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1. Introduction

During the last decade, fractional differential equations (FDE) have a major
role in many fields of study accomplished by mathematicians, physician, physi-
cists, and engineers. They have used to evolve mathematical modeling, many
physical applications, and engineering disciplines such as higher education in-
formation power method [4], hand foot disease identified method [6], neural
network design [30], medical science [19, 32, 33], Dynamics analysis of Romeo
and Juliet love affairs [2], Maxwell nanofluid [15], hybrid nanofluid [24], chem-
ical kinetics [13], sensitivity analysis of pine wilt disease [14], chaotic system
[3]. Examine the stability findings for both infected and non-infected equilib-
rium points in relation to HIV (human immunodeficiency virus) infection and
tumor growth model with fractional order [27].

Differential equations of fractional order are a better mathematical tool
for describing certain real systems. Engineering applications in fractional or-
der [23] numerous academics have recently used a variety of fixed point the-
orems to prove some intriguing results regarding the existence of solutions
for FDEs. Next, new primitive differential conditions with various promo-
tions, such as Riemann-Liouville, Caputo, Hadamard, Hilfer-Hadamard, and
Grunwald-Letnikov, will be implemented (see [5, 10, 11, 22]). The nonlinear
problem of FDEs with indispensable limit conditions, which uses Banach’s
constriction standard and Leray Schaefer’s option fixed point hypothesis as
support, is one of the notable models. For impulsive fractional equations with
nonlocal circumstances, Zhang et al. provided the existence and uniqueness
of mild solutions in [31]. In [1], Guida et al. established that a class of impul-
sive Hilfer fractional coupled systems have mild solutions. In a non-compact
semigroup, Hilal et al. [8] investigated whether impulsive fractional integro-
differential equations exist. In [12, 25], Pandiyammal et al. studied existence
of fractional order problem using Atangana Baleanu derivative with depen-
dence on the Lipschitz first derivative.

Motivated by the above mentioned works and Wahash et al [29], this article
examines the existence of solutions for the following impulsive Caputo FDEs
with a class of initial value problems in Banach space.

[D̂C ]µḠ(a) = χ(a, Ḡ(a), Ḡ
′
(a, Ḡ(a))), a ∈ I = [0, T ], a 6= ak,

∆Ḡ
∣∣
a=ak

= Ik(Ḡ(a−k )),

Ḡ(0) = Ḡ0,

(1.1)

where, [D̂C ]µḠ(a) is the Caputo derivative, χ : I × R × R → R, Ik : R → R,
0 < µ ≤ 1, k ∈ Nm, Nm = {1, 2, . . . ,m}, Ḡ0 ∈ R, 0 = a0 = a1 < · · · <
am < am+1 = T , ∆Ḡ

∣∣
a=ak

= Ḡ(a+
k )− Ḡ(a−k ), Ḡ(a+

k ) = limh→0+ Ḡ(ak +h) and
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Ḡ(a−k ) = limh→0− Ḡ(ak + h), R), χ(a, Ḡ(a), Ḡ
′
(a, Ḡ(a))) = 0.

Consider Ḡ
′
(a, Ḡ(a)) = d̂Ḡ(a). Then (1.1) becomes

[D̂C ]µḠ(a) = χ(a, Ḡ(a), d̂Ḡ(a)) a ∈ I = [0, T ], a 6= ak,

∆Ḡ
∣∣
a=ak

= Ik(Ḡ(a−k )),

Ḡ(0) = Ḡ0.

(1.2)

Initially, this paper aims to investigate the possibility that the equation (1.2)
has solutions by using various fixed point theorems. In addition, it discusses
the issue with nonlocal situations.

This paper is organized as five parts. Section 2 reviews a few foundational
concepts and lemmas from fractional calculus that are necessary for the fol-
lowing section. The existence of solutions for initial value problem (IVP) for
a fractional derivative (FD) results relying on various fixed point theorems for
the problem (1.2) are proved in Section 3. The presence of nonlocal impulsive
FDEs in section 4. We conclude by providing an example.

