Nonlinear Functional Analysis and Applications Vol. 30, No. 2 (2025), pp. 331-344 ISSN: 1229-1595(print), 2466-0973(online)

https://doi.org/10.22771/nfaa.2025.30.02.02 http://nfaa.kyungnam.ac.kr/journal-nfaa

SOME SANDWICH THEOREMS FOR MEROMORPHIC UNIVALENT FUNCTIONS DEFINED BY A NEW HADAMARD PRODUCT OPERATOR

Qasim Ali Shakir¹ and Waggas Galib Atshan²

¹Department of Computer Science, College of Computer Science and Information Technology, University of Al-Qadisiyah, Diwaniyah, Iraq e-mail: qasim.a.shakir@qu.edu.iq

²Department of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniyah, Iraq e-mail: waggas.galib@qu.edu.iq

Abstract. The present study develops differential subordination and superordination results for meromorphic univalent functions defined by a novel Hadamard product operator within a punctured open unit disk.

1. INTRODUCTION

Let D be the open unit disk $\{z \in \mathbb{C} : |z| < 1\}$ and \mathcal{H}^* denotes the class of analytic functions of the form:

$$f(z) = z^{-1} + \sum_{k=0}^{\infty} a_k z^k, \quad (z \in D^* = D \setminus \{0\}),$$
(1.1)

that are meromorphic and univalent in the punctured open unit disk

$$D^* = \{ z : z \in \mathbb{C}, \ 0 < |z| < 1 \}.$$

⁰Received January 29, 2024. Revised December 1, 2024. Accepted December 30, 2024.

 $^{^02020}$ Mathematics Subject Classification: 30C45.

 $^{^0{\}rm Keywords}:$ Linear operator, differential subordination, superordination, sandwich theorem, analytic function.

⁰Corresponding author: W. G. Atshan(waggas.galib@qu.edu.iq).

Let \mathcal{H} be the class of all analytic functions in D. For a positive integer number n such that $a \in \mathbb{C}$, we let

$$\mathcal{H}[a,n] = \{ f \in \mathcal{H} : f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots \}, \quad (a \in \mathbb{C}).$$

The class of functions $\mathcal{H}[a, n]$ is denoted by \mathcal{A} when a = 0, n = 1, and $a_1 = 1$. However, for f and g as analytic functions in \mathcal{H} , it is said that f is subordinate to g in D, or g is superordinate to f in D, and we write $f(z) \prec g(z)$, if there exists a Schwarz function ω in D, such that $\omega(0) = 0$ and $|\omega(z)| < 1$ ($z \in D$), where

$$f(z) = g(\omega(z)).$$

Moreover, if the function g is univalent in D, we have the following equivalence relationship (cf., e.g., [14, 21, 22]):

$$f(z) \prec g(z) \iff f(0) = g(0) \quad \text{and} \quad f(D) \subset g(D), \quad (z \in D)$$

Definition 1.1. ([21]) Let the functions $p, h \in \mathcal{A}$ and $\Phi(r, s, t; z) : \mathbb{C}^3 \times D \to \mathbb{C}$. When p and $\Phi(p(z), zp'(z), z^2p''(z); z)$ are both univalent functions within the domain D, and p fulfills:

$$h(z) \prec \Phi(p(z), zp'(z), z^2 p''(z); z),$$
 (1.2)

then, if p satisfies the differential subordination (1.2), it is referred to as a solution.

An analytic function q(z), which is also univalent, is considered to be the dominant solution of the differential subordination (1.2), alternatively dominant if $p(z) \prec q(z)$ for every p(z) fulfilling (1.2).

An univalent dominant $\tilde{q}(z)$ which meets the condition $\tilde{q}(z) \prec q(z)$ for every dominant q(z) in equation (1.2) is referred to as the best subordinate, with it being unique except for a relation on D.

Definition 1.2. ([19]) Let the function $\Phi : \mathbb{C}^3 \times D \to \mathbb{C}$ and consider a function h(z) to be a univalent function within a domain D. Suppose p(z) is an analytic function within the region D and satisfies the condition of being subordinate to a second-order differential equation:

$$\Phi(p(z), zp'(z), z^2 p''(z); z) \prec h(z),$$
(1.3)

then p(z) is said to satisfy the differential subordination in (1.3), and it is referred to as a solution.

The function q(z), which is univalent, is considered to be the dominant solution of the differential subordination (1.3), alternatively dominant when $p(z) \prec q(z)$ for every p(z) fulfilling (1.3).

A univalent dominant $\tilde{q}(z)$ that meets the condition $\tilde{q}(z) \prec q(z)$ for every dominant q(z) in equation (1.3) is referred to as a best dominant, and it is unique except for a relation on D.

