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1. INTRODUCTION

A metric space (X, d) is a CAT(0) space if it is geodesically connected and
every geodesic triangle within X is no thicker than its comparison triangle in
the Euclidean plane. It is a well-established fact that any complete, simply
connected Riemannian manifold with nonpositive sectional curvature qualifies
as a CAT(0) space. Additional examples include pre-Hilbert spaces, and R-
trees (refer to [13]), among others. For further information on these spaces,
one can refer to [6, 8, 9].

The investigation into sufficient conditions for the existence of fixed points
of multivalued contraction and nonexpansive mappings using the Hausdorff
metric was initially conducted by Markin [21] and later expanded by Nadler
[22]. The study of fixed point theory in CAT'(0) spaces began with Kirk
[17, 18], who demonstrated that every nonexpansive mapping on a bounded,
closed, convex subset of a complete CAT'(0) space possesses a fixed point. In
fact, CAT(0) spaces offer an appropriate setting for deriving fixed points of
nonexpansive mappings and their various generalizations [10, 11, 27, 30].

The conditions for a mapping to be nonexpansive traditionally apply to all
points within the mapping’s domain. However, relaxed conditions have been
introduced to ensure that these mappings do not affect the outcomes of fixed
point results. Addressing this issue, Suzuki [28] introduced a new class of map-
pings, formally known as mappings satisfying Condition (C'), particularly in
the context of uniform convex Banach spaces. It’s worth noting that the class
of nonexpansive mappings is a specific subclass within this broader class of
mappings satisfying Condition (C'), which may not necessarily be continuous.

Building on this framework, Akbar and Eslamian [2] extended this concept

from single-valued mappings to multivalued mappings, successfully obtaining
fixed points within the framework of Banach spaces.

2. PRELIMINARIES

Let M be a nonempty subset of a metric space X. The subset M is termed
proximal if for each v € X, there exists an element k € M such that

d(v, k) =d(v, M) =inf{d(v,y) : y € M} (2.1)

where d(v, M) represents the distance from the point v to the set M. Let
P(X) denote the family of nonempty closed bounded subsets of X, D(X)
denote the family of nonempty bounded proximal subsets of X, and x(X)
denote the family of nonempty compact subsets of X. The Hausdorff distance
H on P(X) is defined by
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H(E,F) :max{supd(e,F),supd(f,E)}. (2.2)
eckE feF

This mapping H is known as the Pompeiu-Hausdorff metric induced by d.

A multivalued mapping ¥ : X — P(X) is said to have a fixed point if there
exists an element p € X such that p € U(p). The set F(¥) denotes the set of
all fixed points of ¥. An element p € X is said to be a strict fixed point (or
end point of W) if

U(p) = {p}.
The set of strict fixed points (end points) of ¥ is denoted by SF(V), and
clearly, SF(V) C F (V).

A multivalued mapping ¥ : X — P(X) is said to be:

(1) nonexpansive if
H(¥(v), ¥(y)) <d(v,y), Yv,yeX.
(2) quasi-nonexpansive if F'(¥) is nonempty and for any p € F(V),
H(¥Y(v),¥(p)) <d(v,p), VvelX.
(3) satisfying condition (C) if for any v,y € X with 3d(v, U(v)) < d(v,y),
H(W(0), U(y) < d(v,y).

(4) a generalized a-nonexpansive mapping if there exists an « € [0, 1) such
that for each v,y € X with 1d(v, U(v)) < d(v,y),

H(¥(v), ¥(y)) < ad(v, ¥(y)) + ad(y, ¥(v)) + (1 = 2a)d(v,y).

A geodesic path in a metric space (X,d) is a map £ joining two points v
and y in X from a closed interval [0,!] C R such that £(0) = v, £(I) = y, and
d(&(q),&(q")) = lg—{¢| for all ¢,¢' € [0,1]. In particular, [ = d(v,y). The image
of ¢ is called the geodesic or metric segment joining v and y. If the image is
unique, then it is denoted by [v, y]. The space (X, d) is called a geodesic space
if any two points of X are connected by a geodesic, whereas X is known to
be uniquely geodesic if for each v,y € X, there is exactly one metric segment
which joins v and y.

A subset M of X containing every geodesic segment joining any two of
its points is said to be convex. In a geodesic metric space (X,d), a geo-
desic triangle A(a, b, ¢) consists of three points in X where a, b, and ¢ are the
vertices of A, and geodesic segments between them are the sides of A. A
comparison triangle for A(a, b, c) in (X,d) is a triangle A(a,b,c) = A(a, b, &)
in the Euclidean plane R? such that d(a,b) = dg2(a,b), d(a, c) = dg2(a, ¢), and
d(b,c) = dg2(b, ).
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Suppose that A is a geodesic triangle in E and A is a comparison triangle
for A. In a geodesic space, if all geodesic triangles of appropriate size satisfy
the following comparison axiom called CAT'(0) inequality:

d(u,v) < dga2(,0) ¥ u,v € A, 0 € A
then such a geodesic space is said to be CAT'(0) space.

