T

Let u(t). (6) = w(t) = idt), w(t) = wolt) = t), (1) = ut), wes(t) =
Au(t), denote u(x,t), “(af t), %tg (z,t), 2 5 (@, t), 2 9.2 (x,t), respectively. With

G € C*(R?), G = G(y, z), we put DG = gz;ff, D$*G = 92¢ and DG =

a1 +a
D" D3*G = gy;liaj,g, a = (a1,a0) € Z2, o] = o1 + ag < k; DOOG =

DG = G.

U
T
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On H', we shall use the following norm

1/2
ol = (Hol” + loal”) (2.1)
We put
={ve H':v(1) =0}, (2.2)
fo Ug () vy (z)dx + hu(0)v(0), for all uw, v €V, h > 0. (2.3)

We remark that V is a closed subspace of H! and three norms ||v| 41,
|lvz|| and [jv]l;, = /a(v,v) are equivalent norms on V. So are the norms
v +— ||v] g1, v —> ||v|ly; and v — ||vg|| on H{. Then the following lemmas
are known.

Lemma 2.1. The imbedding H' — C°[0,1] is compact and
[0l gofo,yy < V2|[vll for allv e HY, (2.4)

where [ullgogyy = sup [v(a)].

z€[0,1]

Lemma 2.2. The imbedding V — C°[0,1] is compact and

(i) ||UHCO[0,1] < vzl < lvlly
{<m L ol < Nl < ol < VIFRoal < VIF R, O
for all v € V. On the other hand,
lellcoo < llvall for all v & HQ. 26)

Lemma 2.3. Let h > 0. Then the symmetric bilinear form a(-,-) defined by
(2.3) is continuous on 'V x V' and coercive on V.

According to the definition of a(-,-) and by
P8 (2,1) = g(2,0) 5 G (u(x,1), P(x, 1)) + ¢ (2,0)G (u(x, ), P(x,1))
+ft "z, t — 8)G(u(x, s), P(x,s)) ds,

we can define the weak solution of (1.1), (1.2) as follows.

(2.7)

Definition 2.4. We say that (u, P) is a weak solution of (1.1), (1.2) if
u, P € L* (0, T;V NH?), w, P, € L>(0,T;V),
Uy, Py € LOO(O,T, L2), utt(O, ) S L2(0,T),

and a pair (u, P) satisfies the following variational equation
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(uge (), v) + au(t), v) + Aue(0,£)v(0) + {ou(t), v)
+(89(0) 5 G (u, P),v) + (B9 (0)G(u, P),v)

t (2.8)
+(B Jo 9" (t — $)G(u(s), P(s))ds,v) = (f(t),v),
P(x,t) = Po(x) + [y g(x,t — )G (u(x, 5), P(x, 5))ds,
for all v € V, a.e., t € (0,T) together with the initial conditions
u(0) = g, ue(0) = uy. (2.9)

3. EXISTENCE AND UNIQUENESS OF A WEAK SOLUTION

Let T* > 0. We make the following assumptions:

) o, B €L
2) (o, 41, Po) € (VNH?) xV x (VNH?);
) f. f" € L*(0,T* L?);
)
(Hs) G € C?*(R) satisfies G(0,0) = 0.
Let M > 0, we put

Ky(G) =G _ = sup al<2 DGy, 2)|.
(@ = Glesowpn = w0 S DG (g

For each T € (0,T%], we get
Xp={ue L®0,T;V):u € L®0,T;V), u" € L®0,T; L?)}.  (3.2)

We note that X7 is a Banach space with respect to the norm

||UHXT = max{ HUHLOO(O,T;V)v ||U/||L<>°(0,T;V)v ‘\u//||Lw(07T;L2)}. (3.3)
For each T € (0,7%] and M > 0, we set
Br(M)={ve Xr: ||y, <M} (3.4)

We shall choose the first initial term (ug, Py) = (o, 150). Suppose that
Um—1, Pm—1 € Br(M)N L>(0,T;V N H?),
V2 [z, 1 (0, )20,y < M,
and associate with problem (2.8), (2.9) the following problem:
Find wy,, Py, € Bp(M) N L>®(0,T;V N H?) satisfying the following problem
(i) Pn(t) = Bo+ [y g(t — 8)G(um—1(5), Pn_1(s))ds,

(i) (ugr (£),0) +a(um (£),0) + Mt (0, £)0(0) +{aunty, (),0) = (Fra (1) 0) , - (3-6)
for all v € V, a.e., t € (0,T),

(3.5)
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together with the initial conditions

where

Fo(t) = f(t) = Bg(0) 5 G(tm—1, Prm—1) — B9 (0)G (tm—1, Pn—1)

t (3.8)
-8 fo 9" (t = 8)G(um-1(s), Pn—1(s))ds.

Then, we have the following theorem.

Theorem 3.1. Suppose that (Hy) — (Hs) hold and the initial data (4o, 1) €
(VN H?) x V satisfy the compatibility condition

T2 (0) = hiig(0) + Aaiq (0). (3.9)

Then there exist positive constants M, T > 0 such that, for (ug, Py) = (o, ]30),
there exists a recurrent sequence {(um, Pm)} defined by (3.6)-(3.8) and satis-

Jying

Umy P € Br(M) 0 L®(0,T;V 0 H2), V2X||ul(0,)|| 120y < M. (3.10)

Proof. The proof consists of two parts.
Part 1. We show that there exist positive constants M,T > 0 such that

Py, € Bp(M) N L>®(0,T;V N H?). (3.11)
So, we need the following lemma, its proof will be presented in the appendix.
Lemma 3.2. Suppose that (3.5) holds. Then
(DG (um—1(), Pn1(t)) Lo < Knmr(G),

(i) G (1 (8), Pra ()| o < || G0, P)|, _ +2TM K (G),

(i) < OIMEK\(G),

oo

’;G(Um—l(t)ﬂ Bpa(t))

(iv)

5 Glma(0) Paca (1)
< HDlG(ﬁo, By)in + DaGli0, Po)g(0)G (o, PO)H
42T M (1 4 2M) K (G),
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0
—G(Um—1(t), Pn—1(t))|| < 2M Ky (G),

Gl (1), o)

0 o~
%G(Uo, P())

4T M (1 + 2M) K (G),

(3.12)
(vii) 52
=z

’82G(um_1(t), Pm_l(t))H < oM (14 2M) Ky (G),
(vii) || 5

< Ku(G) [4\/§M2+(1+2\@M> (||Aum_1(t)||+||APm_1(t)||)] .

Glun-1(0), Pas )

Next, we computing partial derivatives of Pp,(z,t) : Pn(t), Pl (t), Pl(t),
P7/nz (t)7 szg: (t) and note

Um-1(1,8) = Pp—1(1,s) = G(0,0) =0,
Pu(L,t) = Bo(1) + [5 g(1,t — 8)G(um—1(1,8), Pr_1(1,5))ds = 0,

Prln(17t) = g(l, O)G(um—l(lvt)a Pm—l(la t))
+ Jy 9/ (1t = 8)Gum-1(1,5), Pu-1(1,5))ds = 0.

