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Abstract. In this work, we obtain sandwich theorems involving a new Hadamard product
operator F§ ., . g for p-valent (or multivalent) functions in the open unit disk U by em-
ploying differential subordinations as well superordinations on p-valent functions using a new
Hadamared product operator, we establish new results such as, differential subordination and

superordination theorems.

1. INTRODUCTION

Letting 9t = M(A) become a collection over analytic functions within 2 =
{# € €:|z| <1} open unit disk. Regarding n € X with o € €, the subclass
M [0, n| represents a subset of M. Furthermore

Mo,n]={H €M:H(2) =0+ 0,2" +0,112" " +...} (0 € Q).
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Give A, a represent the subfamily of 9t included to functions §) that have a
specified format:

oo
9 (z) =2+ Z an+pzn+p7 (p N, Anip >0 ), (1.1)
n=1

that are multivalent analytic within A = {z € €:|z| <1}. We know the
Hadamard product (or convolution):

oo oo
B(:) = 7+ Yt and g(2) = P+ 3 0,

n=1 n=1

H%9) =2+ @iy T = (g f)  (z€9).
n=1
Suppose $ with g both analytic functions within 9. $ is considered subor-
dinate to g, or g is considered superordinate to $) in 2 composed $ < g,
when a Schwarz function obtains Q) in 2, that includes 2)(0) = 0, with
D(z)] < 1, (z €A), also H(z) = g(Y(2)). Regarding this specific case,
we'll represent ) < g, also H(z) < g(z) (2 €2A). When g be univalent
within 2, thus $ < ¢ if and only if $ (0) = ¢ (0), $H () C g (A) (|20, 21]).

Definition 1.1. ([20]) Letting 6 : €3 x 2l — € as well as the function %(z) to
be univalent in A. When p(z) be analytic within 2 it fulfils the second-ordar
differential subordinetion condition:

0 (p(2),20 (2),2%p" (2);2) < T(2), (1.2)
therefore, p(z) is referred to be a solutions for differential subordination (1.2).
Also, the function ¢(z), which is univalent, is refarred to as a dominant from the
solution as the differential subordination (1.2), alternatively, it can be stated
that dominent when p(z) < ¢(z) with all p(z) fulfilling (1.2). A univalent
dominent g (z) which fulfils ¢(z) < ¢(z) to each dominating ¢(z) in formula

(1.2) it’s claimed to be the best dominant is uniquely determined by a relation
of A.

Definition 1.2. (|20]) Letting p,k € A, with 6 : €3 x A — €. Assuming
p with 6 (p(2),2p' (2),2*" (2);2) two univalant functions in 2 and if p(2)
fulfills the second-type differential superordination:

T(2) <0(p(2), 20 (2),2°" (2)32), (1.3)
therefore, p(z) is referred to be a solution for differential superordination (1.3).
The function ¢(z) is refarred to as a subordinant for the solution of this dif-
ferential superordination (1.3), or, to put it clearly a subordinant when p < ¢

with each functions p that fulfill Eq. (1.3). A univalent subordinant q it fulfills
g < q to every the subordinants ¢ of (1.3) is considered the best subordinant.
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Many researchers |1, 2, 8, 15, 17, 18, 20, 24, 25, 26, 27, 29, 30| have derived
necessary constraints in the functions p, ¥, as well § whose the next conclusions
is valid:

T(z) <0 (p(2),20' (2),2%" (2);2),
thus
4(2) < p(2). (1.4)
Utilizing the outcomes (refer to [4, 6, 11, 12, 13, 16, 21, 28]), it is necessary to
establish adequate criteria for analytical functions to fulfill:

2%’ (2)
9(2)
when ¢ as well go are supplied univalent functions within 2, also ¢; (0) =
g2 (0) = 1. Furthermore, multiple authors (refer to [1, 3, 4, 5, 9, 10, 11, 12,
19, 23, 29]) having obtained some conclusions on differential subordination
and superordination using sandwich theorems. To § € A, let the Komatu
operator [22| be denoted by

5 2 N
Kg,pf) (2) = (;(—g)pz)c /0 et (log E)S 153 (t) dt

00 1)
=P+ Z <c—|—p> anipz" P (c>—p, §>0). (1.5)

q1(z) < < q2(2),

Aouf et al. [7] defined the operator %37 (2) as follows:

Tpta—v+1) [ F(B+p+n)
R =Py n n+p’
s () =2 T(p+B) 2 Tpt+a+tBtn—n+1)) "
(B>-pat+l>yyeMpeN;ze). (1.6)