Aoyama and Kohshaka [4] suggested the class of a-nonexpansive mappings
in Banach spaces who also explored fixed points of such mappings. Re-
cently, Igbal et al. [14] proposed the concept of multivalued generalized a-
nonexpansive mappings and obtained existence and approximation results in
the setting of a Banach space.

In 2018, Harandi et al. [3] presented the class of («, #)-nonexpansive map-
pings which are properly larger than the class of a-nonexpansive mapping for
a fixed point sequence. Many researchers have presented and studied iterative
techniques for approximating the fixed points and established convergence re-
sults in CAT(0) spaces for the general class of multivalued mappings including
Mann, Ishikawa, and S-iterative schemes [19, 26, 30, 29].

Motivated by [19, 28], we present the class of monotone multivalued gen-
eralized (a, #)-nonexpansive multivalued mappings and establish fixed points
for such mappings in an ordered C'AT(0) space (see [5]). We will approxi-
mate the fixed points of the proposed mapping using the S-iterative scheme.
Under suitable conditions, A-convergence and strong convergence results will
be established. An application of the convergence results is also presented.
Now, we recall some important definitions and results needed in the sequel.
We assume that (X,d) is a CAT(0) space.

Lemma 2.1. ([12]) Forv,y € X and q € [0, 1], there exists a unique h € [v,y]
such that

d(v,h) = (1 = q)d(v,y) and d(y, h) = qd(v,y).
We denote the unique point h € [v,y] in the above Lemma by (1 — q)v @ qy.

Lemma 2.2. ([12]) For v,y,z € X and q € [0,1], we have the following
nequalities:
(i) d((1—q)v®qy,2)* < (1 - q)d(v, 2)* + qd(y, 2)* — ¢(1 — g)d(v,y)*.

Let M be a bounded subset X and {v,} a bounded sequence in X. Then,
(1) a mapping r(., {v,}) : X — R by
r(v, {v,}) = limsup,,_, o d(vp,v).

For each v € X, the value r(v,{v,}) is called asymptotic radius of
{vn} at v [1].
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(2) The asymptotic radius of {v,} [1] relative to M is the number r given
by
r = inf{r(v, {v,});v € M}.
Denote asymptotic radius of {v,} relative to M by r(M, {v,}).
(3) The asymptotic center of {v,} relative to M is the set A({v,}) of
points in X for which r(M, {v,}) = r(v, {v,}), that is,
A{vn}) ={v ey :r(v,{v,}) =1}

Definition 2.3. ([12]) A sequence {v,} in a CAT'(0) space X is A-convergent
to v € X if v is the unique asymptotic center of every subsequence of {v,}.
In such situation, we write A — lim,, v,, = v and v is the A-limit of {v,}.

Given {v,} C X such that {v,} is A-convergent to v if we take y € X such
that v # y, then by the uniqueness of the asymptotic center, we have
lim sup d(vy,, v) < lim sup d(vy, y).
n—o0 n—oo

Lemma 2.4. ([12]) In a complete CAT(0) space, every bounded sequence ad-
mits a A-convergent subsequence.

Lemma 2.5. ([12]) If {v,} is a bounded sequence in a closed convex subset
M of a complete CAT(0) space, then the asymptotic center of {v,} is in M.

Lemma 2.6. ([19]) Let p be an element of a complete CAT(0) space X. As-
suming {tn} is a sequence in [0,n] for some 6,1 € (0,1) and that {v,}, {yn}
are two sequences in X satisfying the following for some r > 0:
limsup d(vy,,p) < r, limsupd(yn,p) <7
n—oo n—oo
and
limsup d(tpvn, + (1 — t0)yn,p) = 1.

n—o0

Then lim d(vy,yn,) = 0.
n—o0

Let M be a nonempty convex subset of X and ¥ : M — P(M) with
p € F(V¥). Then, the modification of S-iterative scheme [1] in the framework
of CAT(0) spaces is given as follows:

Let v; € M. Define, for ay,, 3, € (0,1)

{yn = (1 - ﬁn)xn @ /ann; (23)

Tpnitl = (1 - an>xn S ans;n
with s, € Uz, s, € Yy, and d(sp,s,) < H(Vz,, Vy,) satisfying
d(8n+17 Sln) < H(\Dxn-&—lv \Ilyn)
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Consider a complete C AT'(0) space, X, endowed with partial order 5. Two
elements v,y are comparable if v <y or y < v. For any a € X, define

[a,—)={ve X :axv} and (+,a={veX:v=<a}

for every v,y € X. An order interval [v,y] is the set given by

v,y ={we X :vxw=xy}

Throughout in this paper, we consider the order intervals to be closed convex
subsets of an ordered C'AT(0) space (X,=<). Let M be a nonempty closed
convex subset of (X,<). A mapping ¥ : M — P(M) is called monotone
if for any u, € Wov there exists u, € Wy such that u, < uy, whenever v <
y for all v,y € M. Moreover, the mapping ¥ is said to be :

(1) monotone nonexpansive, if ¥ is monotone and such that for any com-
parable v,y € M,

H(Yv, Uy) < d(v,y), (2.4)

(2) monotone quasi-nonexpansive, if ¥ is monotone with p € F(V¥) # ¢
and v € M such that whenever v, p are comparable,