Therefore, it is clear that (H4), (Hs) and (3.5) lead to
P, € XpNL>®(0,T;V N H?). (3.13)
Furthermore, the following estimates are valid
(ix) HPma:HLoo(o,T;L2)

< || Pos + Ku(G) [”ngLl(O,T;L?) +2M HgHLl(O,T;LOO)] )

(x) HP;n:vHLOO(O,T;LQ)

< 1lg:(0) 1| Gao, P}, + lg(O)l]

+2TMKp(G) ([lg2(0)] + (1 +2M) [lg(0) ][ o< ) » (3.14)
(i) [| P,

0 o~
%G(UO, Po)

HLOO(O,T;L2)

< l9(0)ll 1~ || PrG (0, Po)iia + DaGio, Po)g(0)G (o, )|
+ )| |G 2|

+ Kt (@)[2M (14200 lg(0) | ot 0/ O ) + 0" 11 0.1
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hence we can choose T' > 0 small enough and M > 0 sufficiently large such
that || P x, < M. Thus P, € Bp(M) N L*®(0,T;V N H?).

Part 2. We prove that there exists u,, € By(M)NL*>(0,T;V N H?) satisfying
V2 |up, (0, )| 20,y < M. Tt consists of three steps.

Step 1: The Faedo-Galerkin approzimation (introduced by Lions [3]).
Let {w;} be a denumerable base of VN H?. We find an approximate solution
of problem (2.8), (2.9) in the form

=5 "ty (3.15)

j=1
where the coefficients 052 satisfy the following system of linear differential
equations

G (), wj) + a@® (1), w;) + AP (0, 8w, (0) + (@dl (1), w;)
= (F(t),w;), 1 <j <k, (3.16)
WM(0) = o, WP(0) = .

By (3.5), system (3.16) has a unique solution < )( t), 1 <j<kon|0,T],let
us omit the details (see [2]).

Step 2. A priori estimates.
For all j = 1,2,...k, multiplying (3.16); by c'gr'f;.(t), summing on j, and
integrating with respect to the time variable from 0 to ¢, we have

xP ) = =2 [l (s), 0 (s))ds + 2 [ <Fm( ), 4l (s )>ds (3.17)
where
xP ) = Ha,(l?(t)HQJra(u%)( uP (1)) +2) ! ‘um 0 s)) ds.  (3.18)

Next, by differentiating (3.16); with respect to ¢ and substituting w; =

5[7)( t), after integrating with respect to the time variable from 0 to ¢, we have

A0 = =2 [ ) 59 s+ 25 (P i) s, (319
where
v H i ( H “‘( (k)(t)>u7(7§)(t)>+2/\fg’ﬁ7(vlf)(0,s)‘2ds. (3.20)

We define
sP @) = xP ) + v P, (3.21)



A nonlinear wave equation associated with a nonlinear integral equation 553

then, it follows from (3.17)-(3.21), that

Sy(yf)() S(k 2f0 {aum 7(5)(8))—!- <au7(7’f)(s) grlj)( )>} s
+2 [y [<Fm(s) Wt (s )>ds+ (F(s), i) (s )>] e (322)

= S¥0) + I + L.

We shall estimate the integrals on the right hands of (3.22) as follows. Using
(Hyp), (3.18), (3.20) and (3.21) lead to

I = =2 fy [(@ily) (), 68 () + (il (s), ) ()] ds

<2fale i (|0 + a0 ) as (3.23)
< 2all o fy S0’ (s)ds.
We have
L=2f [< (), 0 (s )>ds—|— (F;(s),ug’?(s»] ds (5,20
< Jo I FEm ()P ds + fy [1F5, ()]l ds + fi (1+ (1, (s)])) S (s)ds

We need estimate fo || Fn(s)||? ds. By (3.8) and (3.12), we obtain

Aol
< I OI+Eu(G) 1B o [2M 19O oo+l O+ 119" 07y | - B2

Thus
SO En(s)]? ds < ®0)(T), (3.26)
where
O (T) = 2| f13210,) + 2T 1812 K3,(G) 2 o)
X |20 19(0) | e + 19" O o= + 19" 30222
We estimate [ || F/,(s)|| ds. By (3.8), we have
Fl,(1)
— 1'(t)—Bg(0) 2xG <um_1<t)P 1) = B9 (0) .G (tm-1 (), Pr-1(t)  (3.28)
—B9"(0)G (tm—1(t),Pm—1(£) = By " (t—5) G (ttm—1(5), Pro—1(5))ds.
So

IE @O < O+ 18l e Kar(G) [QM (1+2M) [lg(0)[| oo 5.29)

+2M || (O) 1+ lg" Ol + g™ [l 1 0.7+:22) ]
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Thus
JENEL ()] ds < @2 (1), (3.30)

where
S (T) = 1l 072 + T 16ll = Kne(G) {2M (1+2M) [|9(0) | 1

+2M [lg"(0)[ + lg” O)I| + 119" | L (0.7+;22) ]
Consequently
L < 0)(T) + 8Q(T) + [1(1+ | FL(s)]) S%(s)ds. (3.31)
It remains to estimate S,(n)(O). We have
SW(0) = 1 + afiio, o) +a (i, i) + [ 0)|| (3.32)

On the other hand, letting ¢ — 04 in (3.16);, multiplying the result by

(k)( 0) and using the compatibility (3.9), we get

Cmyj
|89 + {~ti0ss + ain, 68 (0)) = {Fu(0). %)) (3.33)
) i) < I-tt0zs + adunll + | Em(O)]]. (3.34)

We also have

[Em (O]

< PO+ 118120 19(0)| oo || LG (@0, Po)aa

(3.35)
+D2Giio. Po)g(0)G o, o) | +118 .l O)]| G o. Po) | _
Therefore
[ ©)|] < I=i0se + ]| + | (0] < Cor for all m, (3.36)

where C; is a constant depending only on g, 1, By, a, B, 9, [, G
By (3.32) and (3.36) then there exists a positive constant Co depending
only on ug, 41, Py, «, B, f, g, h and G, such that

S,(,lf)(O) < Cog, for all m. (3.37)
It follows from (3.22), (3.23), (3.31) and (3.37), that

S (t) < Coo + @5 (1) + &2 (T)

3.38
2ol e + I FL () SS) (s)ds. (338)
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Assumptions (Hi), (Hs) — (Hs) and (3.27), (3.30) yield
lim ®\)(T) = 1lim ®(T) = 0. (3.39)

T—>O+ T—)O+

Thus, with M, T > 0 chosen in Part 1, it can be seen that M? > 2Cj, and
T € (0,7%] such that

(%M2+<I>§\14)(T)+<I>§\?(T)> < M2 exp [—T(1+2Ha\|Lw)—<1>§§)(T)} (3.40)

and

kr =5d(M,T)exp [3T (1 +2|lofl 1) | <1, (3.41)
where
((d(M,T) = \/Td3(M,T) +d3(M,T) + d3(M,T),

A1 (M, T) = 18] 1 Knr(G)[(1+200) g(0) | o+ 119 O) 1+ 119" | 3 072)
(M, T) = Kni(G) [T 1900l + 16l 0,150 -

d3(M,T) = Knt(G) 1901100 + (14 2M) g2l s 0.7,00) |-

According to (3.38) and (3.40), we get

S (1) < M2exp [T (1 + 2]|al| ) - ©(T)]

) / ) (3.42)
+Jo L+ 2allpe + [1F5(s)]]) Sm” (s)ds.
By using Gronwall’s lemma, the result is
S¥ () < M2, forallt €[0,7T], for all m and k. (3.43)
Therefore, for all m and k,
WM € Br(M) N L>®(0,T;V N H?), v2\ Hug’;)(o, .)‘ o <M, (3.44)
Step 3. Limiting process.
We deduce from (3.44) that
ul?| <M, [a? < M,
Loo(0,T;V) Lo=(0,T3V)
..(k)H <M
Um LOO(O,T;L2) > y (345)

i (o, ')’ for all m and k.