2. Facts

This section familiarises with some notations, definitions, fundamental lem-
mas, and theorems here. These are employed in the following section of this
paper. C(I,R) means set of all continuous functions from I into R in the
Banach space with the norm

‖Ḡ‖∞ = sup
a∈I

{
|Ḡ(a)|

}
. (2.1)

Definition 2.1. ([18, 26]) The integral of the function χ ∈ L1(L,R+) with
fractional order µ ∈ R+ is defined by

Iµαχ(t) =
1

Φ(µ)

∫ a

α
(a− b)µ−1χ(b)db, (2.2)

where, Φ represents Gamma function, when α = 0, we get Iµχ(a) = [χ∗ϕµ](a),

where ϕµ(a) = aµ−1

Φ(µ) for a > 0, and ϕµ(a) = 0 for a ≤ 0, and ϕµ tends to δ(a),

the value taken by the delta function at a, as µ → 0.

Definition 2.2. ([18, 26]) For a given function χ ∈ [α, β] = L, the µth R-L
fractional order derivative of χ, is given as

(Dµ
α+χ)(a) =

1

Φ(n− µ)

(
d

da

)n ∫ a

α
(a− b)n−µ−1χ(b)db, (2.3)

where, n = [µ] + 1 and [µ] is the integer part of µ.
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Definition 2.3. ([17]) For a function χ ∈ L, the Caputo FD of order µ of χ,
is defined as

([D̂C ]µα+χ)(a) =
1

Φ(n− µ)

∫ a

α
(a− b)n−µ−1χn(b)db, (2.4)

where n = [µ] + 1.

Proposition 2.4. ([20, 21]) χ′(Ḡ) ∈ D satisfy the Lipschitz condition. That
is, there exists a constant η such that

‖χ′(Ḡ)− χ′(H̄)‖ ≤ η (‖Ḡ− H̄‖), ∀ Ḡ, H̄ ∈ D. (2.5)

3. Main Results

This section aims to solve problems referred in (1.2). It first brings here the
space.

CP (I,R) =
{
Ḡ : I → R : Ḡ ∈ C((ak, ak+1],R), k ∈Wm, and there exist

Ḡ(a−k ) and Ḡ(a+
k ) with Ḡ(a−k ) = Ḡ(ak)

}
, (3.1)

where Wm = {0, 1, . . . ,m}. The indicated set is a Banach space beside the
norm

‖Ḡ‖PC = sup
a∈I
|Ḡ(a)|. (3.2)

Set

I
′

= [0, T ] \ {a1, a2, . . . , am} .

Definition 3.1. Ḡ ∈ CP (I,R) is a solution of (1.2) if its µ-derivative exists

on I
′

and it satisfies following equations:

[D̂C ]µḠ(a) = χ(a, Ḡ(a), d̂Ḡ(a)) on I
′
, (3.3)

∆Ḡ
∣∣
a=ak

= Ik(Ḡ(a−k )), k ∈ Nm, (3.4)

Ḡ(0) = Ḡ0.

The next two lemmas offer evidence to support the conclusion that the
equation (1.2) is solvable.

Lemma 3.2. ([16]) Let µ > 0. Then the differential equation

[D̂C ]µχ(a) = 0 (3.5)

has solution χ(a) = a0 + a1a + a2a
2 + · · · + an−1a

n−1, ai ∈ R, i ∈ Wn−1, n =
[µ] + 1.



Study of impulsive problem with Caputo fractional derivative 319

Lemma 3.3. ([16]) Let µ > 0. Then

Iµ cDµh(a) = h(a) + a0 + a1a+ a2a
2 + · · ·+ an−1a

n−1

for some ai ∈ R, i ∈Wn−1, n = [µ] + 1.