H(Yv,Up) < d(v,p), (2.5)

holds.
(3) monotone Suzuki generalized nonexpansive, if

%d(v,\l’v) <d(v,y) — H(Wo, Uy) < d(v, y). (2.6)

(4) monotone a-generalized nonexpansive, if for some a < 1,

H(Vv, Up)? < ad(VYv,p)? + ad(v, ¥p)* + (1 — 2a)d(v, p)*. (2.7)

3. Multivalued generalized (o, )-nonexpansive mapping

Recently, Abbas et. al. [1] initiated the notion of monotone generalized
(c, B)-nonexpansive mapping, which is a wider class of nonexpansive type
mapping that properly contains nonexpansive mapping satisfying condition
(C) and generalized a-nonexpansive mappings in setting of C AT(0) space as
follows.

Definition 3.1. Let M be a nonempty subset of a CAT(0) space (X,d). A
multivalued mapping ¥ : M — P(M) satisfies the Condition (C(, g)) if there
exists (a, 8) € (0, 1) such that for any v,y € M,
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%d(v, Uv) < d(v,y) (3.1)

implies that

H(Uv, ¥y) < ad(y, Yv) + Bd(v, Ty) + (1 — a — B)d(v, y). (3.2)

If a multivalued mapping satisfies the Condition (C(,,g)) in a CAT(0) space
then we say U is the multivalued generalized («, 3)-nonexpansive mapping.

Let M be a nonempty closed subset of an ordered C'AT(0) space (X, <).
A mapping ¥ : M — P(M) is said to be a monotone multivalued generalized
(c, B)-nonexpansive mapping if

(a) W is monotone,
(b) WU satisfies (3.1) for all v,y € M and either v < y or y < v.

Remark 3.2. (1) Multivalued generalized («, §)-nonexpansive mappings
extend and generalize the class of mappings introduced by [14]. Indeed,
if @« = (8 then the mapping is reduced to multivalued generalized a-
nonexpansive mapping.

(2) Multivalued generalized («a, §)-nonexpansive mappings contain the class
of mappings satisfying the Condition (C'). Substituting o = =0 we
get our desired mapping.

(3) Every nonexpansive mapping is generalized (0,0)-nonexpansive map-
ping.

The following example demonstrates that a multivalued generalized (c, 5)-
nonexpansive mappings in the settings of an ordered C' AT'(0) space which is
neither nonexpansive nor satisfies the Condition (C').

Example 3.3. ([1]) Consider an Example 18 of [24] where
d(v,y) = [v1 — y1| + [v1v2 — Y13
Define an order on X as follows: for v = (vi,v2) and y = (y1,%2),v < ¥y

if and only if v; < y; and vy < yo. Thus (X, d, <) is an ordered Hyperbolic
space which is an example of an ordered C' AT'(0) space.

Let M =10,2] x [0,2] CY and ¥ : M — P(M) be defined by

)7(%71)}7 if (U17U2) 7é (272)7

0,
{(%7%)7(%?%)}7 if (U1>U2) = (272)
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Then, the mapping ¥ does not satisfy the Condition (C') on M and therefore
is not nonexpansive. Indeed, for (vi,v2) = (1,1) and (y1,y2) = (2,2), we have

1 1 . 11 1
id(v,\l”l}) = 511’111’1{5, Z} = g
and
d(v,y) =1 =2+ [1(1) —2(2)| = 4
Thus

1
§d(v, Uv) < d(v,y).

And also, the mapping ¥ is multivalued generalized (a, )-nonexpansive map-

ping, for a = % and § = %.

In 2021, Abbas et al. [1] introduced multivalued generalized («, /5)-nonexpa-
nsive mapping and its properties as follows:

(i) If ¥ satisfies the Condition (C) as defined in (3.2), then ¥ satisfies the
Condition (C(4,5)) but the converse is not true in general (see [1]).

(ii) If ¥ satisfies the Condition (C(,,g)) with F(¥) # ¢, then ¥ is quasi-
nonexpansive.

Indeed,
s dist(p, Up) < d(v,p), Yv € X,p € F(¥).
As W satisfying the Condition (C(,,g)) for some a, 8 € [0, 1) such that
H(Wv,Up) < a dist(p, Yv) + B dist(v, ¥p) + (1 —a — B)d(v,p)

holds. Then

H(Vv, Vy) < «H (Vp, ¥v) + § dist(p, Vp) + fd(v, p)(1 — a — B)d(v, p),
implies that

(1 = a)H (v, Wy) < d(v,p),

since, 1 — a > 0, it follows that

H(Vv,Ty) < d(v,p).