< M
L20,1) — V22X’

From (3.46), there exists a subsequence of {uﬁ,’i)}k, it is still so denoted, such
that
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(k)

Uy — Uy in L*>(0,T;V) weak*,
W 5wl in L*(0,T;V) weak*, (3.46)
i) = wl) in  L>(0,T; L?) weak*, '
L aM(0,) = wm() in L2(0,T) weak,
and
(1)
sl e 20y < M, me HLOO(O,T;V) =AM
Hwﬁﬁ)H <M, (3.47)
L= (0,T;L?)
@ ()l 20,7y < \/%, for all m and k.
First we show that w%) = ul,, w,(,%) =/, in V and w,(-) =« (0,-) in
L%(0,T).

For each m, k we have that

uln) (£) = uly) (0) + [y iln (s)ds,
a® () = il 0) + [Fal) (s)ds, (3.48)

Wt (0,8) = 4l (0,0) + [k (0, s)ds.

By (3.46), passing to the limit in (3.48); o with sense of ”weak™” and in (3.48)3
with sense of ”"weak”, we obtain

() = o + [ wiy (s)ds,
ul, (t) =11 + fot wi? (s)ds, (3.49)
(0, 8) = @1 (0) + [ Wy (s)ds.

where (3.49)1 2 hold in V for each ¢ € [0,T]. Thus (3.49) 2 imply that wid) =
/ (2)

ul,, Wy = ul . while from (3.49)3 we can conclude that u),(0,t) exists and
it is continuous in t. Therefore /], (0,t) is absolutely continuous in [0,77], so
W (t) = ! (0,¢) for a.e. t € [0,T].

Consequently, (3.46) and (3.47) lead to

um € Br(M), V2 [Jum, (0, ) 1201y < M, (3.50)
and
ugf) = Um in L*>(0,T;V) weak*,
ak ul, in L*>(0,T;V) weak*, (3.51)
QA in L0, T; L?) weak*, '

iiy(r]f)(o, ) =’ (0,-) in L%(0,T) weak.
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Passing to limit in (3.16), we have u,, satisfying (3.6);;), (3.7) in L?(0,T).
On the other hand, it follows from (3.6);;), (3.8) and (3.51)3 that

Uz = U, + a()ul, — Fp(t) € L*°(0,T; L?),
hence u,, € L>(0,7;V N H?), Theorem 3.1 follows. O

Theorem 3.3. Let assumptions (Ho) — (Hs) and (3.9) hold. Then

(i) There exist positive constants M and T such that problem (2.8), (2.9)
has a unique solution (u, P) satisfying

u, P € Bp(M)NL®(0,T;V N H?),V2X|[u"(0, )20y < M. (3.52)

(ii) On the other hand, the linear recurrent sequence {(un, Pmn)} defined
by (3.6)-(3.8) converges to the solution (u, P) of problem (2.8), (2.9)
strongly in the space

Wi(T) = {(u, P) € L>®(0,T;V x V) : (u/, P') € L=(0,T; L* x L*)}. (3.53)
Furthermore, we have the estimate

llum = ull oo 0,3y + 1Pm = Pllpsoo,mv) + Num — Wil oo 07,12

(3.54)
+ 1P — P/HLOO(O,T;L?) + V2 g, (0, ) — 2/(0, ‘)HL?(O,T) < Ckr,

for all m € N, where the constant kr € (0,1) is defined as in (3.41) and C is
a constant depending only on T, ug, u1, Py, o, B, f, g, G and kp.

Proof. (i) Existence of the solution.
First, we note that Wi (T') is a Banach space with respect to the norm (see
Lions [3]) below

[[(u, P)| = [lull Lo 0.1y + 1Pl Lo o,
Wi(T) L>(0,T;V) L>(0,T;V) (355)

W oo 0,712y + 1]l oo 0,7522) -

We shall prove that {(um,, Py)} is a Cauchy sequence in Wi(T'). Let v, =
Umt1 — Umy, Qm = Pmt1 — P Then (v, Qp,) satisfies the problem

Qm(t) = Pm+1(t) - Pm(t)
= Jo 9(t = 8) [G(um(s), Pn(5)) = G(um—1(s), Pn1(s))] ds,

(Wl (t),v) + a(vm(t),v) + M), (0,t)v(0) + (o), (t), v) (3.56)
= <Fm+1(t) - Fm(ﬂ?”) , Vv eV,

um(0) = v}, (0) =0,
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where

Fin1(t) = Fin(t)
= _59(0)% [G(um’ Pr) — G(um-1, Pm—l)]
—B9'(0) [G(tm, Prn) — G(um—1, Pm—1)]

—B Jy 9"t = ) [G(um(s), Pu(s)) = G(um—1(s), P-1(s))] ds.

(3.57)

Taking v = v/, in (3.56)9, after integrating in ¢, we get

Zin(t) < (1420l ) fo 105 ()12 ds + [y | Fmsi(s) — Fn(s)|* ds,  (3.58)

where
Zin(t) = [0}, (O] + alm (1), vm (E)) + 2 [ [V5,(0, 5) | ds. (3.59)

Put

T (t) = Zm () + QI + 1 QD)

T (£) = [V )1 + [[me (D11 + 1@ (DI + [| Qe (8)])? (3.60)

+2 Ji [0, (0, 5) [ ds, '

Ym = || (Vm, @ullwy (1) + V2X [v),,(0, W21 5

we have

M (t) = T (£) + 707, (0,8) > 7 (t). (3.61)

We need estimate fg | Epg1 (8) — Fi(s)]|* ds. We have

1 Fs1(t) — Fn(D)]
<181l 1 19(0) | oo |2 (G, Prr) = Glttm—1, Pru1)]|
+ 1Bl o 19" O G (tt, Pr) = G (1, Prn—1)l oo (3.62)
+ 1Bl Jy llg”(t = )]

’ G(um(8), Pn(s)) — G(um—-1(8), Ppn-1(s)) ds.

LOO

X

We shall estimate the terms on the right hands of (3.62) as follows. From the
equation
5 (G um, Pn) = Gltm 1, Pn1)]
= DlG(um, Pm)vqln—l + [DlG(um, Pm) — DlG(Umfl, mel)] u;ﬂ_l
+D2G(um, Pm) lm—l + [DQG(um, Pm) _DQG(Umf]J mel)] Prln—l’

(3.63)
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it follows that

H% [G(um,Pm) - G(um—lapm 1 H

< Ky (G) ||[vp—1 ||+ D1G (s Pr) = D1 Gwm—1, Pt || |1 || 1o
+ K (G)|| @1 ||+ 1D2G (s Prn) = DaG (1, P2l P || oo
< Kn(G) [[vgi || + MEM(G) [[om—1]] + Q1] (3.64)

+Eum(G) |Q -1 || + MEwm(G) [lvm-all + | Qml]
= Kn(G) [[Jopa | + [ Qn-1ll] + 2MEni(G) [[vm—1ll + |Qm—11l]
< (14 2M)Knm(G) [[(vm—1, @m—1) llw, (1) -
On the other hand, we have
|G (i, Prn) — G(tm—1, Pm—l)HLoo
< Km(G) [lvm—1ll oo + 1Qm—1ll o] (3.65)
< Kn(G) [[(0om—1, @m-1)lw, (1)
Hence
SN (¢ = )1 1G (), Pon(5)) = Glttm—1(5), Pro—1(5)) | e s
w1, Q) sy Jo 9" (2 = )l ds
) (=1, Quu—1)llyws 7y Jo 9" (5)l ds
< Ku(G) H(Um—l’Qm—l)le(T) llg” HLl(o,T;L2) .
Thus, we deduce from (3.62)-(3.66) that
[Em1(t) = Fn(t)]]
< 18Il e 19O oo || 5 [G(um, Pn) = G (tm—1, Pra-1)]|