Lemma 3.4. Let 0 < µ ≤ 1, k ∈ Nm and let χ : I → R. A function Ḡ is a
solution of the fractional integral equation

Ḡ(a) =


Ḡ0 + 1

Φ(µ)

∫ a
0 (a− b)µ−1χ(b)db, if a ∈ [0, a1],

Ḡ0 + 1
Φ(µ)

∑g
i=1

∫ ai
ai−1

(ai − b)µ−1χ(b)db

+ 1
Φ(µ)

∫ a
ak

(a− b)µ−1χ(b)db+
∑k

i=1 Ii(Ḡ(a−i )), if a ∈ (ak, ak+1]

(3.6)
if and ony if the fractional IVP solution is Ḡ,

[D̂C ]µḠ(a) = χ(a), a ∈ I ′ ,
∆Ḡ|a=ak = Ik(Ḡ(a−k )), k ∈ Nm,
Ḡ(0) = Ḡ0.

(3.7)

Proof. Suppose Ḡ satisfies (3.7). If a ∈ [0, a1], then

[D̂C ]µḠ(a) = χ(a).

From Lemma 3.3,

Ḡ(a) = Ḡ0 +
1

Φ(µ)

∫ a

0
(a− b)µ−1χ(b)db.

For a ∈ (a1, a2],

Ḡ(a) = Ḡ(a+
1 ) +

1

Φ(µ)

∫ a

a1

(a− b)µ−1χ(b)db

= ∆Ḡ|a=a1 + Ḡ(a−1 )
1

Φ(µ)

∫ a

a1

(a− b)µ−1χ(b)db

= I1(Ḡ(a−1 )) + Ḡ0 +
1

Φ(µ)

∫ a1

0
(a1 − b)µ−1χ(b)db

+
1

Φ(µ)

∫ a

a1

(a− b)µ−1χ(b)db.
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Suppose a ∈ (a2, a3]. Then,

Ḡ(a) = Ḡ(a+
2 ) +

1

Φ(µ)

∫ a

a2

(a− b)µ−1χ(b)db

= ∆Ḡ|t=a2 + Ḡ(a−2 )
1

Φ(µ)

∫ a

a2

(a− b)µ−1χ(b)db

= I2(Ḡ(a−2 )) + I1(Ḡ(a−1 )) + Ḡ0 +
1

Φ(µ)

∫ a1

0
(a1 − b)µ−1χ(b)db

+
1

Φ(µ)

∫ a2

a1

(a2 − b)µ−1χ(b)db+
1

Φ(µ)

∫ a

a2

(a− b)µ−1χ(b)db.

Now a ∈ (ak, ak+1]. Furthermore, from Lemma 3.3, we arrive at the equation
(3.6).

Conversely, suppose Ḡ satisfies (3.6). Choose a ∈ [0, a1]. Since the left

inverse of Iµ is [D̂C ]µ and Ḡ0 = Ḡ(0), it can be derived that

[DC ]µḠ(a) = χ(a), ∀ a ∈ [0, a1].

Let a ∈ [ak, ak+1), k ∈ Nm. Then,

[D̂C ]µḠ(a) = χ(a), ∀ a ∈ [ak, ak+1).

Thus we can get
∆Ḡ|a=ak = Ik(Ḡ(a−k )), ∈ Nm.

�

The following assumptions are required to demonstrate the Banach fixed
point theorem.

A1. Suppose Ḡ ∈ C[I,R] and χ : C(L) × R × R → R) is continuous and
there exist constants M1 > 0,M2 > 0 and M > 0 such that

‖χ(a, Ḡ1, H̄1)− χ(a, Ḡ2, H̄2)‖ ≤M1(‖Ḡ1 − Ḡ2‖+ ‖H̄1 − H̄2‖) (3.8)

for all Ḡ1, H̄1, Ḡ2, H̄2 ∈ Y , where Y = C[R, X] is the set of all con-
tinuous functions defined from R to the Banach spaces X. M2 =
maxa∈R ‖χ(a, 0, 0)‖ and B = max{M1,M2}.