Lemma 3.4. ([1]) Let us assume that M is a nonempty subset of C AT(0)
space X and ¥ : M — P(M) is a multivalued mapping satisfying the condition
(Cla,py) for some o, B € [0,1). Then
(1) If M is closed then F(V) is closed. Moreover, if M is convex and
F(U) # ¢ with SF(¥) = F(¥), then F(V) is conver.
(2) For each v,y € M and p € Vv, we have the followings:
() H(Wo, ¥p) < d(v.p).
(ii) Bither idist(v, Pv) < d(v,y) or dist(p, ¥p) < d(y,p).
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(iii) Either H(Vv, Yy) < adist(y, Yv)+LBdist(v, Vy)+(1—a—p)d(v,y)
or H(Vv, Up) < adist(p, Vv) + Bdist(v, ¥p) + (1 — a — B)d(v, p).
(3) Let M be closed and convex. Then

(1+a+p3)

H(Vv, Wy) < 1-5

dist(v, Uv) + d(v,y) (3.3)

holds for all v,y € M.

4. CONVERGENCE RESULTS FOR MONOTONE GENERALIZED
(cr, B)-NONEXPANSIVE MAPPING TYPE 1

In this section, we establish strong and A-convergence results for monotone
generalized (a, #)-nonexpansive mapping type I in a CAT(0) space.

Assume that (X, d) is an ordered C'AT(0) space and M is a nonempty,
convex, and closed subset of X. Let ¥ : M — P(M) be multivalued mapping.
The sequence {7,,} is defined by

™ E M,
Zm = (} - Bm)Tm @ /8m3m7 (4 1)
ym - Sm) .

Tmt1 = (1 — am)s;n &) ams;/n, VYm € N,

where {a,,} and {3,,} are real sequences in (0,1), with s,, € U(7,), 5., €

U(zy,) and s;/n € YU(y,) and d(sm,s;n) < H(U(Tm), ¥(2m)), d(SpsSm) <

H(U(2), U(ym)) and d(sm,s.,) < H(Y(7m), ¥(ym)). The sequence defined
in (4.1) is referred as SR iterative algorithm.

Lemma 4.1. ([1]) Assume that M is a nonempty, closed, and convex subset
of a complete ordered C AT (0) space (X, d) and U : M — P(M) is a monotone
multivalued generalized (o, B)-nonexpansive mapping. Then

3d(p, ¥(2)) < d(p, )
for all x € M and p € F(¥) such that either x < p or p < x.

Lemma 4.2. Let M and ¥ : M — P(M) be as in Lemma 4.1. Let 71 € M be
such that 71 = W(m1)(or U(r1) = 71). Then, for sequence {7} defined by SR
iterative algorithm (4.1), we have
(1) T = Sm =X Tmg1(0r Tig1 X S = T); for any m > 1 and sy, €
U (7).
(2) T < 7(0r T <X 7)), provided {1} is A-convergent to a point T* €
M for all m € N.



406 J. K. Kim, Samir Dashputre, Rashmi Verma and Padmavati

Proof. If 71 < s1, then by convexity of order interval 71, s1] and (4.1) we have
T 2 (1= B1)m @ Brs1 = s1.

Thus, there exists z; such that

T1 221 2 St (4.2)
Since W is monotone there exists s; € ¢(z1) such that s; < s;. Again by
convexity of order interval [s],s;], 5; < s;. As ¥ is monotone there exists
5/1/ € ¢(y1) such that 5/1 =< 5,1/. Again by convexity of order interval [811,8,1/],
and by (4.1), we have
s1 =2 (1—ay)s; ® agsy,
thus
s;<x9 <8, (4.3)
From (4.2) and (4.3) the above argument, we conclude that
1 2 51 =2 T2
Hence, the statement is true for m = 1. Assuming that the statement is true
for all m, that is s, € ¥(7,,), we have
Tm = Sm = Tmal- (4.4)
Now, we show that (4.4) is true for (m + 1). By convexity of order interval
[T, Sm] and (4.1)
Ty = (1 - ﬁm)xm ©® ﬁmsm = Sm,

thus there exists z,, such that

Tm = 2Zm = Sm, (45)
by monotoncity of U there exists s;n € ¥(zy,) such that s, < slm. Again by
the convexity of order interval [s,,, s,,] and (4.1), we have

Sm = Ym = S (4.6)

by monotoncity of ¥ there exists s,, € ¥(y,,) such that s,, < s,,. Again by
the convexity of order interval [s,, s, ] and (4.1), we have

/ " 1"
Sy S (1 — ) S, ® amSyy, = Spys

thus

s;n = Tma1 = s;;L. (4.7)
From (4.5), (4.6) and (4.7), we have

’ 1"
Tm 2 2Zm 2 8m 2 S 2 Tmal 2 Sy
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and therefore

S, = Sl (4.8)
Hence, we have
Tim+1 = Sm+1-
By convexity of order interval [7,41, Sm+1] and (4.1), we obtain that

Tm+1 = (1 - Bm+1)7—m+1 ©® ﬁm+13m+1zm = Sm+1,

and hence

Sm+1 = Zm41 = S;n.l,_l- (49)

The monotonicity of ¥ yields that there exists s, +1 € Y(2my1) such that

!
Sm+1 = Sm+1>

again by the convexity of order interval [s;,11, 5., 41}, we have

!
Sm+1 = Ym+1 = Sm+1>

again by convexity of order interval [s,,, 1, ,,,,] and (4.1)

/ ’ 12
Sm+1 = (1 - aerl)sm—i—l 2] Om+15m+1 = Sm+1>

which implies that

Sm+1 = Tm+2 = Smtl (410)
so combine all the above inequalities, we obtain

T4+l = Sma1 = Tmt2-

Hence it is true for all m.