We define a new Hadamard product operator Fy. . 5f(z) of function § € 4,
as follows:

Z-T‘zg)fc,p,'y,ﬁ":j (Z) = Kg,pﬁ ( ) * 9%1877'6 ( )

where

o0

F'p+ta—~v+1) (B+p+n)
T (p+p) 2 [F(p+a+ﬁ+n 7+1)]

=1

§

c

X _otp antp2" P,
c+p+n

Fgc,p,%ﬁ“ﬁ (2) =2"+

(1.7)
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It could easily be simply noted from Eq. (1.7) that

/
o (Fg:;%ﬁ (2)> =(a+f+p—7+1) Fgcvpmﬂﬁ (2)

— (ot B+ D) Fil, 59(2).

(1.8)

The primary aim of this study is to establish adequate situations for a specific
normalized analytic function to fulfill:

a+1

@ (2) < [W] < o ()

2P

and

n
a1 (2) < B EF S epas? () F 12 59 (2) < q2(2)
1 (t1 + t2) 2P S

when ¢; , g2 provided multivalent functions within 2, also ¢; (0) = g2 (0) = 1.

This paper presents a derivation of several sandwich theorems that include
the operator F§., . 39 (2).

2. PRELIMINARIES

The definitions as well as lemmas classified below are necessary to establish
our conclusions.

Definition 2.1. ([20]) Setting @ a collection of every functions ¢, which are
both analytic as well injective over 2\ E(q), when 2 = 20U {z € 02}, with

E(q) = {seaﬂ:iigéq(z) :oo},

in a manner witch ¢'(z) # 0 when ¢ € 92\ E (¢). Additionally, assume us
represent the subfamils of Q in which ¢(0) as Q(a), with Q(0) = Qo, Q (1) =

Q1 ={q€Q:q(0)=1}

Lemma 2.2. ([14]|) Letting q(z) be convez as well univalent functions within
A, assume that a € €, € €\ {0} through

N1+ > max< 0,-9( = . 2.1
e 5 2
If p is analytic within A, with

ap (2) + Bzp’ (2) < aq(2) + Bzd (2) (2.2)

then, p(z) < q(z) with q is the best dominant for (2.2).
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Lemma 2.3. ([6]) Consider q(z) as a univalent function within 2, assume that
0 with ¢ is analytic within a dominant O that includes q(2A) also 8 (w) # 0, as

wellw € q(A). Setting Q (2) = 2¢' (2) 0 (q (2)) as wellY (z) = ¢ (q(2))+Q (2).
Assume as

(1) Q(z) is star like univalent within A,

(2) M { Zgé‘;)} > 0, regarding z € 2.
If p is analytic function within A, also p(0) = q(0),p(A) C O as well

¢ (p(2)) + 20" (2) 0 (p(2)) < ¢ (q(2)) + 24" (2) 0 (q(2)) (2.3)
then p < q as well q is the best dominant to (2.3).

Lemma 2.4. ([21]) Letting q (=) is a convex univalent within 2 also q(0) = 1.
Assume € €, which M(B) > 0. If p(z) € M[1,1] N Q with p(z) + Bzp' () is
univalent within A, then

q(2) + Bzq (2) < p(2) + Bzp (2) (2.4)

it indicates q(z) < p(z) with q(z) is the best subordinant of (2.4).

Lemma 2.5. ([14]) Consider q(z) as univalent functions with convex defined
within A, assume that 0 as well ¢ is analytic within a domain O that includes
q(A). Say that

(1) N { z(gq((zz)))} > 0, regarding z € AU,

(2) Q(2) =24 (2) ¢ (q(2)) is starlike univalent within 2.
Ifpe M1, 1]NQ, as well p(A) C O,0 (p(2))+2p' (2) ¢ (p(2)) denoted univa-
lent within A with

0(q(2))+2¢ (2) ¢ (q(2)) < (p(2)) 0+ 29" (2) & (p(2)), (2.5)

then q < p as well q denoted the best subordinant to (2.5).