A2. Let Ḡ′ ∈ C(L) satisfy the Lipschitz condition, that is, there exist
constants N1,N2 and N such that

‖d̂(a, Ḡ)− d̂(a, H̄)‖ ≤ N1(‖Ḡ− H̄‖) (3.9)

for all Ḡ, H̄ in Y , N2 = maxa∈D ‖d̂(a, 0)‖ and N = max{N1,N2}.
A3. There exists a fixed real number $ > 0 satisfying the condition

|Ik(Ḡ)− Ik(H̄)| ≤ $|Ḡ− H̄|
for all Ḡ, H̄ ∈ R and k ∈ Nm.
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Lemma 3.5. Assume A1 and A2. Then, for all a ∈ R and Ḡ, H̄ ∈ Y ,

‖d̂Ḡ(a)‖ ≤ a(N1‖Ḡ‖+ N2), ‖d̂Ḡ(a)− d̂H̄(a)‖ ≤ Na‖Ḡ− H̄‖.

Theorem 3.6. Suppose the conditions A1, A2 and A3 are satisfied by Ḡ(a) ∈
C(L) and χ ∈ C(L× R× R,R). If χ(a, Ḡ(a), d̂Ḡ(a)) = 0 and[Tµ$(m+ 1)

Φ(µ+ 1)
+m$1

]
< 1, (3.10)

then there is a unique solution for (1.2).

Proof. Let the operator Π : CP (I,R)→ CP (I,R) and we define

Π(Ḡ)(a) = Ḡ0 +
1

Φ(µ)

∑
0<ak<a

∫ ak

ak−1

(ak − b)µ−1χ(b, u(b), d̂p(b))db

+
1

Φ(µ)

∫ a

ak

(a− b)µ−1χ(b, Ḡ(b), d̂Ḡ(b))db

+
∑

0<ak<a

Ik(Ḡ(a−k )). (3.11)

It is clear that the fixed points of Π provide solutions to the problem. The
Banach contraction principle can be used to show that Π has a fixed point.
Therefore, it is to be demonstrated that Π is a contraction. Let Ḡ, H̄ ∈
CP (I,R) and a ∈ I. Then, we have

|Π(Ḡ)(b)−Π(H̄)(b)|

≤ 1

Φ(µ)

∑
0<ag<a

∫ ak

ak−1

(ak − b)µ−1|χ(b, Ḡ(b), d̂Ḡ(b))− χ(b, H̄(b), d̂H̄(b))|db

+
1

Φ(µ)

∫ a

ak

(a− b)µ−1|χ(b, Ḡ(b), d̂Ḡ(b))− χ(b, H̄(b), d̂H̄(b))|db

+
∑

0<ak<a

|Ik(Ḡ(a−k ))− Ik(Ḡ(a−k ))|

≤ 1

Φ(µ)

∑
0<ak<a

∫ ak

ak−1

(ak − b)µ−1(M‖Ḡ− H̄‖+ Na‖Ḡ− H̄‖)db

+
1

Φ(µ)

∫ a

ak

(a− b)µ−1(M‖Ḡ− H̄‖+ Na‖Ḡ− H̄‖)db

+
∑

0<ak<a

$1‖Ḡ− H̄‖
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≤ $

Φ(µ)

∑
0<ak<a

∫ ak

ak−1

(ak − b)µ−1‖Ḡ− H̄‖∞db

+
$

Φ(µ)

∫ a

ak

(a− b)µ−1‖Ḡ− H̄‖∞db+
∑

0<ak<a

$1‖Ḡ− H̄‖∞

≤ m$Tµ

Φ(µ+ 1)
‖Ḡ− H̄‖∞ +

Tµ$

Φ(µ+ 1)
‖Ḡ− H̄‖∞ +m$1‖Ḡ− H̄‖∞.