Suppose that = is A — lim of {7,,,}. From (4.1), we have 7,,, =< Tp,41 for all
m > 1. Since the order interval [7,,, —) is closed and convex and the sequence
{Tm} is increasing, we deduced that 7 € [1,,, —) and fixed m € N, if not, that
is, if 7 ¢ [T, —), then a subsequence {71} of {7, } may be constructed by
leaving the first m — 1 terms of the sequence {7,,} and then asymptotic center
of {7} would not be 7 which contradicts that 7 is the A —lim of the sequence
{7m}. This completes the proof. O

Lemma 4.3. Let M and V : M — P(M) be as in Lemma 4.1 and {7,,} be
a SR iteration process defined by (4.1) where F (V) # ¢ such that SF(¥) =
F(W). Suppose that there exists 71 € M such that 71 = s1, where s1 € V(7).
Also, assume that either 71 and p are comparable. Then

(1) h_)m d(Tm,p) exists for all p € F(W¥).
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(ii) lim d(7m,sm) = 0 where sy, € ¥ (7).

n—o0

Proof. Let p € F(¥). If p < 71. Then Lemma 4.2 and transitivity of order
implies that p < 7. Applying the mathematical induction, we obtain p < 7.,
for all m > 1. On the other hand assume that 7 =< p. Since there exists
s1 € ¥(m1), we have s; < p as F(¥) = SF(¥). Further (4.1) yields

z1 = (1 - 1)1 © P51 2 p.
Again, there exists s; € W(z;) which implies that s, < p as F(¥) = SF(¥)
and y; = 5,. Again there exists s, € ¥(y;) which implies that s; < p, finally

o <X (1— 042)31 P 04231 <p,

continue in this manner, we obtain z, =< p, y, = p and s;n <p s;/n = p and
Tm =< p. Therefore in both case 7,,, and p are comparable. Now from (4.1), we
have

d(Terbp) = d((l - am)slm S Odmslrlmp)
1- am)d( '/map) + amd(s;ln,?p)
1 — ap) dist(s,,, (p)) + cumdist(s,,, ¥(p))

<(
< (
< (1 - am) (\D(Zm)ﬂ \Ij(p)) + amH(\II(ym)v \Il(p)) (4'11)
<

As d(p,¥(p)) =

H(9(zm), ¥(p)) < o dist(p, ¥(2m)) + B dist(zm, ¥(p)) + (1 — a — B)d(2m, p)
< of dist(p, V(p)) + dist (¥(p), ¥(zm) }
+ (1 —a— ) d(zm,p) + B{d(zm,p) + dist (p, ¥(p))}
<a H(Y(zm), ¥(p) + (1 — @)d(zm,p)
< d(zm, p)- (4.12)

O

3d(7pm, p) implies that

Next, we compute

H(¥Y(ym), ¥(p)) < a dist (p, ¥(p)) + B dist (ym-¥(p)) + (1 — a — B) d(Ym,p)
< a {dist (p, ¥(p)) + dist (¥(p), ¥(ym)}
+ (1 —a =) dWm,p) + B {d(ym,p) + dist (p, ¥(p))}
< a H(Y(ym), ¥(p)) + (1 — @)d(ym, p)
< d(Ym, D). (4.13)

From (4.11), (4.12) and (4.13), we have
d(Tm+1,p) < (1 — o) d(2m, p) + atm d(Ym, p)- (4.14)
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From (4.1), we compute that

d(2m,p) = d((1 = Bm)Tm © BmSm, p)
< (1 = Bm) d(Tm,p) + B d(Sm,p)
< (1= Bm) d(Tm,p) + Bm dist (Sm,p)
< (1= Bm) d(Tim, p) + B H(¥(7m), ¥(p)). (4.15)

But

H(Y(1n), U(p)) < a dist (p, (7)) + B dist (Tin, ¥(p)) + (1 — a — B)d(7m, p)
< a {dist (p, ¥(p)) + dist (¥(p), ¥(7)}
+ (1 —a—pB) d(Tm,p) + B8 {d(Tm,p) + dist (p, ¥(p))}
<a H(Y(7m), ¥(p) + (1 — @)d(Tm, p)
< d(Tm,p)- (4.16)

From (4.15) and (4.16), we have
d(2m, p) < d(Tim, D). (4.17)

Again from (4.1) and (4.17), we have

d(Ym:p) = d(5, D)
< dist (s,,,,p)
< d(zm,p)
< d(Tm, p)- (4.18)

From (4.14), (4.17), and (4.18), we get
d(Tm+1,p) < d(Tim, p)- (4.19)

Thus, sequence {d(7,,,p)} is decreasing and consequently li_)m d(Tm, p) exists,
n o

for m > 1, complete the proof of (i).
From part (i), we have lim d(7,,p) exists. Suppose lim d(7,,,p) =7 > 0.
n—oo n—oo