3. DIFFERENTIAL SUBORDINATION RESULTS

We introduce several differential subordination findings can be obtained by
employing the Hadamard product operator F gj ep.B-

Theorem 3.1. Consider q(z) as a univalent convex functions that exists within
A, also q(0) =1, e € €, 0 > 0. Letting q which fulfills:

‘)“({1+ 2 (Z)} > max {0, -0 (g)} (3.1)

q(2)
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If $ € A, fulfills the subordination

a+1
()] (Fe.,. 59 (2
e(a+B+p—v+1) Yocpas 2 ’“f —afl”* ()—1
z 507P’Yﬁ5{) (Z) (3 2)
Fyton g9 ()] e 1 '
CPY:B
" [ < a(2)+ Sz (2),
then
a+1
H(2)]"
5,607,
[Zp <a(2), (33
where q is the best dominant to (3.2).
Proof. Given r(z) is defined as:
a+1
9 (2)
— 9,¢:p,7,8
r(z) = [ 1 ] , (34)

therefore, the function 7(z) exhibits analytic within 2, also r(0) = 1. Conse-
quently, by having the derivative of Eq. (3.4) with respect to z with putting
this resulting equation into identity (1.8), that we’ve

zr! (2) _, (Fg:plvﬁﬁ (Z)> B 35
—_— = a+1 p 9 ( ° )
"2) FE 9 0)
thus
zr' (z) FS 89 ()
ZOR L (FSCT;%ﬁﬁ ®
S0,
zr'(2) _ Ff:;wﬁﬁ(z)r (a+B+p—7v+1) (W —1>] :
o 2P 6c,p,’y 55 (Z)

The hypothesis is transformed into a subordinate term (3.2):

/

r(z)+ Szr/ (2) <q(z)+ gazq (2).

By applying the Lemma 2.2 for § = £ as well @ = 1, we find (3.3). The proof
is complete. ]

By substituting ¢ (z) = iz into theorem 3.1, it’s derive the subsequent
conclusion.
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Corollary 3.2. Letting € € €, o > 0 with

{1+ 2> mae fo. - (7))

If it fulfills the subordination

ela+B—y+1)

Filh 2O (a0 )

2P Fé,c,pmﬂy) (Z)

+[ Fgl 49 (2 )] ) (1—z2+22§z>’
2P (1-2)

zp 1—2)°

where q (z) = (%J_rz) is the best dominant.

then

Theorem 3.3. Letting the function q(z), which is both convex and univalent
within A, also q¢(0) = 1,4' (2) #0, (z € A). Suppose it q(z) fulfills the given

condition:

{1+ e+ L+ 2 B0 e

Assume that q(z) is starlike as well univalent within 2A. Additionally, we con-
sider that t1,ta, v, u, 7 € € = &\ {0}, with t; + t2 # 0,

tlF?CPW 59 (2 (2) + 25 pry 59 (2)

CESSES #0, z€
If $ € Ay fulfills
G ()< 1+ va () + e’ () + 745, (3.7
which
. tlF(;Oécp7 65 ( ) + tQF(SCfc,p,’y,ﬁy) (Z) !
Gz)=1+ (t1 + t2) 2P
ty ?Z;’Y g9z (2) + ol pry 59 (2) !

! !
L ( Fetl 9 (z )) 22 ( FS,. 59 (2))
™
tlF?,Zzl?,%ﬂ‘ﬁ (2) + 152F§L,Yc,p,'yﬂjﬁ (2)
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then
+1 a n
t1 ?cpﬁ/ 5‘6 ( ) + tQFé,c,p,'y,B'FJ (z) ) (Z) <39)
(t1 +to) 2P ’
where q(z) be the best dominant of (3.7).
Proof. Assuming r(z) is written as follows:
tFST 9 (2) FtaFS a9 (2)]"
r(z)= |——bepxd ) 02FfepnsD ) : (3.10)
(tl + tz) zP

Then, the function r(z) will be analytic within 2 as well r(0) = 1, differenti-
ating (3.10) with respect to z, applying our identities (1.8), we acquire

« ! a !
zr' (2) bz ( F5czwﬂ‘6( )) +t22 ( S ep,89 ()
=1 F o -Pp
r(2) ty 5:1177 6'6 (2) + tQF&c,p,%By) ()

By establishing 0 (w) = 1 + w + pw? with ¢ (w) = = ,w # 0. It’s clear
that 6 (w), also ¢(w) are analytic within €, & \ {0}, respectively. As well
¢ (w) #0,we €\ {0}. Furthermore, it’s acquire

with

D (2) =0(q(2)) +Q(2) =1+ vq(2) + ug® (2) + 7
Evidently, Q(z) is starlike univalent within A,

2 (2) | _ Y 27 2,y 4 24 () 24 (2)

e R R RO e A T S L

Through a simple calculation, we derive

/

G (2) = ¢r (2) + wr?(2) + TZ:(S) + 1. (3.11)