Several authors [11, 16, 21, 26] have derived necessary conditions on the functions h, p, and Φ for which the following implication holds:

$$h(z) \prec \Phi(p(z), zp'(z), z^2 p''(z); z),$$

then

$$q(z) \prec p(z). \tag{1.4}$$

Using the results (see [1, 3, 4, 5, 6, 7, 12, 13, 22, 24, 27]), adequate conditions have been established for a normalized analytic function to satisfy:

$$q_1(z) \prec \frac{zf'(z)}{f(z)} \prec q_2(z),$$

where q_1 and q_2 are given univalent functions in D and $q_1(0) = q_2(0) = 1$.

Additionally, several scholars (see [2, 9, 10, 15, 17, 18, 20, 23]) have established differential subordination and superordination conclusions using sandwich theorems.

If $f \in \mathcal{H}^*$ is defined by (1.1) and $g \in \mathcal{H}^*$ is given by

$$g(z) = \frac{1}{z} + \sum_{k=0}^{\infty} b_k z^k,$$

the Hadamard product (or convolution) of f and g is given by

$$(f * g)(z) = \frac{1}{z} + \sum_{k=0}^{\infty} a_k b_k z^k = (g * f)(z), \quad (z \in D^*).$$

A linear operator $I_{c,r,1(n,\lambda)}: \mathcal{H}^* \to \mathcal{H}^*$ (see [8]) is defined as

$$I_{c,r,1(n,\lambda)}f(z) = z^{-1} + \sum_{k=0}^{\infty} \left(\frac{r}{1+k+r}\right)^c \left(\frac{k+\lambda}{\lambda-1}\right)^n a_k z^k,$$
(1.5)

where $\lambda > 1, c \in \mathbb{C}, r \in \mathbb{C} \setminus \mathbb{Z}_0^-$, and $z \in D^*$.

Liu et al. [19] defined the operator D^{α} for a function $f \in \mathcal{H}^*$ as follows:

$$D^{\alpha}:\mathcal{H}^*\to\mathcal{H}^*$$

where

$$D^{\alpha}f(z) = z^{-1} + \sum_{k=0}^{\infty} (k+2)^{\alpha} a_k z^k$$
(1.6)

with $\alpha \in \mathbb{N}$ and $z \in D^*$.

Define the convolution (or Hadamard product) $S^{\alpha}_{c,r,1,n,\lambda}f(z)$ of the operators $I_{c,r,1(n,\lambda)}f(z)$ and $D^{\alpha}f(z)$ to get a new Hadamard product operator as follows:

$$S_{c,r,1,n,\lambda}^{\alpha}f(z) = z^{-1} + \sum_{k=0}^{\infty} \left(\frac{r}{1+k+r}\right)^{c} \left(\frac{k+\lambda}{\lambda-1}\right)^{n} (k+2)^{\alpha} a_{k}^{2} z^{k}, \qquad (1.7)$$

where $z \in \mathbb{D}^*$.

We note from (1.7) that

$$z \left(S^{\alpha}_{c,r,1,n,\lambda} f(z) \right)' = r S^{\alpha}_{c-1,r,1,n,\lambda} f(z) - (1+r) S^{\alpha}_{c,r,1,n,\lambda} f(z).$$
(1.8)

The primary objective of this work is to create appropriate criteria for a certain normalized analytic function f to fulfill specific requirements:

$$q_1(z) \prec \left[\frac{(1-\sigma)zS^{\alpha}_{c-1,r,1,n,\lambda}f(z) + 2\sigma zS^{\alpha}_{c,r,1,n,\lambda}f(z)}{\sigma}\right]^{\delta} \prec q_2(z)$$

and

$$q_1(z) \prec \left[z S^{\alpha}_{c,r,1,n,\lambda} f(z) \right]^{\delta} \prec q_2(z)$$

where q_1 and q_2 are given as univalent functions within D such that $q_1(0) = q_2(0) = 1$.

This work presents a solution for several sandwich theorems that include the operator $S^{\alpha}_{c,r,1,n,\lambda}f(z)$.

2. Preliminaries

We need the following definitions and lemmas to prove our results:

Definition 2.1. ([21]) Consider that \mathcal{Q} represents a collection of any functions q that are both analytic and injective onto $\overline{D} \setminus E(q)$, where $\overline{D} = D \cup \{z \in \partial D\}$, and

$$E(q) = \{ \epsilon \in \partial D : \lim_{z \to \epsilon} q(z) = \infty \},\$$

and have the property that $q'(\epsilon) \neq 0$ for $\epsilon \in \partial D \setminus E(q)$.