Now from (4.16), we get

lim sup d(sn, p) < lim sup H (¥ (7,), U(p))

n—oo n—oo

< limsup d(7p, p)

n—o0

- (4.20)
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limsup d(zpm,, p) = limsup {(1 — Bp) Tm @ Bm dist (Sm,p)}

n—oo n—oo
< limsup (1 — Bm) d(Tm, p) + limsup B, H(¥(7), ¥(p))
n—oo n—oo
< lim sup d(7pn, p)
n—oo
=7 (4.21)

From equation (4.1), (4.12), and (4.13), we get

d(Tm+1,p) = d((1 — am)s @ amsm,p)

< )
<( )
< (1 - am)H(\I’( ) ‘11( )) + o H(\P(ym)v ‘ll(p))
<( )d(Tin; p) + amd(zm, p),

it implies that

d(Terlap) — d(Tﬂ%p)
Qm

< d(Zm,p) - d(Tm,p). (4'22)

Because {a;,} is a sequence in [p, ¢|, for some p,q € (0,1) we obtain that

d(Tm-i-l;p) - d(Tmup) < d(Tm+17p) — d(vap)

q Qm
< d(zm,p) — d(Tim, D). (4.23)

Taking lim inf as m — oo, in above inequality, we get

d(Tm-‘rlup) - d(va p)

lim inf < liminf d(zm,, p) — d(Tm, p)
n—oo q n—oo
< lirginf d(zm,p)- (4.24)

From (4.21) and (4.24), we get
r= nlgrgo d(zm,p)
= nh_}nolo d((1 = Bm)Tm B mSm, p).
Using (4.19), (4.20) and application of Lemma 2.6, we get
nh_)rglo d(Tm, sm) = 0.

Hence, the proof is complete. O
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Now, we present the existence result associated with multivalued generalized
(e, B)-nonexpansive mapping.

Theorem 4.4. Let M and V : M — P(M) be as in Lemma 4.1. Fiz 71 € M
such that 71 = s1. If {Tm} is a sequence given by (4.1) then the condition
A —limy, 7, = 7 and  lim d(7m, sm) = 0 are satisfied then 7 € F(V).

n—0o0

Proof. Since A — lim,,, 7, = 7, Lemma 4.2 implies that 7,,, < 7 for all n > 1.
Utilizing the (o, #)-nonexpansiveness of ¥ and lim d(7y,, sy,) = 0, we have

n—oo
z € Ur. Further,

limsup d(z, 7)) < limsupld(z, $m) + d(Sm, Tm)]

n—oo n—oo

< limsupd(z, spm)

n—oo

< limsupdist d(z, sy,)

n—oo

< limsup H(¥Y7, ¥7y,)

n—oo

< limsup d(7, ).

n—oo

Thus, from the uniqueness of the asymptotic center, we have z = 7 where z €
. [l

Theorem 4.5. Let M and V : M — P(M) be as in Lemma 4.1 with F(V) #
¢. Fizm = s1 € Ui If {mm} is a sequence given by (4.1) then {7} is
A-convergent to an element of F (V).

Proof. Tt follows from Lemma 4.1 that lim d(7,,,p) exists for each p € F (V).
n—o0
So, {7} is bounded and lim d(7y,, $m) = 0, where s, € U 7y,
n—oo

Denote p;(7m) = |J Ax({um}) where the union is taken over all subsequence
{um} of {7t }. We now prove that {7,,} is A-convergent to a fixed point of W.
First we show p;(7,) C F(¥) and therefore assert that p;(7,) is singleton. To
show py(7,) C F(¥). Let y € pi(7,). So there exists a subsequence {y,,} of
{Tm} such that A({ym}) = {y}. As a consequence of Lemma 2.4 and Lemma
2.5, there exists a subsequence {t,, } of {y;,} so that A-lim,, t,, =t and t € M.

As nh—>Holo d(Tm, Sm) = 0 and {t,} is a subsequence of {7,,}, we have that
lim sup d(ty,, ¥t,,) = 0. By Theorem 4.5, we have t € Ut and hence t € F (V).

n—o0
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Now we assert that ¢ = y. Indeed, ¢ # y leads to a contradiction as
limsup d(t,,,t) < limsup d(ty, y)
n—oo n—oo

< lim sup d(ym, y)

n—oo

(
< limsup d(ym, t)
n—o0
= lim sup d(7p, t)
n—oo
(tm; 1)

= limsup d(t,, t),
n—oo

and hence, t = y € F (V). To show that p;(7,) is a singleton set, let {ym}
be a subsequence of {7,,}. From Lemma 2.4 and Lemma 2.5, there exists
a subsequence {t,,} of {y,,} such that A-lim,,t,, = t. Let A({ym}) =
{y} and A({mn}) = {7}. As it is already proved that ¢ = y thus it is suf-
ficient to demonstrate that ¢t = 7.
If t # x, then by Lemma 4.3, {d(7,,p)} converges.
By uniqueness of asymptotic centers, we have
limsup d(t,,t) < limsupd

tns y)
n—roo n—oo
< lim sup d(Ym, 7)
n—oo

(
(
< lim sup d(7yn, 7)
(
(

n—o0

= limsup d(7y, t)
n—oo

= lim sup d(t,, t),

n—o0

which is a contradiction that ¢ = 7, consequently t = y € F(¥). Hence the
conclusion follows. O

In the following, we ascertain the strong convergence result which extends
Theorem 4 in [1] for multivalued generalized («, 5)-nonexpansive mapping in
the setup of ordered CAT(0) space via SR iterative algorithm.