By utilising Eq. (3.8), that we get

zr’ () 2 z2q (2)

L+or (2) +ur? (2) + 7 <1+vq(2)+pg (2)+7 . (312
@)+t () + 705 @)+ () + 25 @a2)
Hence, according to Lemma 2.3, which we obtain r(z) < ¢(z). Applying Eq.
(3.8), that we derive the outcome. Thus, the proof has been complete. O

1+Bz
the conclusion next is as follows:

Setting ¢ (z) = (HAZ), as well (=1 < B < A <1), within Theorem 3.3,
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Corollary 3.4. Letting —1 < B < A <1 with
Y (1+ Az 2 (14 Az\? 2Bz (A—B)z
N1+ — — 0
{+T 1+ Bz T 1+ Bz +1—|—Bz+(1+Bz)(1—i—Az) -
were Y, p € €, 7 € € =&\ {0}, and z € A, if H € A, fulfils
1+ Az 14+ Az\? (A-B)z
1
Gz) < +¢(1+Bz>+”<1+32> AT B+ 42)
where G(z) stated as Eq. (3.8), then

B 69 (2) FtFy, 59 <z>] " <1 + Az>

(t1 4 t2) 2P 1+ Bz

and q(z) = (%igi) is the best dominant.

Setting ¢ (z) = Gfi)w, as well (—1 < w < 1) within Theorem 3.3, the con-

clusion next is as follows:

Corollary 3.5. Letting —1 < w < 1 with

v (1+2\Y 2u (1+z 2 2wz 222
m{1+7 1—=2 +7‘ 1—2 +1—{—22+1—|—22 >0,
where Y, p € €, 7€ & =C\ {0}, also z € U, if H € Ay fulfills
1+ 2\ 14 2\* 222
1 e
G(z) < +¢<1_Z) +M<1—z> +7’1+22,
where G(z) defined in (3.8), then

tlF?ﬁZzlij (2) + taFsiepr,69 (2) ! < 1+ 2\"
(tl + t2) zP 1—=z2 ’

and q (z) = GJ_FZ)M is the best dominant.

z

4. DIFFERENTIAL SUPERORDINATION RESULTS

We examine many differential superordination outcomes utilizing the new
Hadamard product operator F (;o‘jpl Lol (2)-

Theorem 4.1. Consider q(z) as a univalent function also convexr within A,
also ¢(0) =1, 0 > 0 with M{e} > 0. Let H € A, fulfills
1 g
[ngpmﬁﬁ (Z)]

oD €Mq(0),1]NQ,
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Tia O] (Begaon ), [Beka2 @'

+1
2P (;O‘C’p . 55 (Z) zP

and

e (a+B+p—+1)

denote univalent within A. If

a+1
3 / S ,C, ‘6 ( )
¢(2) +=2q (2) < [f”ﬁ’:
o z
(4.1)
a+1 o
ey (2) ES e pry,59 (2)
be(a+Bepoy+) |Fe2s ] ( bepa29 )
& Fs 1CPYs 5‘6 ()
then
a+1
9(2)
5,078
q(z) < [zl’] (4.2)
and q(z) is the best subordinant of (4.1).
Proof. Letting r(z) is written as
a+1
9 (2)
— 6,7,
rw—[ . ], (4.9
taking the derivative of (4.3) with respect to z, which we acquire
!/
a+1
zr' (z) <F5Cp’yﬁ‘6 (Z)>
— = =0 ot —-p| . (4.4)
r(2) Fepn .9 (2)

By performing calculations and utilizing Eq. (1.8) form (4.4), we get

OH-]. o o
ey ) | ESep 59 (2)
e(a+B-7+1) ”’Zj (Zaff’gm)—l
sy
Fpt s9(2)]° e,
+ [6’ ’p’l’f :T(Z)—FEZT (2),

applying Lemma 2.4, we achieve the required outcome. This complete the
proof. O

Setting ¢ (z) = (ifj) within Theorem 4.1, it get the next outcome:

Corollary 4.2. Letting o > 0 with M {e} > 0. Assume $ € A, fulfill

a+1
[5wﬁm”]eWM@Am@

P
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and

el@+pf-v+1) gipl'mﬁ()] (F‘?C’“’Bﬁ(z)1>+[w] ,

+1
2 6ac,p v By) (2) 2

denote univalent in A. If

2
(1—2 +2£2
(1-2)°

f?:plvﬁf( )] ( 50pvﬂf(z) 1)

) <elatfiptl) | =, oA (@)
56710 7,8

Fydpraf (2 )]
2P
<1+z) - [ csa:,rplyﬂﬁ( )]

1—=2 2P

and q (z) = (%f;) is the best subordinant.