1B oo g O G (tm, Prn) = G (ttm—1, Prn-1)l]
18 oo Jo 19" E= )G (um (), Pon(5)) = G (ttm—1(5), Pon—1.(5)) || oo dis
)

< 1Bl oo ()| oo (1 +2M) Kar (G) [|(0m—1, Q1) lw, (1)
+ 181l oo 19" ON Kas (G) || (vim—1, @m—1)llw, (1)
+ 18l oo Knr(G) [[(Um—1, Qm—l)le(T) HgﬁHLl(O,T;LQ)

= [1Bll o Knr(G) [Hg(O)HLoo (1+2M) +lg'(0)]| + Hg//HLl(O,T;LQ)}
X [ (vm—1, @um—1)llwy (1)

= di (M, T) [[(vm—1, Q1) llw, (1) »

where

dy (M, T) = 8]l e Kar(G) | (14200) [l g(O) | o+ [/ O+ 119"l 11 0 1:12) |-

(3.66)

(3.67)
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Thus, we deduce from (3.58) and (3.67) that
Zm(t) < (1+2]|all ) o Ivh(s)]1% ds
+Td%(M7 T) H(Um—vam—l)H%/Vl(T)

Now, we shall estimate ||Q’,, (£)]|* + |Qma(t)|* .
From the following equation

le(t) = 9(0) [G(um(t)a Pm(t)) - G(um—l(t)a Pm—l(t))]
+ Jo 9/ (t=5) [G(tm(s), Pin(5)) =G (tm—1(s), Pm—1(5))] ds,
it follows that
1Qn (D) < d2(M, T) [ (vi—1, @um—1)llwy (1) »
where dy(M, T) = Ky (G) [T l9(0) | o + 116l 3 071 -
Similarly, by
Qma(t) = J; galt (um($), P (s)) =G (um—1(s), Pm-1(s))] ds
+ [y 9 % [G(um(s),Pm(s)) =G (tum-1(5),Pm-1(s))] ds,
it follows that
|Qure Il < ds(M,T) [ (vt Qo) s ) -

where d3(M,T) = Ky (G) [”gﬂanl(O,T;L?) + (14 2M) ||9xHL1(o,T;L°°)] ‘

Combining (3.60), (3.61), (3.68), (3.70) and (3.72) we obtain
Tn(t) < M (8) = Zon(8) + Q1 ()1 + 1 Qe ()1

< (M, T) || (01, Qua) 3y ) + (142 [l o) fE i (5)ds,

where d(M,T) = \/Td?(M,T) + d3(M,T) + d2(M,T).

Using Gronwall’s lemma, we deduce from (3.73) that
() < POLT) [ 01, Q)2 ) 5BIT (1 + 2 | )]

< d*(M,T)exp[T (1 + 2 ||| o) V21, Ym € N, ¥Vt € [0, T].
On the other hand

lor (O < /m(t) < d(M,T) exp[5T (1 + 2]|a]| oo )] m-1,
[0ma ()| < /71 (1) d(M T) expl5T (1 + 2 [la] oo ym-1,

<
QN < V1t (t) < d(M, T) exp[5T (1 + 2] o) Y1,
1Qma ()l < V/Thm(t) < d(M,T) exp[3T (1 + 2 ||| o)1,

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

(V22X [|op, (0, HL2 1) =V fm(t) < d(M,T eXP[éT(l + 2 |lal| poo )] Ym-1,
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and
Ym = H(v’rerm)HWl(T) + V2A v, (0, ')||L2(0,T)
= ||U;n||L°°(O,T;L2) + llvmll oo o,y + ||Q;n”L°°(0,T;L2)
+1Qmll o 0,750y + V2 070, )l L2077 »
we deduce that
Ym < krym-1, Vm €N, (3.75)

with kp = 5d(M,T)exp [T (1+2|ef ;=) ] < 1 defined in (3.41), which
implies that for all m, p € N,

| (tm, Pm)_(um+p7 Pm-HJ)HI/Vl(T)"‘\/ﬁ Hu;n(07 ')_u;n+p
< (1 — k) Tk
It follows that {(wm, P, ul,(0,-))} is a Cauchy sequence in Wy (T') x L?(0,T).
Then there exists (u, P,€) € W1(T) x L?(0,T) such that
(U, P) — (u, P) strongly in Wy (T),
{ ul,(0,:) =& strongly in  L?(0,T).

m

0, 201y (3.76)

(3.77)

On the other hand, from (3.50), there exists a subsequence {(w,,, Pp;)} of
{(um, Py)} such that

U, — U in L*®(0,T;V) weak®,
L, —u in L*(0,7;V) weak™,
//] " . 9 (3.78)
Uy, = U in L*(0,T; L") weak™®,
up, (0,) = u"(0,-) in L*(0,T) weak,
and
u, P € Br(M), V2A[|[u"(0,)||r200,1) < M. (3.79)

It follows from (3.77)2 and (3.78)4, that £ = /(0, ).

On the other hand, by the compactness lemma of Lions ([3], p.57) and the
imbedding H2(0,T) < C*([0,T]), (3.78) leads to the existence of a subse-
quence still denoted by {(tm;, Pm;)}, such that

U, — U stronglyin  L?(Q7),
up, = ! stronglyin L?(Q7), (3.80)
U’mj (Oa ) - U(O, ) StI‘ODgly iIl Cl ({07 T]) N

O

In order to obtain the result (3.80);,2, we use the following.
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Theorem 3.4. (The compactness Lemma of Lions, [3]|, p.57) Let By, B, B;
be three Banach spaces, with

(i) By = B — By, with By, By are reflection;

(ii) The imbedding By — B is compact.
Let 1 < pg, p1, T < +o0, then

W(0,T) = {v e LP(0,T; By) : v' € LP*(0,T; B1)}
s the Banach space with respect the norm
o]l = HU”LPo(o,T;Bo) + HU/HLPI(O,T;Bl) :
Therefore, the imbedding W (0,T) — LP°(0,T; B) is compact.
Consider pg = p; = 2, By = V, B = By = L?. In this case, L%(0,T; L?) =
L?(Qr) and the imbedding
W(0,T) ={v e L*0,T;V) : v € L*(Qr)} — L*(Qr)

is compact. Hence, it follows that X7 — L?*(Qr) with the imbedding is
compact.