Additionally, we can represent the subclass of \mathcal{Q} where q(0) = a as $\mathcal{Q}(a)$, with $\mathcal{Q}(0) = \mathcal{Q}_0$ and $\mathcal{Q}(1) = \mathcal{Q}_1 = \{q \in \mathcal{Q} : q(0) = 1\}.$

Lemma 2.2. ([22]) Consider the function q to be a convex univalent function within D, with $\alpha \in \mathbb{C}$, $\beta \in \mathbb{C} \setminus \{0\}$, and q(0) = 1. Suppose that

$$\operatorname{Re}\left\{1+\frac{zq''(z)}{q'(z)}\right\} > \max\{0, -\operatorname{Re}(\alpha/\beta)\}.$$

If p is analytic within D and satisfies the condition

$$\alpha p(z) + \beta z p'(z) \prec \alpha q(z) + \beta z q'(z), \qquad (2.1)$$

then $p \prec q$, where q is the best dominant of equation (2.1).

Lemma 2.3. ([6]) Let q be a convex univalent function in D, and suppose that Θ and ϕ are analytic within a domain D comprising q(D), with $\phi(w) \neq 0$ for $w \in q(D)$. Define

$$Q(z) = zq'(z)\phi(q(z))$$
 and $h(z) = \Theta(q(z)) + Q(z)$.

Assume the following conditions hold:

- (a) Q(z) is starlike univalent within D,
- (b) $\operatorname{Re}\left\{\frac{zh'(z)}{\mathcal{Q}(z)}\right\} > 0 \quad for \ z \in D.$

If p is analytic within D, with p(0) = q(0) and $p(D) \subset q(D)$, and satisfies the condition

$$\Theta(p(z)) + zp'(z)\phi(p(z)) \prec \Theta(q(z)) + zq'(z)\phi(q(z)),$$
(2.2)

then $p \prec q$, where q is the best dominant of the equation (2.2).

Lemma 2.4. ([25]) Consider a function q that is convex univalent within D, and let $\gamma_1, \gamma_2 \in \mathbb{C}$ such that $\gamma_2 \neq 0$. Assume that

$$\operatorname{Re}\left\{\frac{\gamma_1}{\gamma_2}\right\} > 0.$$

If $p \in \mathcal{H}[q(0), 1] \cap \mathcal{Q}$ and $\gamma_1 p(z) + \gamma_2 p'(z)$ is univalent in D, then

$$\gamma_1 q(z) + \gamma_2 z q'(z) \prec \gamma_1 p(z) + \gamma_2 p'(z), \qquad (2.3)$$

which implies that $q \prec p$, where q is the best subordinant.

Lemma 2.5. ([22]) Consider a function q that is univalent within D, with Θ and Φ being analytic within a domain D comprising q(D). Assume the following conditions:

- (i) Re $\left\{\frac{\Theta'(q(z))}{\Phi(q(z))}\right\} > 0$ $(z \in D)$, (ii) $Q(z) = zq'(z)\Phi(q(z))$ is starlike and univalent within D.

If $p \in \mathcal{H}[q(0), 1] \cap \mathcal{Q}$, $p(D) \subset q(D)$, and $\Theta(p(z)) + zp'(z)\Phi(p(z))$ is univalent within D, with

$$\Theta(q(z)) + zq'(z)\Phi(q(z)) \prec \Theta(p(z)) + zp'(z)\Phi(p(z)), \tag{2.4}$$

then $q \prec p$, where q is the best subordinant of the equation (2.4).

Q. A. Shakir and W. G. Atshan

3. Differential subordination results

Here, we introduce some differential subordination results by using Hadamard product operator.

Theorem 3.1. Consider a function q that is univalent within the unit disk D and q(0) = 1 such that $q(z) \neq 0$ for every $z \in D$. Let $\delta, \sigma \in \mathbb{C} \setminus \{0\}, t \in \mathbb{C}, \epsilon > 0$, and $f \in \mathcal{H}^*$. Suppose that $\frac{zq'(z)}{q(z)}$ is starlike univalent within D, and f, q satisfy the following conditions:

$$\frac{(1-\sigma)zS^{\alpha}_{c-1,r,1,n,\lambda}f(z) + 2\sigma zS^{\alpha}_{c,r,1,n,\lambda}f(z)}{\sigma} \neq 0$$
(3.1)

and

$$\operatorname{Re}\left\{1 + \frac{2tq(z)^{2}}{\epsilon} - \frac{zq'(z)}{q(z)} + \frac{zq''(z)}{q'(z)}\right\} > 0.$$
(3.2)

If

$$R(z) \prec 1 + t (q(z))^2 + \epsilon z \frac{q'(z)}{q(z)},$$
 (3.3)