Theorem 4.6. Let M and V : M — P(M) be as in Lemma 4.1 with F(V) #

¢. Fixr = sy € Ur. If {1} is a sequence given by (4.1) with Y .| o fBm =

00, then {T,} converges to a fixed point of ¥ if and only if lim inf d(7,,, F(¥)) =
n—oo

0.

Proof. If the sequence {7,} converges to a fixed point p € F(V), then it is
obvious that lirginf d(Tm, F(V)) = 0.
n oo
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Conversely, suppose that liminf d(7,, F(¥)) = 0. From Lemma 4.3, we
n—oo

have dist(Tm+1,p) < d(Tm,p) for any p € F(V). So, dist(Tmi1, F(¥)) <
d(Tim, F(¥)) and hence {d(7, F(¥)} forms a decreasing sequence that is
bounded below by zero which implies that lirr_l) inf d(7,, F(¥)) exists.

To show {7,,} is a Cauchy sequence in M, choose an arbitrary number, say,
e > 0. As liminf d(7,, F(¥)) = 0, we have lim d(7,, F(¥)) = 0. Thus, there
n—o00 n—oo

exists mg such that for all m > mg, we have

d(Tm, F(T)) <

PPN

Specifically,
inf{d(7my,p) :p € F(V)} < §.

Thus, there must exists p € F(¥) such that d(7,,,,p) < §. Now for m,n > my,
we have
d(Terna Tn) S d(Tern?p) + d(pa Tn)
< 2d(Tmg, P)

€
< 2=
2

= €.

Since M C X is closed, {7,,} is a Cauchy sequence and consequently, converges
in M. Let liminf 7,,, = g. Note that
n—oo

dist (g,Vg) < dist (g,Tm) + dist (T, V7m) + dist (Y7, g)
< d(Tm,9g) + d(Tm, Sm) + H(VTp, ¥g).

On taking the limit as m — oo, we have g € Wg. This completes the proof. [J

Remark 4.7. (1) For a« = 8 = 0, our theorems extend the results in [2]
to CAT(0) spaces.
(2) For o = 3, these results extend the results in [14, 25] to CAT(0) spaces.
(3) Our results extend and improve results in [30] for monotone nonex-
pansive mapping in a CAT(0) spaces.

5. NUMERICAL EXPERIMENTS

Example 5.1. Let M = [0,2] and Y be a CAT(0) space equipped with the
order > and the standard metric given by d(v,y) = |v — y|. Define ¥ : M —
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P(M) by

Clearly, ¥ is monotone. Indeed, if v > y for v € [%, 1] and y € [0, %), then for any
uy € Yu = {0}, there exists u, = 0 € Uy such that u, > u,.

FiGure 1. Comparison of iteration process for «, =

n _ 1
n+1 and ﬂn T n+7

no.of teration S lteration SR Iteration
1 04 04
2 029375 0140625 o4 © sterten
3 01903926185 004427083333 © sRferaton
4 01154260706 001314290365
5 006715698653 000376364362 03
s 003800898381 0001051992369
7 002109290044 0,0002590083397
8 001153517993 0.00007838075915 02
9 0006237541738 0.00002104668533
0 0003342932525 0.000005606968513
" 000177872613 0.000001484197548 01
12 0000040830834 0.0000003208043311
3 0004951741236 0.0000001024476941
14 0002585242951 0.00000002675531287 .
15 0000135293541 0.000000006964875121 5 o s P
i 0.000070556119720.000000001807998478
17 0.00003663143812 0.0000000004681837491 No.of erations
18 0.00001897288027 0.0000000001209745625
19 0.000002805983384 0
20 0.00000505856739 o

FiGure 2. Comparison of iteration process for «, =

1 __n
a7t ond P = o33

no. of teration S lteration SR Iteration
1 04 04
2 02400000742 0.131281588 04 ® Steration
3 0.1574504288 0.03621189188 ® SRiteration
4 0.1082471698 0.01244783783
5 007712670881 0004487050597 03
6 0.05645346546. 0.001673062639
7 0.04223600948 0.0008410872143
8 0.03215644754. 0.0002506892032 02
3 002484816401 0.00009870583311
10 001844800842 0.00004022174875.
" 001532627619 0.0000164221596. o1
12 00122934738 0.000006774887071
13 0009906756438 0.000002820474947
i 0008045098021 0.000001183605734
15 0.006678814225  0.0000005002425763 o 5 . . .
16 0005413815873 0,0000002127767915
7 0.004480884114  0.00000009102672528 no. oferation
12 0.003722357381  0.00000003914582267
19 0.003117397482  0.00000001691517908

20 0002618357832 0,00000000734127496
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Ficure 3. Comparison of iteration process for «, =