Putting
F(t) = f(t) — Bg(0) &G (u, P) — Bg' (0)G(u, P) -
—B [ g"(t — 5)Glu(s), P(s))ds.
By
G (tms Prm) = G(u, P)|| < K (G) || (tms Pn) = (w, P)llywry )
{ 142 6 )~ Gl P € (42K ()t P) Py

(3.8) and (3.81) imply
1Fom, (8) = F(@)]]
< 1Bl oo Kna(G) | (142M) [|g(0)[| oo + 119" (O] oo + 19" | 10,700y | (3-83)
|| (tmy—1, Py 1) = (u, P)le(T) .
Hence, combining (3.77); and (3.83) yield
F, (t) = F(t) strongly in L>(0, T} L?). (3.84)
On the other hand, by (3.77)1, we deduce that

|P(t) = Po = Jy 9(t = $)G(u(s), P(s)ds

< HP_PmHLOO(O,T;V) (3.85)
+EKm(G) 19l 10,7500y 1(wm—1, Pon1) = (w, P)llyy, (1)

— 0.
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Thus
P(t) — By — [} g(t — 5)G(u(s), P(s))ds = 0. (3.86)

Finally, passing to limit in (3.6)-(3.8) as m = m; — oo, it implies from
(3.77), (3.78), (3.84) and (3.86) that there exists (u, P) satisfying

u, P € Bp(M), V2X|[u" (0, )| r2(01) < M,

P(t) = Po+ fy 9(t — )G(u(s), P(s))ds (3.87)
(W"(t),v) + a(u(t), v) + Au'(0, )v(0)+< "(8),0) = (F(t),v),

for all v € V and the initial conditions

U(O) = ’ao, UI(O) == ’L~L1. (388)
Furthermore, by (Hi), we obtain from (3.78)2 3, (3.84) and (3.87)2 that
Uge = " + a(z)u’ — F(t) € L>®(0,T; L?), (3.89)

hence u € L>®(0,T;V N H?). Thus u € By(M) N L*°(0,T;V N H?). We also
have P € L>(0,T;V N H?). Indeed,

1Pea(0)]
Poas| + Kar(G) Ji lgza(s)]| ds + 4M Kar(G) fy 19:(3)]| < ds

1191l o @y K (G) fi ttaa(s) ]| + | P ()] ds (3.90)
19l e (opy Kt (G) fy [[[u2(s)]] + 2 l[ua(s) o)l + || P2(s)]|] ds
< DS)(M) + DD (M) [ || Pra(s)]| ds,

where
D ()
= HPOM + Ku(G) [I!gmllLl(o,T;Lg) +4M HgmHLl(O’T;Lw)}
+EM(G)T N9l Lo o) [(1+3\/§M) Hum||Loo(07T;L2)+4\/§M2] @9
DR (M) = Ku(G) (gl () + VEM gl (o)) -
By Gronwall’s inequality we obtain that
P (t)]| < D (M) exp(T D (M)). (3.92)

Thus P, € L>®(0,T;L?), hence P € L*(0,T;V N H?). It follows that P €
Br(M)N L>(0,T;V N H?). The existence proof is completed.

(ii) Uniqueness of the solution.
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Let (u;, P;), i = 1,2 be two solutions of problem (2.8), (2.9). Then (u, P),
with v = uy — ug, P = P, — P, satisfies the problem
ui, P; € Bp(M)N L*(0,T;V N H?),
V2 Hu"( ; )HLZOT <M,i=12,

[ olt — 5)C(5)ds, (3.93)
(u"( );v) + a(u(t), v) + A/ (0,£)v(0) + (au'(t), v) = (F(t), v),
for all v € V, a.e., t € (0,T), together with the initial conditions
u(0) = u/(0) =0, (3.94)
where
{ F(t) = oG () = B/ O)C(O) = B [y"(t = 9)C(s)ds,
G(t) = G(u(t), (1)) - G( ( ) Py(t)), G(O) =0.
We take v = «’ in (3.93)2 and integrate in ¢ to get
2(t) < (1+2flall ) L ()2 ds + [ I F(s)|2ds,  (3.96)
where
— o, 2 t) g 2
20) = IWOF +au ) + A [lw@ds o
> [l O + [Jua ()" = Z(2).
We set - ) ,
o) = 200 + PO + 120 509

= &/ (OI + llus (O + P01 + [ P21

and M = max [[(wi, i), ¢y » We estimate all terms of (3.95) as follows
=1,

() GO < K@) Hull + PO < 2K (C) [ /o(s)ds,
(i) GO < Knr(@) lus(®)l| + | Po(0)]] < 251(G)y/p(0),

(i) |G"(®)[| < (1 +2M) K (G) [lw/[| + 1P| + [|ull + | P[]
< 2(142M) Ky (G)v/p(t),

(iv) [Gz(@)|| < (1 +2M)Kni(G) ([fua (8] + [P (0)]])
< 2(1+2M) K (G)\/p(t), (3.99)
V) [P0 < 8K3,(G) [Hg(O)Hin+ Hg’\liz(o,w)} Jo pls)d

=m(M, T f(f
(vi) | Po(1)]? <8K2 3(6) [1+<1+2M | NgelF2(0,,20) Jy p(s)ds
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It follows from (3.95);, that
IE®)]| < 189(0) | |G ®)]| + 189 O [|G(B)]] 1
1Bl fy "t = )| | G(9)]| o ds (3.100)
< na(M)\/p(t) + na(M) [y llg"(t = 5)| v/p(s)ds,

where
n3(M) = 2K (G) ||| o [(1 4 2M) [|[g(0)| 1o + [lg"(O)]]] (3.101)
m(M) = 2Ky (G) 18] oo - :
Hence
Jy IE(s)]*ds < 2 (3 (M) + n2(M)T lg"|1320.22) ) Jo p(s)ds 10

= 0 (M, T) J{ pls)ds.
It follows from (3.96), (3.97) and (3.102), that
Z(t) < Z(t) <21+ |all g +n5(M,T)) [ p(s)ds. (3.103)
From (3.98), (3.99),.4; and (3.103), we get
p(t) < [2 (14l poo +15 (M, T) )+ (M, T) 12 (M, T)] fy pls)ds.  (3.104)

By Gronwall’s inequality we obtain that p(¢) = 0on (0,7), i.e., u = u3 —ug =
0, P =P, — P, =0, and hence the solution is unique. Passing to the limit as
p — +oo for m fixed, we obtain estimate (3.54) from (3.76). This completes
the proof of Theorem 3.3. O

Remark 3.5. Under assumptions of Theorem 3.1, the existence and unique-
ness of a local weak solution are established. If we strengthen assumption
(Hs) by (Hs) as below, it means that G(-,-) is global Lipschitz which allows
for applicability of the methods used as above, with less complicated tech-
niques in order to get existence and uniqueness of a global weak solution.
This is also an extension of the result obtained in [4].

(ﬁ5) G € C1(R?) satisfies the following conditions:
(i) Gy, 2)[ <mi (L +lyl+[2]), Vy,z € R, my > 0;
(i) [DiG(y,2)| +|DaGly, ) <L, ¥,z € R, L>0.

4. ASYMPTOTIC BEHAVIOR OF A WEAK SOLUTION AS A\ — 04

In this section, we let h > 0 and «, (8, f, g and G satisfy assumptions (H;),
(H3) — (Hs) . We also assume that

(H3) (ﬂo,iu,Po) € (V N H2) x H} x (V N H2) satisfy the compatibility

condition g, (0) = htig(0).
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We consider the following perturbed problem, where A > 0 is a small pa-
rameter:

[ (use(t),v) + a(u(t),v) + Aug (0, t)v(0) + (au(t),v)
+(89(0) 5 G(u, P),v) + (B9 (0)G(u, P), v)

(L) +(B fy ¢"(t = )G(u(s), P(s))ds,v) = (f(t),v), Yo €V,

u(0) = qo, w(0) = 1y,

P(t) = Py + [y g(t — 5)G(u(s), P(s))ds.

Then, for every A > 0, by Theorem 3.1, problem (Ly) has a unique solution
ux, Py € Bp(M)NL>0,T;VNH?), V2Mu{(0, )20 <M. (4.1)

depending on A. We shall consider asymptotic behavior of this solution as
A— 04
Theorem 4.1. Let h > 0 and (Hy), (HS), (H3) — (Hs) hold. Then
(i) Problem (Lg) corresponding to A = 0 has a unique solution (ug, Pp)
satisfying
ug, Py € Bp(M)NL> (0,T;V N H?). (4.2)

(ii) The solution (uy, Py) converges strongly in W1(T) to (ug, Py), as A —
0. Furthermore, we have the estimate

I ur — o, Py~ Po)lypy oz + VA 1150, ) — (0, ) 2 0.1

< OV, (4.3)

where C' is a positive constant independent of .