Therefore,

‖Π(Ḡ)−Π(H̄)‖ ≤
[Tµ$(m+ 1)

Φ(µ+ 1)
+m$1

]
‖Ḡ− H̄‖∞,

Π is a contraction according to the equation (3.10). Therefore, we infer that
Π is a solution of (1.2) and it possesses a fixed point from the Banach fixed
point theorem. �

Theorem 3.7. Assume that

A4. Function χ ∈ (I × R× R,R) is continuous.
A5. There exists a constant ` such that

|χ(a, Ḡ(a), d̂Ḡ(a))| ≤ `, ∀ a ∈ I, Ḡ ∈ R. (3.12)

A6. The function Ik : R → R are continuous and there exists a constant
`∗ > 0 such that

|Ik(Ḡ)| ≤ `∗, ∀ Ḡ ∈ R, k ∈ Nm. (3.13)

Then the problem (1.2) has at least one solution on J.

Proof. We will use Schaefer’s fixed point theorem to demonstrate that Π has
a fixed point. This proof consists four steps.

Step 1 : Π is continuous. Let
{
Ḡn
}

be a sequence such that Ḡn → Ḡ in

PC(I × R × R,R), n = 1, 2, 3..... Then, for each a ∈ I with limn→Ḡ ‖Ḡn −
Ḡ‖ = 0, we get limn→Ḡ Ḡn(a) = Ḡ(a), for a ∈ I. Thus by A1, we have

limn→∞ χ(a, Ḡn(a), d̂Ḡn(a)) = χ(a, Ḡ(a), d̂Ḡ(a)) for a ∈ `. We get that

|Π(Ḡn)(a)−Π(Ḡ)(a)|

≤ 1

Φ(µ)

∑
0<ak<a

∫ ak

ak−1

(ak − b)µ−1|χ(b, Ḡn(b), d̂Ḡn(b))− χ(b, Ḡ(b), d̂Ḡ(b))|db

+
1

Φ(µ)

∫ a

ak

(a− b)µ−1|χ(b, Ḡn(b), d̂Ḡn(b))− χ(b, Ḡ(b), d̂Ḡ(b))|db

+
∑

0<ak<a

|Ik(Ḡn(a−k ))− Ik(Ḡ(a−k ))|.
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Here, χ and Ik, k ∈ Nm are continuous and we have

‖Π(Ḡn)−Π(Ḡ)‖∞ → 0 as n→∞. (3.14)

Step 2 : Since Π maps I × R × R to bounded sets, and since A6 and A7

hold, it suffices to demonstrate that for any σ∗ > 0 and there exists a constant
∧ > 0 satisfying the condition ‖Π(Ḡ)‖∞ ≤ ∧, for each Ḡ ∈ Bσ∗ = {Ḡ ∈
CP (I,R) : ‖Ḡ‖∞ ≤ σ∗} and for each a ∈ I,

|Π(Ḡ)(a)| ≤ |Ḡ0|+
1

Φ(µ)

∑
0<ak<a

∫ ak

ak−1
(ak − b)µ−1χ(b, Ḡ(b), d̂Ḡ(b))db

+
1

Φ(µ)

∫ a

ak

(a− b)µ−1χ(b, Ḡ(b), d̂Ḡ(b))db+
∑

0<ak<a

Ik(Ḡ(a−k ))

≤ |Ḡ0|+
`Tµ(m+ 1)

Φ(µ+ 1)
+m`∗ = ∧.