~

where

$$R(z) = \left[1 + t \left(\frac{(1-\sigma)zS^{\alpha}_{c-1,r,1,n,\lambda}f(z)}{+2\sigma zS^{\alpha}_{c,r,1,n,\lambda}f(z)}\right)^{\delta}\right]^{2} + \epsilon \delta \left[\frac{(r-r\sigma)S^{\alpha}_{c-2,r,1,n,\lambda}f(z)}{-(r-3r\sigma)S^{\alpha}_{c-1,r,1,n,\lambda}f(z)} + \epsilon \delta \left[\frac{(r-r\sigma)S^{\alpha}_{c-2,r,1,n,\lambda}f(z)}{(1-\sigma)S^{\alpha}_{c-1,r,1,n,\lambda}f(z)} + 2\sigma S^{\alpha}_{c,r,1,n,\lambda}f(z)\right]\right]$$

$$(3.4)$$

then

$$\left(\frac{(1-\sigma)zS^{\alpha}_{c-1,r,1,n,\lambda}f(z) + 2\sigma zS^{\alpha}_{c,r,1,n,\lambda}f(z)}{\sigma}\right)^{\delta} \prec q(z),$$
(3.5)

and q is the best dominant of (3.3).

Proof. Define the function p as follows:

$$p(z) = \left(\frac{(1-\sigma)zS^{\alpha}_{c-1,r,1,n,\lambda}f(z) + 2\sigma zS^{\alpha}_{c,r,1,n,\lambda}f(z)}{\sigma}\right)^{\delta}.$$
 (3.6)

Since that function p(z) is analytic within D such that p(0) = 1, we can differentiate equation (3.6) with respect to z, we have

$$\frac{zp'(z)}{p(z)} = \delta \left[\frac{(1-\sigma)z \left(S_{c-1,r,1,n,\lambda}^{\alpha} f(z)\right)' - (1-\sigma)S_{c-1,r,1,n,\lambda}^{\alpha} f(z)\right)}{(1-\sigma)S_{c-1,r,1,n,\lambda}^{\alpha} f(z) + 2\sigma S_{c,r,1,n,\lambda}^{\alpha} f(z)} \right].$$
 (3.7)

Applying identity (1.8) in (3.7), we get

$$\frac{zp'(z)}{p(z)} = \delta \left[\frac{(r-r\sigma)S^{\alpha}_{c-2,r,1,n,\lambda}f(z) - (r-3r\sigma)S^{\alpha}_{c-1,r,1,n,\lambda}f(z) - 2r\sigma S^{\alpha}_{c,r,1,n,\lambda}f(z)}{(1-\sigma)S^{\alpha}_{c-1,r,1,n,\lambda}f(z) + 2\sigma S^{\alpha}_{c,r,1,n,\lambda}f(z)} \right].$$
Pu setting

By setting

$$\Theta(\omega) = 1 + t\omega^2 \text{ with } \phi(\omega) = \frac{\epsilon}{\omega}, \ \omega \neq 0$$

it is seen that $\Theta(\omega)$ is analytic within \mathbb{C} , with $\phi(\omega)$ analytic in $\mathbb{C} \setminus \{0\}$ and $\phi(\omega) \neq 0$ for $\omega \in \mathbb{C} \setminus \{0\}$. Additionally, we get

$$\mathcal{Q}(z) = zq'(z)\phi(q(z)) = \epsilon z \frac{q'(z)}{q(z)}$$

and

$$h(z) = \Theta(q(z)) + \mathcal{Q}(z) = 1 + t[q(z)]^2 + \epsilon z \frac{q'(z)}{q(z)}$$

It is seen that $\mathcal{Q}(z)$ is starlike univalent in D. We get

$$\operatorname{Re}\left\{\frac{zh'(z)}{\mathcal{Q}(z)}\right\} = \operatorname{Re}\left\{1 + \frac{2t[q(z)]^2}{\epsilon} - z\frac{q'(z)}{q(z)} + z\frac{q''(z)}{q'(z)}\right\} > 0.$$

Therefore, according to Lemma 2.3, we have $p(z) \prec q(z)$. By using equation (3.6), we obtain the result.

By substituting $q(z) = e^{\tau z}$, $|\tau| \le 1$ into Theorem 3.1, we deduce the subsequent corollary:

Corollary 3.2. Consider a function $f \in \mathcal{H}^*$ such that $|\tau| \leq 1$, and also the condition (3.2) is satisfied. If

$$R(z) \prec 1 + te^{2\tau z} + \tau \epsilon z, \qquad (3.8)$$

where R(z) is given by (3.4), then

$$\left[\frac{(1-\sigma)zS^{\alpha}_{c-1,r,1,n,\lambda}f(z)+2\sigma zS^{\alpha}_{c,r,1,n,\lambda}f(z)}{\sigma}\right]^{\delta}\prec e^{\tau z},$$

and $e^{\tau z}$ is the best dominant.