Proof. Let A € (0,1]. First, we note that a priori estimates of the linear recur-
rent sequence {(y,, Pp,)} for problem (L)) satisfy

Um, P € Br(M) N L2°(0,T;V 0 H?), V2[ulh, (0, )| 20y < M, (4.4)

where M is a constant independent of A as in the proof of Theorem 3.1. Hence,
the limit (uy, Py) of the sequence {(um, Pn)} as m — +00, in suitable function
spaces is a unique solution of problem (L)) satisfying

uy, Py € Bp(M)nL®(0,T;V NV H?), VA [u5(0, ) ooy < M. (4.5)

) =
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It follows from (4.5) that

2
(0, Mz oy = 3/ Ilun 0, )12 + [y (0,
2
< \/H“/\x”iw(o,T;LQ) + ’ ul)\a:HLOO(O,T;LQ)
2 2
VA Tur(0, 20y = VAV (0, ) + [y 0, )| + ([0, (4.6)
< M,

HG(U/MPA)”Hl(QT) < My ||D:G (U’)\aP)\)HHl(QT) < M;;
| 102G (wr, Pl g1 gy < M.

SMlv

where M always indicates a constant independent of A.
Let A\, be a sequence such that \,, — 07 as m — oo. From (4.5), (4.6),
there exists a subsequence of {(uy,,, Py,,)}, it is still so denoted, such that

(un,,, Px,,) = (uo, Po) in L*>®(0,7;V x V)  weakly*,
(u Py ) = (up, Py) in L®(0,T;V x V)  weakly*,
(u’)(m, P/’\’m) — (uf, PY) in L>*(0,T;L*x L?) weakly*,
uy,, (0,) = up(0,-) in HY0,7) weakly, (4.7)
VAmay,, (0,+) — 0o in H?(0,7) weakly, ‘
G (uy,,, Px,,) = Xo in H'(Qr) weakly,
D1G (uy,,, Py,) = x1 in HY(Qr) weakly,
[ D2G (up,,, Pr,) = x2 in H'(Qr) weakly.

By the compactness lemma of Lions ([3], p.57) and the imbeddings H'(Qr) <
L*(Qr), HY(0,T) — C°([0,T]), H?(0,T) — C*([0,T]), we can deduce from
(4.7) the existence of a subsequence still denoted by {(uy,,, Py,,)}, such that
((uy,,, P,) — (uo, Py) stronglyin L? (Qr) x L?(Qr),

(uh P ) = (up, Py) stronglyin L? (Qr) x L* (Qr),

UM, (07 ) — U[)(O, ) StI‘OIlgly in CO ([07 T]) )
VAmun,, (0,-) = no strongly in C* ([0, 77), (4.8)

G (uy,,, Px,,) = X0 strongly in L? (Qr),

D1G (uy,,, Py,.) = x1  strongly in L (Qr),

DyG (uy,,, Py,) — X2 strongly in L* (Qr).

By v Anuy,, (0,-) — no strongly in C* ([0,7]), we deduce from (4.8)3 that

no = 0. (4.9)

Then, (4.8)4 and (4.9) imply
VAmuh (0,-) = 0 strongly in C° ([0, T7) . (4.10)
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Similarly, by (4.8)1, 2, 5—7, we can to prove that
X0 = G (uo, Po) , x1 = D1G (uo, Po), x2 = D2G (uo, Po) - (4.11)

By passing to the limit, as in the proof of Theorem 3.1, we conclude that
(up, Py) is a unique solution of problem (Lg) corresponding to A = 0 satisfying
the a priori estimates (4.2). Put

u=uy—ug, P=P\—Fp,
then (u, P) satisfy the variational problem
fo (t — s)Hx(s)ds,
<U”( );v) + alu(t), v) + Auy (0,8)v(0) + (o (t), v)

(4.12)
= (F\(t),v), Yv €V,
u(0) = u/(0) =0,
where
{ FA(t) = ~Bg(O)H}(t) — B/ O)HA(!) = 8 [y g"(¢ = )Ha()ds,
Hy\(t) = G(ux(t), PA(t)) — G(u 0( )»Po( ))-
We take w = v’ in (4.12)2 and integrate over ¢ to get
S0 < (4 2lle) [ 10 IPds =23 @@ 0)ds
+ [y 1Ex(s)]1* ds,
where
S(t) = /' ()] + alu(t), u(t)) +2X [ [«/(0, 5)[* ds. (4.15)
Note that
S(t) > Hu’(t)H2 + [lua(8)|* + 2)\/0 | (0, s)‘2ds = S(t). (4.16)
Set
X(t) =St + PO + 1 P(t)] - (4.17)

By similar argument as in proof of Theorem 3.1, we can estimate X (¢) and
the results are

S(t) < 2 [|ug (0, )HL2 (0,7) (4.18)
+2 (142 [l oo + 263(M) + 2T€3 (M, T)) [ X(s)ds,

where
{ &1(M) = K (G) [2(1 + 2M) [|B9(0)]| oo + V2189 (0)]I] ,
&(M,T) = V2Ku(G) 1Bl o 19"l 207 12) »
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1P
t

< 2K3,(G) [4T(1+ 202 g (O) e + 119/ G20, | o X()ds (4 19)

< 2K%,(G) [4T(1 + 202 g (O) I + 11932 0,7.12)| Jo X ()ds,

1P ()] 2

< (Jo gt = ) IHA(S) e ds + [ llg(t = 9)ll e |2 A ([ ds) " (4.90)
< 2K3(G) [HgmH%z(o,T;L?) +(1+2M)? ||9||%2(0,T;Loo)} Jo X (s)ds.
Combining (4.17)-(4.20) yield

X () < 2M[up(0, ) 20,7y + EDMLT) fy X (s)ds, (4.21)

where (M, T) is a positive constant that depends only on M, T. Using Gron-
wall’s lemma, we obtain X (¢) < C'A and the estimate (4.3) follows. Theorem
4.1 is proved. O

5. AN ASYMPTOTIC EXPANSION OF A WEAK SOLUTION

In this section, we assume that A > 0 and «, 3, f, g and G satisfy assump-
tions (Hi), (HY), (Hs) — (Hs) . The next result gives an asymptotic expansion
of the solution (uy, Py) up to order N in \ with error AN+3
small. We make the following assumptions:

(HéN)) G € CNT3(R?) satisfies G(0,0) = 0.

We use the following notation. For a multi-index o = (aq,...,ay) € VAR
and z = (x1,...,2x5) € RY, we put

, for \ sufficiently

o = a1 +...+any, al=aol.an!, ¥ =2 2. (5.1)
First, we need the following lemma.

Lemma 5.1. Suppose m, N € N, x = (z1,...,zy) € RV, and A € R. Then
(S ax)) ™ = o wim X, (5:2)
where the coefficients \Ilgm] [z], m < i < mN depending on x = (x1,...,xN) are
defined by the formula
\Ilgm}[a;] = > %}xa, m < i< mN,
acA{™ (5.3)
A ={aeZl :|al=m, XV, ja;=1}.

Proof. The proof of this lemma is not difficult, hence we omit the details. O
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Let (ug, Pp) be a solution of problem (Lg) as in Theorem 4.1.