T}H and By, =

_1
n+1

ofiteration S lteration SR lteration
1 04 04
2 0275 01125
3 02215277778 00390825
4 0.100375434 001495361328
5 0.1694341363 0.006086213379
6 0154137998 0.00264445076
7 0.1423417235 0.001096969843
8 01328863435 0.0004820668255
9 0.1250964499 0000214358527
10 01135288853 0.00000701687254
" 0.1128963152 0.0000441988052
12 01079963015 0.00002029615274
13 01036828302 0.00000938248707
14 00998476327 0.000004362129135
15 009640843648 0.000002038083885
15 000330162306 0.0000000563485775
17 0.09047665083  0.0000004504592343
18 00678936083 0.0000002128908488
19 0.08551974073  0.0000001009166546
20 008332629737 0.00000004796694737

FiGure 4. Comparison of

n+1 —
\/ Bl and fBn =

1

vV2n+5

no. of teration S lteration SR Iteration
1 04 04
2 02587100572 0.1153794203
3 01783901926 0.03562164856
4 01263567198 0.01131245882
5 0.09088351628 0.003683241456
[ 006602675278 0001218631758
7 004831385596 0004082108016
B 003654521125 0001381031723
° 0.02626321259 0.00004710832762
10 0.01847253454, 0.00001617917882
1 001447939177 0.000005589993043
12 001076263099 0.000001941381699
13 0.008061967568  0.0000006773110187
14 0006033057808 0.0000002372601158
15 0004522032264 0,00000008341414309
16 0003304310627 0.00000002942255765
17 0.002561083724 0.00000001040923504
18 0.001919662442 0.000000003692690485
19 0.001445894726 0.000000001313277596
20 0.001090148939 0.0000000004681405084

04 @ stenaton
@ sRitemton
03
02
01
o
5 0 s 0

iteration process for «, =

04 @ Steration
@ sRiterztion

03

02

01

5 10 5 20

No. ofteration

6. APPLICATION TO FRACTIONAL DIFFERENTIAL EQUATIONS

Consider the following fractional differential equation [23]:

D% (t) = a(t) - [1 - 2(t)],

0<a<l,

where © D denotes the Caputo fractional derivative of order a.
The equivalent integral equation is:

a(t) = (0)

NS
['(a)

/0 (t — 1) La(r) - [1 - 2(7)] dr,

where I'(«) is the Gamma function.
Consider the following integral equation is given by:

Sz(t) = z(0) + I‘(la) /0 (t — ) ta(r) 1 — x(7)] dr,

where I'(«) is the Gamma function defined as:

415
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oo
INa) = / t* et at.
0
The operator S is monotone if for any x1(¢) and z2(t) in its domain:

(z1(t) — x2(t))(Sz1(t) — Sza(t)) > 0.
For the given integral equation, this means showing that:

(21() = 22(8)) (21(0) — 23(0)

1

a7 | = ) L= (7)) = aa(r) [~ aa()] )

> 0.

The operator S is nonexpansive if for any x;(t) and x2(t) in its domain:

[Sz1(t) = Swa(t)]| < 21 () — 22()]]-

For the integral equation, this requires:

[S21(t) — Sza(t)|]

= Hl‘(la) /Ot(t — ) e (1) [1 = 21(7)] — 22(7) [1 — 22(7)]] dr || -

Using the triangle inequality, we get:

1 t_Tmla?T—xT—xT—g;TT
Hr(a)/o“ )7 w1 (7) [L = 21 (7)] = w2(7) [L — 22(7)]] d

< 1 /0t<t — )2l (r) [1 = 21 ()] = o) [1 = wa(7)]] .

Given that z(7)[l — x(7)] is Lipschitz continuous. Consider the function
f(z) = z(1 — x). The derivative of f(z) is:

f(z)=1-2x.

The absolute value of the derivative is:

/(@) = |1 = 2a|.
To find the maximum value of | f'(z)| for « € [0, 1], we consider the endpoints
and the critical points:
o At x =0:
[fO)=[1-2-0/=1
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o At x =1:
fMl=1-2-1=1
e At the critical point where f/(z) = 0:

1
1-22=0 = =3

TEATITE
7(5)1=n-2:51=0

Therefore, the maximum value of |f’(x)| on the interval [0,1] is 1. Hence,
f(z) = z(1 —z) is Lipschitz continuous with Lipschitz constant L = 1. There-
fore, the integral operator S is nonexpansive. Thus, the integral operator S
is monotone and nonexpansive. This implies that S is monotone generalized
(c, B)-nonexpansive mapping. By Theorem 4.6, the sequence {x,,} converges
to fixed point p(say). So, the given integral equation (6.2) has a solution.
Therefore, the differential equation (6.1) has a solution.

_ 1.
At x = 35:

7. CONCLUSION

In this paper, we extend the result of Abbas et al. [1] via a new iterative
algorithm for multivalued generalized («a, §)-nonexpansive mapping in ordered
CAT(0) space. Through numerical experiments, we have shown that our it-
erative algorithm is faster than the algorithm discussed in Abbas et al. [1].
Furthermore, we have also presented an application of the result in approxi-
mating the solutions of fractional differential equations.
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