—+

Y

then

Theorem 4.3. Consider q(z) as a convex univalent function within A, also
q(0) =1, ¢’ (2) #0 for each z € A, t1,ta, ), pu, 7 € € =€\ {0},t1 + t2 # 0.
For $ € Ay, assuming that

2
N {qu (2)q () + $q2 (2) q'(z)} > 0, where (z €U). (4.5)
If
CM+1 o n
9 (2) + toF, 9 (2)
Fscpp 6,7,
0 eM[1,1]N Q,
7&[ = 1.1nQ
and the function G(z), established in Eq. (3.8) is univalent within 2, also
/
1+ g (2) + pg® (2) + Tzqq(i;) <G (2), (4.6)
then
tFSE 9 (2) +taF 59 (2)]"
q (Z) < 15,c,p,7,8 ( ) 2568,e,0,7,8 ( ) (47)
(tl + tg) 2P
and q(z) 1is the best subordinant of (4.6).
Proof. Suppose r(z) denoted:
tFSH 9 (2) +taFg 6 (2)]"
r(z)= . (4.8)
(tl + tg) zP
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Calculating a derivative of (4.8) with respect to z, we obtain

o' (2) tz (i), a9 () +taz (Fien 59 (2)
r(2) n tng‘CMﬁﬁ( )+t Fg 59 (2)

-p

Establishing 6 (w) = 1+ ¢w + pw? with ¢(w) = Z,w # 0, it is evident 6 (w),
also ¢(w) denote analytic within €, €\ {0}, respectively. As well ¢ (w) # 0, w €
¢\ {0}. Additionally, it is acquire

Q(z) is evidently a starlike univalent function within 2

n{ T 2oy )+ 22 ()] >

With a simple calculation, we derive

' (2)
r(2)
where G(z) is defined by Eq. (3.8). Utilizing equations (4.6) as well as (4.9),
we can conclude that

G (2) = r (2) + pr? (2) + 72 +1, (4.9)

/ /
q (2) 2 ' (2)
1+ 9q (2) + pug* (2) + 72 <1+9Yr(z)+u(z)+712 .
@)+ (2) + 722 @)+ (2) 4 72
Thus, according to Lemma 2.5, that we acquire ¢(z) < r(z), and ¢ is the best
subordinant. O

5. SANDWICH RESULTS

By comparing Theorem 3.1 as well as Theorem 4.1, that we acquire the
subsequent sandwich conclusion:

Theorem 5.1. Consider q1 as well g2 as conver univalent functions within 24
and ¢1 (0) = g2 (0) = 1,0 > 0 with N{e} > 0, ¢ € €\ {0}, where g2 satisfies
Theorem 3.1 and q1 satisfies Theorem 4.1. Let $) € A, satisfies

oc+1
L)

zp

with

¢ (a+p+p—y+1)

il

(gc—t_plyﬂf< )] < §c,p76f(z) 1) + [ (;x:[)l'yﬂf( )]

1
2 g:pvﬁf(z) >
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represent univalent within A. If

! [ (5&:1}%3'6( )]

9
= <
q(2)+-zq (2) o

+e(a+pB+p—v+1)

+1
2 f;lc,p v 6'6 ()

(?;I}’Yﬁﬁ( )] (Fgc,pvﬁﬁ(z)_1>

!/

€
<qy(2) + Ezq2 (2),
then

2P

Fa—i—l 9 (Z) o
67 L 3.
and q1 as well qo represent the best subordinant and dominant, respectively.

Theorem 5.2. Consider q1 as well ga as conver univalent functions inside 2
with 1 (0) = ¢2(0) = 1. Assume that q1 fulfill (4.5) and also qo fulfill (3.6).
Let $ € A, fulfill

?jzlov 5'6 (=) + t2F£c,pmﬁ"6 (2)

n
(t; +tg) 2P eM1,1]NQ.

0#

Furthermore, G(z) is a univalent function within A, according to by Eq. (3.8).

If
| (2) + i (=) + 2 )

3’ (2)
Q1 (2) ’

< G (2) < 1+ 9g2 (2) + pga® (2) + 72 g2 (2)

then

tngzzlw,Bﬁ (2) + tQFgcmmﬁﬁ (2)
(tl + tz) 2P

and q1 as well qo represent the best subordinant and dominant, respectively.

q1 (2) < < q2(z)
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