Py(t) = Py + [y gt — 5)G(uo(s), Po(s))ds,
(ug (1), w) + a(uo(t), w) + {oug(t), w) = (Ro(t),w) , Yw €V,
(Lo) up(0) = g, u,(0) = ay,
(Do (t), w) = (f(t), w)
—(BZz Jy 9(t — 5)G(uo(s), Po(s))ds, w), Yw eV,
ug, Py € Br(M)NL>®(0,T;V N H?).

Let us consider solutions (u;, P;), @ = 1,2,...,N, defined by the following
problems:
fo (t — 5)Ci(s)ds,
<U§'( ); >+a(uz'(t)7w)+(O¢U§(t),W>:(<I>z‘(t)vw>, Yw eV,
ui(0) = u}(0) = 0,
u;, P; € Bp(M)N L0, T;V N H?),i=2,.

(Li) (5:5)

'7N7

where

(@1(0),w) =~ (885 (J 9t = 5)C1(s)ds ) w),
(@i(t), w) = —uf_, (0, )w(0) (5.6)

Ci(t) =YL 4D Gug, Py) Y W wlp) i =1, N,
JEA() (5.7)
Ai(v)=Ai(m,72) ={j €24y :m1 <j< N,y <i—j< Ny},

with v = (uy,...,un), P = (P, ..., Px) . Then, we have the following theorem.

Theorem 5.2. Let (Hy), (H}), (H3), (Hy), (HE()N)) hold. Then, there exist
positive constants M and T such that, for every A with 0 < A < 1, problem
(L)) has a unique solution (uy, Py) satisfying the asymptotic estimation up to
order N as follows

N i N ;
_ S Z,)\Z7 Py, — v PZ)\Z ‘
H <’U,)\ Zz—O U A ZZ—O ) W(T) (58)

VA0, = S w0 x|, < oaVh

where C' is a positive constant independent of A and (u;, Py), i =0, 1,...,N,
are the solutions of problems (Lo), (L;), i = 1, ..., N, respectively.
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Proof. Let (u, P) = (uy, Py) be a unique solution of (Ly). Then (v,Q), with

v:u—zi]ioui)\izu—UEu—uo—Ul, (5.9)
Q=P-Y PN =P-n=P-PR—n, '
satisfies the problem
( = [J9(t =) [Gv +U,Q +n) — G(U,n) ds + Ex(t),
< () >+a(()7w)+<av'(t),w>
= —\/'(0,t)w(0)
(5.10)

~ (85 (Jy 9t = 9) (G0 +U.Q +n) — GU )] ds ) ,w)
+H(Ex(t),w), Yw €V,

( v(0) ='(0) =0,
where
[ (Ex(t),w) ,
= —AU{(0,)w(0) — S, N (®y(t), w)

- <ﬁ§% (fot t=5) [G(uo+Ur, Po+m)—G(uo, Po)] dS) 7w>7 (5.11)

fO t—S U0+U1,P0+771) G(UO,P())] ds
-y, P(t)

Then, we have the following lemma.

Lemma 5.3. Let (Hy), (H}), (Hs), (Hy), (HN)) hold. Then
(i) 2 [1{Ex(5),v'(s))ds < DpA2NHL 4 X [T [0/(0, )] ds
+3 fo |V (s H ds,
< ClN)\N+1

< CQN)\N+17

() || Bre 512

(iii) HE'A

oo 0.:22)
HLOO(O,T;L2)

for all A € (0,1], where Dr, Cin, Con, C3n are constants depending only on

N, T, G and |luill oo ripr2) » 164 oty » 1Pl oozt » I oozt
(i=0,1,..,N).

Proof of Lemma 5.3. (i) In the case of N = 1, the proof of Lemma 5.3 is easy,
hence we omit the details.
Now, we consider N > 2. Putting

{ U=uo+ U, Uy =N u),

A (5.13)
n=FPy+mn, m= Zfil P
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By using Taylor’s expansion of the function G(U,n) = G(ug + U1, Py + m1)
around the point (ug, Py) up to order N, we obtain

G(uo+ U, Py +m) = Guo, Po) + > ZDVG(ug, Po)Uy" n)?
1<y|<N (5.14)
+)\N+1R§\}') [G) up, PO) Ul) 771])

where
)‘N+1R§\17) [G7 Uo, PO» U17 7]1]
=y NEgnge (11— 0)NDVG(ug + UL, Py + Onp)dg. (5:15)

!
=N+t

By Lemma 5.1, we obtain from (5.14), after some rearrangements in the order
of A, that

G(ug + Ur, Py +m) — Glug, o) = SN, Ci(t)A + ANHRP (1), (5.16)
where C;(t), i =1,2,..., N, defined by (5.7) and

ANH R (1) = AWHRD(G, ug, Py, Uy, i

= )\NJrle\l[) [Gvu(]:PUaUlvnl] (517)
+ Y ADG, P) SN, S e el
1<|y[EN JEA(v)

Combining (Lo), (L;), (5.6), (5.7), (5.11) and (5.16) yield

(Ex(t), w)

= ANV (0, H)w(0) — ANFL <559722 (f(f g(t — s)RE@(s)ds) ’w> ’ (5.18)
Ex(t) = AV* [7 gt — )RR (s)ds. (5.19)

By the boundedness of the functions (u;, F;), (uj, P!), i = 0,1,...,N, in the

(2
function space W1 (T), we obtain after some lengthy calculation from (5.15)

and (5.17), that

8 p2)
ox " "N

L —

§€0N7

Lo (0,T;L°) ‘ HL“(QT;L“) (5.20)

where Coy is a constant depending only on N, T, G and l[will oo (0,111

1P oo ity » (8= 0,1, N), | ls‘u|p<M|D“/G(3/, 2)|, |v] < N +2. By (5.18)
Yl 121>
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and (5.20), we deduce that
2 U{EA(s), v/ (s))ds
<N (0,) iy + A S 10, 5) 2 ds
—2
220428112 To [la(0) 3w + 116/ 0) e + 119”1210
+3 fo |V (s H ds
<D /\2N+1+)\f 1v/(0, 5)|* ds—|—3fOHv s)|1% ds,
where
Dy = iy (0,) o
2 / 2 "2
18I Co [0 + 19OV + 19”1010
(ii) By (5.19), we deduce that
Exe(t) = ANHL [T g (¢ — )R (s)ds + ANHL [T g(t — 5) 2 R (s)ds.
Thus
5 < ANHL [Py H (2)H d
[Exa@®)]| < A [ llga(t = 9)|l || Ry (L;; oz:ze0y ¥
o
0 gt |28 e

< Con gl .1 0,T;L2 + 92l 1 0,T;L2 ANHL = Op AL
( ) ( )

(iii) Similary, by (5.19) we have
Eg\(t):)\N‘H{ —}—ft 't—sR()( )ds}.
Thus

CIEa il lg@)+ fy lg't = s)l| ds]

< Con AV gl + 119l 1 o750 | = Can AV,

This implies (5.12), Lemma 5.3 follows.

LOOOTLOO)[
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(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

O

Lemma 5.3 is the key to obtain the asymptotic expansion of a weak solution
(uy, Py) of order N+1 in a small parameter \. Indeed, we take w = v’ in (5.10);
and after integration over ¢, we find without difficulty from Lemma 5.3, that

S(t) < DpAPNHL 4 (34 2||al| o) Jo [V (5)])* ds + J,
where
5’( ) = [[v'(¢ )H2 + va( ||2+>\f(flv’ 0,5)|* ds,
2f0 <ﬂ (fy o Gw+U,Q+n)—G(U,n)] dr),fu/(s)>ds.