Step 3 : Here the operator Π maps into equicontinuous sets of PC( I×R×
R,R). Consider a bounded set ε1, ε2 ∈ I, ε1 < ε2, Bσ∗ of PC(I ×R×R,R), as
in Step 2. Let Ḡ ∈ Bσ∗ . Then,

|Π(Ḡ)(ε2)−Π(Ḡ)(ε2)|

≤ 1

Φ(µ)

∫ ε1

0
|(ε2 − b)µ−1 − (ε1 − b)µ−1|χ(b, Ḡ(b), d̂p(b))|db

+
1

Φ(µ)

∫ ε2

ε1

|(ε2 − s)µ−1|χ(b, Ḡ(b), d̂Ḡ(b))|db+
∑

0<ak<ε2−ε1

|Ik(Ḡ(a−k ))|.

≤ `

Φ(µ− 1)
[2(ε2 − ε1)µ + εµ2 − ε

µ
1 ] +

∑
0<ak<ε2−ε1

|Ik(Ḡ(a−k ))|.

As ε2 → ε1, the RHS of the equation tends to 0. Next, we draw the conclusion
that the operator Π is completely continuous which is proved with Steps 1
through 3 as well as the Arzelá-Ascoli theorem.

Step 4 : Now, claim

δ = {Ḡ ∈ CP (I,R) : Ḡ = ωΠ(Ḡ) for some 0 < ω < 1} is bounded.

Let Ḡ ∈ δ, for each a ∈ I. Then Ḡ = ωΠ(Ḡ) for some 0 < ω < 1, we have

Ḡ(a) = ωḠ0 +
ω

Φ(µ)

∑
0<ak<a

∫ ak

ak−1

(ak − b)µ−1χ(b, Ḡ(b), d̂Ḡ(b))db

+
ω

Φ(µ)

∫ a

ak

(a− b)µ−1χ(b, Ḡ(b), d̂Ḡ(b))db+ ω
∑

0<ak<a

Ik(u(I−k )).
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This equality together with A6 and A7 (from Step 2) imply that for every
a ∈ I,

|Ḡ(a)| ≤ |Ḡ0|+
`Tµm

Φ(µ+ 1)
+

`Tµ

Φ(µ+ 1)
+m`∗ = ∧.

Thus, δ is bounded. With the use of Schaefer’s fixed point theorem, it can be
concluded that Π has a fixed point and this point is a solution of the problem
(1.2). �

Using the theorem, and by applying non-linear alternative of Leray-Schauder
type, the fixed points can be found.

Theorem 3.8. If A4 and the following conditions hold

A7. There exist θχ ∈ C(I,R+), ξ : R+ ∪{0} → R+ and Ψ : R+ ∪{0} → R+

continuous and non-decreasing such that

|χ(a, x(a), d̂x(a))| ≤ θχ(a)ξ(|x|)Ψ(|d̂x|), ∀ a ∈ I, x ∈ R. (3.15)

A8. There exist ξ∗ : R+ ∪ {0} → R+ continuous and non-decreasing such
that

|Ik(x)| ≤ ξ∗(|x|), ∀ x ∈ R. (3.16)

A9. There exists a number N > 0 such that

N

|Ḡ0|+N1ξ(N)Ψ(N)
(m+1)Tµθ0χΨ0

Φ(µ+1) +N2ξ(N)
(m+1)Tµθ0χΨ0

Φ(µ+1) +mξ∗(N)
> 1,

(3.17)
where θ0

χ = sup {θχ(a) : a ∈ I} and Ψ0 = sup {Ψ(a) : a ∈ I}.

Then (1.2) has at least one solution on I.