Q. A. Shakir and W. G. Atshan

Therefore, when $\tau = \sigma = 1$, the following result is obtained.

Corollary 3.3. Consider a function $f \in \mathcal{H}^*$ that fulfills the subordination

$$1 + t \left[\left(z S^{\alpha}_{c,r,1,n,\lambda} f(z) \right)^{\delta} \right]^2 + \epsilon r \delta \left[\frac{S^{\alpha}_{c-1,r,1,n,\lambda} f(z)}{S^{\alpha}_{c,r,1,n,\lambda} f(z)} - 1 \right] \prec 1 + t e^{2z} + \epsilon z,$$

then

$$\left[2zS^{\alpha}_{c,r,1,n,\lambda}f(z)\right]^{\delta}\prec e^{z}$$

with $q(z) = e^z$ being the best dominant.

Theorem 3.4. Consider a function q that is convex univalent in the unit disk D such that q(0) = 1. Let $\epsilon > 0$, $\delta \in \mathbb{C} \setminus \{0\}$, $t \in \mathbb{C}$, $f \in \mathcal{H}^*$, and assume that f and q fulfill the following conditions:

$$zS^{\alpha}_{c,r,1,n,\lambda}f(z)\neq 0$$

and

$$Re\left\{1+\frac{1}{\epsilon}+z\frac{q''(z)}{q'(z)}\right\}>0.$$
(3.9)

If

$$\psi(z) \prec t + q(z) + \epsilon z q'(z), \qquad (3.10)$$

where

$$\psi(z) = t + \left(zS^{\alpha}_{c,r,1,n,\lambda}f(z)\right)^{\delta} + \epsilon r \delta \left(zS^{\alpha}_{c,r,1,n,\lambda}f(z)\right)^{\delta} \begin{bmatrix} \frac{S^{\alpha}_{c-1,r,1,n,\lambda}f(z)}{S^{\alpha}_{c,r,1,n,\lambda}f(z)} - 1 \\ (3.11) \end{bmatrix},$$

then

$$\left(zS^{\alpha}_{c,r,1,n,\lambda}f(z)\right)^{\delta} \prec q(z) \tag{3.12}$$

with q being the best dominant of (3.10).

Proof. Specify the function p as follows:

$$p(z) = \left(z S^{\alpha}_{c,r,1,n,\lambda} f(z)\right)^{\delta}.$$
(3.13)

Then the function p(z) is analytic in D such that p(0) = 1. A simple computation shows that

$$\psi(z) = t + \left(zS^{\alpha}_{c,r,1,n,\lambda}f(z)\right)^{\delta} + \epsilon r\delta \left(zS^{\alpha}_{c,r,1,n,\lambda}f(z)\right)^{\delta} \left[\frac{S^{\alpha}_{c-1,r,1,n,\lambda}f(z)}{S^{\alpha}_{c,r,1,n,\lambda}f(z)} - 1\right]$$
$$= t + p(z) + \epsilon z p'(z).$$
(3.14)

To prove our result, use Lemma 2.3. Consider in this lemma $\Theta(w) = t + w$ and $\Phi(w) = \epsilon$, where Θ is analytic in \mathbb{C} and Φ is analytic in $\mathbb{C} \setminus \{0\}$. Also, we get

$$Q(z) = zq'(z)\Phi(q(z)) = \epsilon zq'(z)$$

and

$$h(z) = \Theta(q(z)) + \mathcal{Q}(z) = t + q(z) + \epsilon z q'(z)$$

We see that $\mathcal{Q}(z)$ is starlike univalent in D, and we have

$$\operatorname{Re}\left\{\frac{zh'(z)}{\mathcal{Q}(z)}\right\} = \operatorname{Re}\left\{1 + \frac{1}{\epsilon} + z\frac{q''(z)}{q'(z)}\right\} > 0.$$

Thus, using Lemma 2.3, we obtain $p(z) \prec q(z)$. By applying equation (3.13), we obtain the result.