(5.27)

(5.28)
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Put
a(t) =St + 1M + Q). (5.29)

Apply similar methods as in above sections, we can estimate all the terms of
o(t) and obtain

o(t) < m(M,T)NN+ 4 (M, T) [} o(s)ds, (5.30)

where 71 (M, T), n2(M,T') are positive constant depending only on M, T'. Using
Gronwall’s lemma, we get (5.8). Theorem 5.2 is proved. O

Appendix. Proof of Lemma 3.2.
(i) Prove that [|G(um—1(t), Pm-1(t))|| 0 < Kum(G). By

it ) e < Tttt @)y < ot oy < M )
a
and || Prn—1(t)[| oo < [[Pm—1(t)[ly < ||Pm—1HLoo(o,T;V) <M,

we deduce that

Gt-1(8), Puca )] < [ Glooararsy < Kn(G), ae. €9 (a2)
Thus (i) holds.
(ii) Prove that |G (tm—1(t), Pm_1(t)[| oo < HG@O,PO)HLOO AT MK (G).
Let (iii) holds. Then

G (um—1(t), Pn-1(t)) = G(iio, Po) + [y Z2G(tm-1(s), Pm-1(s))ds.  (a3)
Hence, by (iii) and (a3), we obtain

1G (um—1(8), Brn1()) [l oo

G(tio, P) Lo T o |G (um-1(5), Pra—1(5))|| 1o ds
G (i, By) ot [ 2M K (G)ds
G (g, Py) L F2TMEN(G).

IN

(ad)

IN

IN

Thus (ii) holds.
(iii) Prove that H%G(um,l(t), Pm,l(t))HLoo <2M Ky (G).
We have
G (um1(t), Pra (1))
= D1G(tun-1(t), Pr—1(t))tty, 1 (t) + D2G(um—1(t), Pona1()) Py, ().

By
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Hu'lm—l(t)HLOO = H“/ 1 (1) HV < H“m 1HL°° o1v) S M,
1P @l < Na @y < [Pl <M
|D1G(um 1() (t))’ <K ( )
|D2G(um—1(t), Pm-1(t))| < Km(G),
we deduce that
| 5 G (tm—1(t), P1(t))] < Kni(G) [[ufy, 1 ()] + | P,y (2)]] (a7)
< IMEKy(G).

Thus (iii) holds.
(iv) Prove that

s

57Clum- 1<t>,Pm_1<t>>H < || D160, oy + DoGlio, Po)g(0)G(ao, Po)|

+2TM (14 2M) K (G).
Let (vii) holds. We have

%G(um—l(t)7 P 1<t))
= %G(um—l(t) P ‘t 0"‘]3 952 um_l(S),Pm_l(S))dS
= DlG(ﬂo, Po)ﬂl + D2G(u07 PO) (O)G(UU, pO)

+ fy Z2 G (tm-1(5), Pn1(s))ds.

Hence, by (vii) and (a8), we obtain

(a8)

15 G (tm—1(t), P (1))
< DlG(’fLQ, ]So)ﬂl + DQG(ﬂo, po)g(O)G(ﬂo, P@)
t
Js |
< DlG(ﬂg, 150)?11 + DQG(ﬁo, Po)g(O)G(ﬂo, ]50)
+ [L2M (14 2M) Ky (G)ds
< || D1G (g, Po)iin + D2G (g, Py)g(0)G (o, Po)
+2TM (1 +2M) Ky (G)ds.
Thus (iv) holds.
(v) Prove that H%G(um,l(t),Pm,l(t))H < 2M K (G). We have
%G(Um_l, Pm—l)
Oum—1 OPpn—1
= DlG(umflamel) 9% +D2G(Um,1,Pm,1) o

2 Gt 1 (5), Pm_l(s))H ds

_l’_

(a9)

(al0)
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By
Oy —
|25 1)) = M1 )y < im0y < M, .
a
0P —
| 2220 = 11Ol < 1Pl iz < M.
we deduce that
o) ou OP,
B0 0 O] < 5@ | 2320] 4o
|G 1 (1), Pua )| < Kui(@) | 1 [ ———

< 2MKy(G).

Thus (v) holds.
(vi) Prove that

Ox
b
We have

DG (um-1(t), Pm1(t))

= &G0, Po) + [y & [5G (wm—1(s), Pru1(s))] ds;

G (1 (t), Pm_l(t))H < cha(ag, Po)|| +2TM (1 +2M) K (G).

|2 G (um—1(t), Pm1(t))

_ - t
< |26t Bo)|| + fi 1 [2:Gwm-1(5), Pu-a(s))] | ds:
GQ [a@ Um 1, Pm— 1)] (313)
= % [DlG(um,l,mel)a"m 1} + 3 [DzG(um 1y P 1)81)5';1}
ou!
= D1G(um—1, Pn-1)—% Sl 4 Dy G (U 1,Pm71)u;1_18“5;’1
+D12G<Um—17pm 1)P7/n 1du5ZU !
8P
+DoG (Um—1, Pm_1) L 4 Doy G(tm—1, P )il 2=t
+D22G<Um—17pm—1)P7/n 18]?9”; !
8 [0
5% [55G (um—1, P 1)]H
ou!
< Ku(G) H ! aum 1 +H - lauénx_l }
or; aP oP, (a14)
o0l i 5

< 2M(1 +2M) K\ (G).
Hence, by (al3) and (al4), we obtain
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|G (-1 (2), Pra ()]

JUE t
a%G(UO,Po)H + Jo 155 [52Gum—1(s), Pm-1(5))] || ds (al5)

< H%G(ao, PO)H 4 OTM(1 + 2M) Ky (G).

<

Thus (vi) holds.
(vii) Prove that Hg—;G(um_l(t), Pm_l(t))H < 2M (1 4+ 2M) K1 (G). We have

%G(Um—la Pm—l)

2
= D1G(tm—1, Pr—1)ul)y_y + D11G(tm—1, Pm—1) |ul,_4|

+D12G (-1, Pm—l)an,lugL,l (al6)
+D2G(um_1, Pm—l)Pﬁlfl + DglG(um_l, Pm—l)u;nflpr,nfl

2

Y

+D22G(Um—1, Ppn—1) ‘Pr/nfl

we deduce that
H%G(um—lapm—l)H

< Kt (@) [l + s | + 121 ] (a17)
+Ku () [ Pl | + s P | + 1P P[]
< 2M(1+ 2M) K ().

Thus (vii) holds.
(viii) Prove that

0x?

< Kar(G) [4V2M? + (14 2v2M ) (| At ()] + [ AP-1(8)])]

| s Glumalo). s )

We have

2
%G(um—la Pm—l)

O —1
ox

= D1G(um—1, Pm—1)Atpm—1 + D11G(tm—1, Pm—1)

+D12G(Um—1a Pm—l) 8]:,5;_1 8u5;_1 (a18)

+D2G (-1, Pr1) AP -1 + D21 G (-1, mel)‘/’“g;;l a%”;_l

2
+Do2G(tm—1, Pp—1) ‘8%”{1

)
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we deduce that

|

8—2(}'(um,1, Pm,l)H

Ox?
aum OPpy 1 O —
< Ku(G >[HAum 1 + || 2 H+H : a;}
(al9)
+Kum(G) {HAPm 1l + ’ T ‘ = m
<2M (14 2M) Ky (G).
Thus (viii) holds. The Lemma 3.2 is proved completely. O
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