Proof. Let us take the operator Π defined in Theorem 3.6. We shall prove that
Π is continuous & completely continuous. For λ ∈ [0, 1], let Ḡ(a) = λ(Π(Ḡ))(a)
for all a ∈ I satisfied for each a ∈ I. Then from A8 and A9 hold. We have
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|Ḡ(a)| ≤ |Ḡ0|+ ξ(‖Ḡ‖∞)Ψ(a(N1‖Ḡ‖∞ + N2))
mTµθ0

χ

Φ(µ+ 1)

+ ξ(‖Ḡ‖∞)Ψ(a(N1‖Ḡ‖∞ + N2))
Tµθ0

χ

Φ(µ+ 1)
+mξ∗(‖Ḡ‖∞)

≤ |Ḡ0|+ ξ(‖Ḡ‖∞)(N1Ψ(a)Ψ(‖Ḡ‖∞) + N2Ψ(a))
mTµθ0

χ

Φ(µ+ 1)

+ ξ(‖Ḡ‖∞)(N1Ψ(a)Ψ(‖Ḡ‖∞) + N2Ψ(a))
Tµθ0

χ

Φ(µ+ 1)
+mξ∗(‖Ḡ‖∞)

≤ |Ḡ0|+ N1ξ(‖Ḡ‖∞)Ψ(‖Ḡ‖∞)
mTµθ0

χΨ0

Φ(µ+ 1)
+ N2ξ(‖Ḡ‖∞)

mTµθ0
χΨ0

Φ(µ+ 1)

+ N1ξ(‖Ḡ‖∞)Ψ(‖Ḡ‖∞)
Tµθ0

χΨ0

Φ(µ+ 1)
+ N2ξ(‖Ḡ‖∞)

Tµθ0
χΨ0

Φ(µ+ 1)

+mξ∗(‖Ḡ‖∞).

Therefore,

‖Ḡ‖∞
|Ḡ0|+N1ξ(‖Ḡ‖∞)Ψ(‖Ḡ‖∞)

(m+1)Tµθ0χΨ0

Φ(µ+1) +N2ξ(‖Ḡ‖∞)
(m+1)Tµθ0χΨ0

Φ(µ+1) +mξ∗(‖Ḡ‖∞)

≤ 1. (3.18)

From (3.17) it follows that there exists N such that ‖Ḡ‖∞ 6= N , assumption
(3.18) is violated. Let

W = {Ḡ ∈ CP (I,R) : ‖Ḡ‖∞ < N}. (3.19)

The operator Π : W → CP (I,R) is completely continuous. The choice of W ,
there is no Ḡ ∈ ∂W such that Ḡ = λΠ(Ḡ) for some λ ∈ (0, 1). As a outcome
of the theorem [22], we conclude that Π is a solution of (1.2) and it has a fixed
point u in W . �

4. Nonlocal conditions

In this section, we discuss the hypothesis of the result what we discussed in
the previous section to nonlocal impulsive FDEs. Exactly here we will mount
existence of the following nonlocal problem

([D̂C ]µ)(Ḡ)(a) = χ(a, Ḡ(a), d̂Ḡ(a)) for all a ∈ I = [0, 1], a 6= ak,

∆Ḡ|a=ak = Ik(Ḡ(a−k )),

Ḡ(0) + h(Ḡ) = Ḡ0,

(4.1)

where k ∈ Nm, 0 < µ ≤ 1. Here, we consider χ, Ik assumptions as in the
previous section and h : CP (I,R)→ R which is a continuous function. Zhang
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et al. [31] studied nonlocal existence of mild solutions of impulsive fractional
equations. For example, h may be defined by

h(Ḡ) =
r∑
i=1

ciḠ(εi),

where ci, i ∈ Nr are given constants 0 < ε1 < ε2 < · · · < εr ≤ T .
Now consider the following assumptions:

A10. There exists a constants N∗1 > 0 such that

|h(x)| ≤ N∗1 , ∀ x ∈ CP (I,R). (4.2)

A11. There exists a constant $2 such that

|h(x)− h(y)| ≤ $2|x− y|, ∀ x, y ∈ CP (I,R). (4.3)

A12. There exist ξ∗ : R+ ∪ {0} → R+ nondecreasing continuous such that

|h(x)| ≤ ξ∗(|x|), ∀ x ∈ CP (I,R). (4.4)

A13. There exists a number N∗ such that

N∗

|Ḡ0|+ξ∗(N∗)+N1ξ∗(N∗)Ψ(N∗)
(m+1)Tµθ0χΨ0

Φ(µ+1) +N2ξ(N∗)
(m+1)Tµθ0χΨ0

Φ(µ+1) +mξ∗(N∗)

> 1. (4.5)

Theorem 4.1. If A1-A3 and A11 hold and[Tµ$(m+ 1)

Φ(µ+ 1)
+m$1 +$2

]
< 1. (4.6)

Then (4.1) has one solution on J .