Theorem 3.5. Assume that q is a univalent function within D such that $q(0) = 1, \delta, \eta \in \mathbb{C} \setminus \{0\}$, and $\sigma \in \mathbb{R}^+$. Furthermore, assume that q satisfies the inequality:

$$\operatorname{Re}\left\{1 + \frac{zq''(z)}{q'(z)}\right\} > \max\left\{0, -\operatorname{Re}\frac{\delta}{\eta}\right\}.$$
(3.15)

If $f \in \mathcal{H}^*$ satisfies the subordination condition:

$$G(z) \prec q(z) + \frac{\eta}{\delta} z q'(z), \qquad (3.16)$$

where

$$G(z) = \left(\frac{(1-\sigma)zS_{c-1,r,1,n,\lambda}^{\alpha}f(z) + 2\sigma zS_{c,r,1,n,\lambda}^{\alpha}f(z)}{\sigma}\right)^{\delta} \times \left[1 + \eta \frac{(r-r\sigma)S_{c-2,r,1,n,\lambda}^{\alpha}f(z) - (r-3r\sigma)S_{c-1,r,1,n,\lambda}^{\alpha}f(z)}{(1-\sigma)S_{c-1,r,1,n,\lambda}^{\alpha}f(z) + 2\sigma S_{c,r,1,n,\lambda}^{\alpha}f(z)}\right],$$
(3.17)

then the subordination

$$\left(\frac{(1-\sigma)zS^{\alpha}_{c-1,r,1,n,\lambda}f(z) + 2\sigma zS^{\alpha}_{c,r,1,n,\lambda}f(z)}{\sigma}\right)^{\delta} \prec q(z),$$
(3.18)

holds, with q(z) being the best dominant of (3.16).

Proof. Suppose that p(z) is defined by (3.6). Further calculations show that

$$G(z) = p(z) + \frac{\eta}{\delta} z p'(z),$$

where G(z) is given by (3.17). Therefore, the subordination (3.16) is equivalent to $n \to n \to n$

$$p(z) + \frac{\eta}{\delta} z p'(z) \prec q(z) + \frac{\eta}{\delta} z q'(z).$$

By applying Lemma 2.2 with $\beta = \frac{\eta}{\delta}$ and $\alpha = 1$, we obtain (3.18).

4. DIFFERENTIAL SUPERORDINATION RESULTS

Theorem 4.1. Consider a function q which is a convex univalent function within D such that q(0) = 1. Let $t \in \mathbb{C}$, $\delta, \epsilon \in \mathbb{C} \setminus \{0\}$, and $z \in D^*$. Suppose that

$$Re\left\{\frac{q'(z)}{\epsilon}\right\} > 0,$$
 (4.1)

and f fulfills the following conditions:

$$zS^{\alpha}_{c,r,1,n,\lambda}f(z) \neq 0,$$

and

$$\left[zS^{\alpha}_{c,r,1,n,\lambda}f(z)\right]^{\delta} \in \mathcal{H}[q(0),1] \cap \mathcal{Q}.$$

Additionally, if the function $\psi(z)$ described by (3.11) is univalent in D, then the subsequent superordination condition

$$t + q(z) + \epsilon z q'(z) \prec \psi(z), \tag{4.2}$$

holds. Then,

$$q(z) \prec \left[z S^{\alpha}_{c,r,1,n,\lambda} f(z) \right]^{\delta}, \qquad (4.3)$$

with q being the best subordinant.

Proof. Let the function p be defined as follows:

$$p(z) = \left[z S^{\alpha}_{c,r,1,n,\lambda} f(z) \right]^{\delta}, \qquad (4.4)$$

following the process of computation, we obtain

$$t + p(z) + \epsilon z p'(z) = \psi(z),$$

where $\psi(z)$ is given by (3.11). This implies

$$t + q(z) + \epsilon z q'(z) \prec t + p(z) + \epsilon z p'(z).$$

Putting

$$\Theta(\omega) = t + \omega \quad \text{and} \quad \varphi(\omega) = \epsilon,$$

then it is clear that $\Theta(\omega)$ is analytic in \mathbb{C} , and $\varphi(\omega) \neq 0$ is analytic in $\mathbb{C} \setminus \{0\}$.

Additionally, we have

$$\operatorname{Re}\left(\frac{\Theta'(q(z))}{\varphi(q(z))}\right) = \operatorname{Re}\left(\frac{q'(z)}{\epsilon}\right) > 0.$$

Thus, according to Lemma 2.5, we can conclude that

$$q(z) \prec \left[z S^{\alpha}_{c,r,1,n,\lambda} f(z) \right]^{\delta}.$$

Now, by using Lemma 2.4, it is simple to prove the next theorem.

Theorem 4.2. Consider a function q is a convex univalent function in D such that q(0) = 1, $\delta, \eta \in \mathbb{C} \setminus \{0\}$, $\sigma \in \mathbb{R}^+$, and $\operatorname{Re}\left\{\frac{\delta}{\eta}\right\} > 0$. Let $f \in \mathcal{H}^*$ such that

$$\frac{(1-\sigma)zS_{c-1,r,1,n,\lambda}^{\alpha}f(z) + 2\sigma zS_{c,r,1,n,\lambda}^{\alpha}f(z)}{\sigma} \neq 0$$

and

$$\left[\frac{(1-\sigma)zS^{\alpha}_{c-1,r,1,n,\lambda}f(z)+2\sigma zS^{\alpha}_{c,r,1,n,\lambda}f(z)}{\sigma}\right]^{\delta} \in \mathcal{H}[q(0),1] \cap \mathcal{Q}$$

If the function G(z) as defined by equation (3.17) is univalent in D and fulfills the given superordination condition

$$q(z) + \frac{\eta}{\delta} z q'(z) \prec G(z) \tag{4.5}$$

holds, then

$$q(z) \prec \left[\frac{(1-\sigma)zS^{\alpha}_{c-1,r,1,n,\lambda}f(z) + 2\sigma zS^{\alpha}_{c,r,1,n,\lambda}f(z)}{\sigma}\right]^{\delta}, \qquad (4.6)$$

with q being the best subordinant of (4.1).

5. SANDWICH RESULTS

By applying Theorem 3.4 with Theorem 4.1 and Theorem 3.5 with Theorem 4.2, we get, respectively, the following two sandwich results:

Theorem 5.1. Consider q_1 to be a convex univalent function within D such that $q_1(0) = 1$, and fulfills condition (4.1). Additionally, let q_2 be univalent in D such that $q_2(0) = 1$ and fulfills (3.9). Assume that $\varepsilon > 0$, $\delta \in \mathbb{C} \setminus \{0\}$, $t \in \mathbb{C}$,

$$S^{\alpha}_{c,r,1,n,\lambda}f(z) \neq 0$$

and

$$\left[S^{\alpha}_{c,r,1,n,\lambda}f(z)\right]^{\delta} \in \mathcal{H}[1,1] \cap \mathcal{Q}.$$

If the function $\psi(z)$ defined by (3.11) is univalent in D and

$$t + q_1(z) + \varepsilon z q_1'(z) \prec \psi(z) \prec t + q_2(z) + \varepsilon z q_2'(z),$$

then

$$q_1(z) \prec \left[S^{\alpha}_{c,r,1,n,\lambda}f(z)\right]^{\delta} \prec q_2(z),$$

and q_1 and q_2 are respectively, the best subordinant and the best dominant.

Theorem 5.2. Consider q_1 to be a convex univalent function in D such that $q_1(0) = 1$, and let q_2 be univalent in D. Suppose that $\Re\left\{\frac{\delta}{\eta}\right\} > 0$, $\delta, \eta \in \mathbb{C} \setminus \{0\}$, $\sigma \in \mathbb{R}^+$, and q_2 satisfies (3.15). Let

$$\left[\frac{(1-\sigma)zS^{\alpha}_{c-1,r,1,n,\lambda}f(z)+2\sigma zS^{\alpha}_{c,r,1,n,\lambda}f(z)}{\sigma}\right]^{\delta} \in \mathcal{H}[q(0),1] \cap \mathcal{Q},$$

and the function G(z) defined by (3.17) is univalent in D. If $f \in \mathcal{H}^*$ fulfills

$$q_1(z) + \frac{\eta}{\delta} z q_1'(z) \prec G(z) \prec q_2(z) + \frac{\eta}{\delta} z q_2'(z),$$

then

$$q_1(z) \prec \left[\frac{(1-\sigma)zS^{\alpha}_{c-1,r,1,n,\lambda}f(z) + 2\sigma zS^{\alpha}_{c,r,1,n,\lambda}f(z)}{\sigma}\right]^{\delta} \prec q_2(z)$$

and q_1 and q_2 are respectively the best subordinant and the best dominant.

6. Conclusions

This study introduces significant advancements in the theory of differential subordination and superordination for meromorphic univalent functions via a novel Hadamard product operator. By deriving new sandwich theorems, the research connects dominant and subordinant functions under defined geometric constraints, providing a unified framework for analyzing such functions in the punctured unit disk. The findings enhance the understanding of convexity and starlikeness properties in this context, offering a foundation for broader applications in analytic function theory. Future work may extend these results to higher-order equations and explore new operators for further theoretical and practical advancements.

Acknowledgments: The author thanks for the support of Rambhai Barni Rajabhat University.

References

- H.Kh. Abdullah, Some results concerning closure products on meromorphic Hurwtiz-Zeta function, Nonlinear Funct Anal. Appl., 25(4)(2020), 745-752.
- [2] R. Abd Al-Sajjad and W.G. Atshan, Certain analytic function sandwich theorems involving operator defined by Mittag-Leffler function, AIP Conf. Proc., 2398 (2022), 060065.
- [3] S.A. Al-Ameedee, W.G. Atshan and F.A. Al-Moamori, *Coefficients estimates of biunivalent functions defined by new subclass function*, Journal of Physics: Conference Series, 1530(1) (2020), 012105.