Proof. The problem (4.1) can be seen as a fixed point theorem. Define Π1 :
CP (I,R)→ CP (I,R) as

(Π1Ḡ)(a) = Ḡ0 − h(Ḡ) +
1

Φ(µ)

∑
0<ak<a

∫ ak

ak−1
(ak − b)µ−1χ(b, Ḡ(b), d̂Ḡ(b))db

+
1

Φ(µ)

∫ a

ak

(a− b)µ−1χ(b, Ḡ(b), d̂Ḡ(b))db+
∑

0<ak<a

Ik(u(a−k )).

Thus the operator Π1 is the solution of the problem (4.1). Then, it can be
proved that the operator Π1 is a contraction. �

Theorem 4.2. If A4-A6 and A10 are hold, then the problem (4.1) has one
or more solutions on I.

Theorem 4.3. If A7-A8, A12-A13 are hold, then the problem (4.1) has one
or more solutions on I.
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5. Test problem

A problem which is connected to the main result is considered here. Con-
sider the following impulsive FDE

([D̂C ]µḠ)(a) = a
3
√
π
sin(Ḡ(a) + Ḡ

′
(a)), a ∈ [0, 1], a 6= 1

3 , 0 < µ ≤ 1,

∆Ḡ|a= 1
3

=

∣∣∣ 13 ∣∣∣∣∣∣Ḡ( 1
3

)∣∣∣
2
√
π(1+

∣∣∣Ḡ( 1
3

)∣∣∣) ,
Ḡ(0) = Ḡ0,

(5.1)

χ(a, Ḡ(a), d̂Ḡ(a)) =
a

3
√
π
sin(Ḡ(a) + Ḡ

′
(a)),

Ig(Ḡ) =
aḠ(a)

2
√
π(1 + Ḡ(a))

, Ḡ ∈ R+ ∪ {0},

|χ(a, Ḡ1, H̄1)− χ(a, Ḡ2, H̄2)| ≤ a

3
√
π

(
|Ḡ1 − Ḡ2|+ |H̄1 − H̄2|

)
≤ 1

3
√
π
|Ḡ− H̄|

≤ 1

5
|Ḡ− H̄|.

Hence from the assumption ζ = 1
5 . Let Ḡ, H̄ ∈ R+ ∪ {0}. Then

|Ig(Ḡ)− Ig(H̄)| =
∣∣∣ aḠ

2
√
π(1 + Ḡ(a))

− aH̄

2
√
π(1 + H̄(a))

∣∣∣ ≤ 1

3
|Ḡ− H̄|.

Thus, the condition A4 holds, ζ1 = 1
3 . Also, the condition (4.6) is satisfied,

T = 1 and m = 1.[Tµ$(m+ 1)

Φ(µ+ 1)
+m$1

]
< 1 ⇐⇒ Φ(µ+ 1) >

3

5
for some µ ∈ (0, 1].

By Theorem 3.6, the problem (5.1) has a fixed point on a ∈ [0, 1].

6. Concluding points

We have established some new results for the existence of solutions to an
impulsive Caputo fractional differential equations with a class of initial value
problem depends on the Lipschitz first derivative conditions. Sufficient results
have been proved for the existence and uniqueness of solution to the mentioned
problem. Also some results for nonlocal conditions have been discussed. A
proper example in this regard has been given. The given problem can extended
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to various fractional order derivative techniques with fixed point theory.
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