- [4] M.I.Y. Alharayzeh and Habis S. Al-zboon, On a subclass of -uniformly analytic functions with negative coefficients and their properties, Nonlinear Funct Anal. Appl., 28(2)(2023), 589-599.
- [5] R.M. Ali, V. Ravichandran, M.H. Khan and K.G. Subramanian, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci., 15 (2004), 87–94.
- [6] F.M. Al-Oboudi and H.A. Al-Zkeri, Applications of Briot-Bouquet differential subordination to some classes of meromorphic functions, Arab J. Math. Sci., 12(1) (2006), 17–30.
- [7] A.B.I. AL-Saleem, Certain class of analytic and univalent function with respect to symmetric, Nonlinear Funct Anal. Appl., 30(1)(2025), 99-111.
- [8] W.G. Atshan and E.I. Badawi, Results on coefficient estimates for subclasses of analytic and bi-univalent functions, Journal of Physics: Conference Series, 1294 (2019), 032025.
- W.G. Atshan, A.H. Battor and A.F. Abaas, Some sandwich theorems for meromorphic univalent functions defined by new integral operator, J. Interdiscip. Math., 24(3) (2021), 579–591.
- [10] W.G. Atshan and R.A. Hadi, Some differential subordination and superordination results of p-valent functions defined by differential operator, J. Phys. Conf. Ser., 1664 (2020), 012043.
- [11] W.G. Atshan and S.R. Kulkarni, On application of differential subordination for certain subclasses of meromorphically p-valent functions with positive coefficients defined by linear operator, J. Inequal. Pure Appl. Math., 10(2) (2009), 11pp.
- [12] W.G. Atshan, I.A.R. Rahman and A.A. Lupas, Some results of new subclasses for biunivalent functions using quasi-subordination, Symmetry, 13(9) (2021), 1653.
- T. Bulboacă, Classes of first-order differential superordinations, Demon. Math., 35(2) (2002), 287–292.
- [14] T. Bulboacă, Differential subordinations and superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
- [15] A.M. Darweesh, W.G. Atshan and A.H. Battor, On sandwich results of meromorphic univalent functions defined by new operator, AIP Conf. Proc., 2845(1) (2023), 050035.
- [16] R.M. El-Ashwah and M.K. Aouf, Differential subordination and superordination for certain subclasses of p-valent functions, Math. Comput. Model., 51(56) (2010), 349– 360.
- [17] I.A. Kadum, W.G. Atshan and A.T. Hameed, Sandwich theorems for a new class of complete homogeneous symmetric functions by using cyclic operator, Symmetry, 14(10) (2022), 2223.
- [18] I.A. Kadum, W.G. Atshan and A.T. Hameed, The differential subordination and superordination of order three for complete homogeneous elementary functions class, AIP Conf. Proc., 2977(1) (2023), 040058.
- [19] J.L. Liu and H.M. Srivastava, Subclasses of meromorphically multivalent functions associated with a certain linear operator, Math. Comput. Model., 39 (2004), 35–44.
- [20] S.F. Maktoof, W.G. Atshan and A.N. Alkiffai, Results on third-order differential subordination for analytic functions related to a new integral operator, Symmetry, 16(11) (2024), 1453.
- [21] S.S. Miller and P.T. Mocanu, Differential subordinations: Theory and applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker Inc., New York and Basel, 2000.
- [22] S.S. Miller and P.T. Mocanu, Subordinants of differential superordinations, Complex Var., 48(10) (2003), 815–826.

Q. A. Shakir and W. G. Atshan

- [23] F.O. Salman and W.G. Atshan, New results on integral operator for a subclass of analytic functions using differential subordinations and superordinations, Symmetry, 15(2) (2023), 295.
- [24] Q.A. Shakir and W.G. Atshan, On sandwich results of univalent functions defined by generalized Abbas-Atshan operator, J. Al-Qadisiyah Comput. Sci. Math., 15(4) (2023), 11–20.
- [25] T.N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differential sandwich theorems for subclasses of analytic functions, Aust. J. Math. Anal. Appl., 3 (2006), Article 8, 1–11.
- [26] T.N. Shanmugam, S. Shivasubramaniam and H. Silverman, On sandwich theorems for classes of analytic functions, Int. J. Math. Sci., 2006 (2006), 1–13.
- [27] A.S. Tayyah and W.G. Atshan, Differential subordination and superordination results for p-valent analytic functions associated with (r,k)-Srivastava fractional integral calculus, MethodsX, 13 (2024), 103079.